
Constrained-Path Discovery by Selective Diffusion
Karel de Vogeleer

Dept. of Telecommunication Systems
School of Engineering

Blekinge Institute of Technology
Karlskrona, Sweden

E-mail: karel.de.vogeleer@bth.se

Dragos Ilie
Dept. of Telecommunication Systems

School of Engineering
Blekinge Institute of Technology

Karlskrona, Sweden
E-mail: dragos.ilie@bth.se

Adrian Popescu
Dept. of Telecommunication Systems

School of Engineering
Blekinge Institute of Technology

Karlskrona, Sweden
E-mail: adrian.popescu@bth.se

Abstract—The demand for live and interactive multimedia
services over the Internet raises questions on how well the
Internet Protocol (IP)’s best-effort effort service can be adapted
to provide adequate end-to-end quality of service (QoS) for
the users. Although the Internet community has developed two
different IP-based QoS architectures, neither has been widely
deployed. Overlay networks are seen as a step to address the
demand for end-to-end QoS until a better solution can be
obtained.

As part of the telecommunication research at Blekinge Institute
of Technology (BTH) in Karlskrona, Sweden we are investigating
new theories and algorithms concerning QoS routing. We are
in the process of developing Overlay Routing Protocol (ORP),
a framework for overlay QoS routing consisting of two proto-
cols: Route Discovery Protocol (RDP) and Route Management
Protocol (RMP). In this paper we describe RDP and provide
preliminary simulation results for it.

I. INTRODUCTION

The predominant form of Internet routing is a combination
of shortest-path routing for intradomain environments coupled
with policy-based routing for interdomain communication.
For the past ten years it has been argued that Internet must
incorporate elements of QoS in order to be used as a platform
for multimedia distribution. In particular, live or interactive
multimedia communications place stringent constraints on the
path between sender and receiver. Examples of such con-
straints are available bandwidth, packet delay, packet delay
variation and packet loss rate.

Two major IP-based QoS architectures have been developed
so far: Integrated Services (IntServ) [1] and Differentiated
Services (DiffServ) [2]. Neither architecture has been widely
deployed due to lack of a viable economical solution for
network operators, poor backwards compatibility with ex-
isting technology and difficulties in the interaction between
different network operators [3]–[5]. Additionally, we would
like to mention the Asynchronous Transfer Mode (ATM)
Private Network-to-Network Interface (PNNI) protocol, which
has support for QoS routing [6], [7]. Although ATM failed
to become the technology of choice for end-nodes due to
the emergence of cheap Ethernet cards, the research into
ATM technology has yielded valuable results for the Internet
community.

There seems to be little hope for wide QoS deployment
implemented at network layer, at least in the near future. To
cope with this problem several researchers have investigated

the possibility to deploy QoS in overlay networks on top of
IP [8]–[12].

AS 1
AS 3

AS 2

Physical Network

Overlay Network

Fig. 1. Overlay network

An overlay network utilizes the services of an existing
network in an attempt to implement new or better services.
An example of an overlay network is shown in Figure 1. The
physical interconnections of three autonomous systems (ASs)
are depicted at the bottom of the figure. The grey circles denote
nodes that use the physical interconnections to construct
virtual paths used by the overlay network at the top of the
figure. Nodes participating in the overlay network perform
active measurements to discover QoS metrics associated with
the virtual paths. The results from the measurements can be
used in rerouting of overlay traffic, in load balancing or for
traffic shaping.

Our work presented in this paper is part of the Routing in
Overlay Networks (ROVER) project at BTH to implement a
framework for overlay QoS routing called ORP [13]. ORP is
part of a larger goal to research and develop a QoS layer on
top of the transport layer. The main idea is to combine ORP
together with additional QoS mechanisms, such as resource
allocation and admission control, into a QoS layer. User
applications that use the QoS layer can obtain soft QoS
guarantees. These applications run on end-hosts without any

specific privileges such as the ability to control the internals
of TCP/IP stack, the operating system, or other applications
that do not use the QoS layer. In terms of the OSI protocol
stack, the QoS layer is a sub-layer of the application layer.
Applications may choose to use it or bypass it.

The QoS layer implements per-flow QoS resource manage-
ment. In contrast to IntServ and DiffServ, we envision that
it is mostly end-nodes in access networks that take part in
the routing protocol. IP routers are not required to take part
or be aware of the QoS routing protocol running on the end-
nodes. In other words, we propose a QoS layer on top of the
best-effort service provided by IP. Since a best-effort service
leaves room for uncertainties regarding the resource allocation,
we aim only for soft QoS guarantees.

The ORP framework consists of two protocols: Route
Discovery Protocol (RDP) and Route Management Protocol
(RMP).

RDP is used to find networks paths subject to various QoS
constraints [14], [15]. To achieve its goal, RDP uses a form
of selective diffusion in which a node that receives a path
request forwards the request only on outgoing links that do
not violate the QoS constraints. Eventually, the request may
reach the destination node if there is at least one path satisfying
the constraints. At that point a reply containing the complete
path is sent back to the requesting node. The RDP is based
on ideas presented in [16] and [17], [18].

The purpose of the RMP is to alleviate changes in the path
QoS metrics, due to node and traffic dynamics. This is done
through a combination of route repair techniques and optimiza-
tion algorithms for traffic flow allocation on bifurcated paths.
The purpose of the flow allocation is to spread the demand
on multiple paths towards the destination [19]. The design
of RMP is influenced by ideas presented in [20], [21] and
in [22], [23]. Since RMP currently is under development, only
information pertaining to RDP is presented in this article.

The remaining of this paper is organized as follows. Sec-
tion II introduces the format of the messages used by RDP.
The diffusion process used for constrained-path discovery is
presented in Section III. The OMNeT++ simulation model for
RDP is discussed in Section IV. The simulation testbed is
presented in Section V. In Section VI we analyze preliminary
simulation results from a performance perspective. Concluding
remarks and lessons learned are discussed in Section VII,
which is followed by our plans for future work in Section VIII.

II. RDP MESSAGE FORMAT

Since ORP messages can carry user data we switch freely
between the terms packet and message. We assume that the
transport layer below ORP allows a node to send packets to
any known peer in the overlay.

All ORP messages start with the generic header shown in
Figure 2. Field values in the packet header are arranged in
network byte order. The following elements are included in
the ORP packet header:

HopsTTLType

Status code

Size (in bytes)

0 8 3224

Version

Flags

16

Byte: 0−3

8−11

12−27

28−43

44−59

Reserv4−7

DstID (128 bits)

Flw ID (128 bits)

SrcID (128 bits)

Fig. 2. ORP generic packet header

Version ORP protocol version. At the moment of writing
the protocol is at version 1.

Type ORP packet type.
Field value Packet type

0 reserved
1 control packet (CP)
2 acknowledgement packet (AP)
3 data packet (DP)
4 used by the RMP

TTL Time-to-live, denoting how many overlay hops
the packet is allowed to travel.

Hops Indicates the amount of links the packet already
has passed. If the value in the Hops field equals
the value in the TTL field the packet is dropped.

Flags Bitfield arranged as |0|0|E|0|D|C|B|R|, where 0
denotes unused bits.

E indicates the node is leaving the overlay and all
routes associated with SrcID should be
rerouted or deleted.

D indicates that the path associated with the
FlwID should be deleted.

C denotes a route change.
B denotes a bidirectional route request.
R indicates a redundant AP.

Reserv Reserved for future use.
Status Used to exchange status codes among nodes.
Size Packet size in bytes excluding the generic header.
SrcID Universally Unique Identifiers (UUID) denoting

the source node of the packet1.
DstID UUID denoting the destination node of the

packet.
FlwID UUID of the flow to which this packet belongs.

RDP uses two different kinds of packets: control packets
(CPs) and acknowledgement packets (APs).

A CP begins with the generic header followed by a data
structure called QoS map, as shown in Figure 3. The QoS
map starts with the QoS constraints for the requested path.

1The ORP UUIDs are defined as specified in [24].

ReservedLoss rate

DelayBandwidth

ReservedLoss rate

DelayBandwidth

Max delayMin bandwidth

Timestamp

Hop 1 UUID

32160

Hop N UUID

Feasible Path

QoS constraints

Fig. 3. QoS map

ORP currently supports two type of QoS constraints: min-
imum bandwidth specified in kilobytes per second and the
maximum path delay, specified in milliseconds. We plan to
integrate additional constraint types in future ORP versions.
The timestamp, in Coordinated Universal Time (UTC) format,
indicates the time when the QoS map was sent to the next
hop.

Following the path QoS constraints comes the feasible
path explored so far by the CP in question. Each node that
forwards the CP appends an entry to the feasible path. The
entry consists of the UUID of the downstream node and a
set of QoS metrics associated with the link on which the
packet is forwared. Statistics currently supported by ORP
are bandwidth (expressed in kilobytes per second), delay
(expressed in milliseconds) and packet loss rate. The packet
loss rate is a fraction with the accuracy 1/(216 − 1). A loss
rate of 0 indicates that no packets are lost whereas a loss rate
of 216 − 1 denotes that all packets are lost. The use of the
last field is not defined yet. The manner in which the the QoS
metrics are computed is not within the scope of this paper.

When the destination node receives a CP it assembles an AP
by copying the SrcID, DstID, FlwID and feasible path from
the CP. Then, the AP is sent back to the source node over the
reverse feasible path2. The purpose of APs is to inform nodes
on the feasible path that a complete route to the destination
has been found.

When a route has been established between two nodes, the
source node can start to send data. Data is transported inside
data packets (DPs). A DP consists of a generic header and the
QoS map obtained from an AP followed by application data.
DPs using the same FlwID are said to form a flow.

Each node maintains a number of flow relays (FRs). A FR
is an abstract data type associated with a single flow or a

2Traveling on the reverse feasible path means traveling in the opposite
direction on the feasible path (i. e. , over hops N, (N − 1), . . . , 1).

group of flows (flow bundle) sharing common characteristics,
e. g. , the same QoS constraints. The information in the FRs
is updated by CPs and APs associated with the flows and by
QoS measurements performed by the node in question.

At each node a list of active CPs is maintained. A CP is
active from the time it is forwarded towards the destination
until a corresponding AP is received or a timeout occurs. Each
list entry contains information uniquely identifying a CP: a
copy of the SrcID, the DstID and the FlwID. Further, a timer
Tout is associated with every CP in the list. When the timer
expires the corresponding CP is removed from the list.

III. PATH DISCOVERY PROCEDURE

When a node in the overlay wants to open a route to
another overlay node it assembles a CP with the desired
QoS constraints. The requesting node, also called source
node, sends the CP to all adjacent nodes connected by links
satisfying the QoS constraints. If at least one feasible link is
found, the CP is added to the list of active CPs and a timer
is started accordingly. If after Tout seconds no information is
received the CP is considered lost and it is removed from the
active CP list. We compute the value of Tout by the following
formula:

Tout = 0.2× (TTL−Hops).

Each node receiving a CP checks whether its node UUID is
matching an entry in the feasible path of the CP. A matching
entry means that the CP has travelled in a loop and causes
the CP to be disregarded. In this case however, the CP entry
remains in the active CP list.

If no matching node UUID entry is found in the feasible
path of the CP and at least one feasible link exists, then the
received CP is added to the list of active CPs. For each feasible
link found, the adjacent node UUID (denoted by Hop UUID
in Figure 3) and the QoS statistics of the link are appended to
a copy of the received CP. The modified CP is then forwarded
over the link in question. This process is performed for each
link, except for the one on which the packet arrived at the
current node.

If no feasible link exists, the CP is dropped and no further
actions are taken. The receiving and forwarding process is
repeated at several nodes until either one or more CPs reach
the destination node or all CPs are dropped by intermediate
nodes.

If all CPs are lost the nodes on the feasible path will
eventually experience Tout timeouts and will be able to free
any reserved resources.

The first CP that arrives at the destination node is used to
obtain the feasible path between source and destination. The
destination node will then create a FR for packets correspond-
ing to the FlwID in the CP. The destination node sends an AP
back to the source node over the reverse feasible path. If the
received CP indicates that the source node wishes bidirectional
communication, then the destination node begins immediately
a route discovery process towards to the source node, using
the same QoS constraints specified in the CP. All subsequent

CPs that arrive at the destination node are used to construct
corresponding APs. These APs are marked as redundant and
then forwarded to the source on the reverse feasible path.

Each node receiving a AP checks whether the triple SrcId,
DstId, FlwID is matching an entry in the list of active CPs. If a
matching entry is found, the node either creates a FR or adds
the flow to an existing flow bundle corresponding to a FR.
Further, the CP entry is removed from the active CP list and
the AP is forwarded to the next node on the reverse feasible
path. If no matching entry is found, the AP is dropped silently.
The manner in which the redundant APs are treated depends
on the overlay policies. If the overlay policies favor backup
paths or multipath routing, the redundant APs are treated just
as regular APs. Otherwise, redundant APs are dropped.

The first AP to arrive at the source node signals that a
feasible path has been set up and the application can begin
sending DPs. A feasible path can be torn down by a CP with
the delete (D) flag set.

IV. IMPLEMENTATION

To evaluate the performance of the RDP we use the public-
source simulation environment OMNeT++ [25]. OMNeT++
is an object-oriented, modular and open-architecture discrete
event simulation environment with an embeddable simulation
kernel.

An OMNeT++ simulation is build out of hierarchically
nested modules, which is ideal for an object-oriented approach.
Modules communicate with each other by means of messages
and these messages may contain data of arbitrary length.
Messages are transported through gates and over channels.
A node maintains an arbitrary amount of gates and different
gates are connected with channels. The topology of a network,
in terms of gates, channels and modules, is defined in the
Network Description (NED) language [25].

Our simulator includes two differnet modules: the ORP
module and the DATACENTER module. The ORP module
implements the RDP protocol and the DATACENTER module
collects the simulation statistics. These statistics can easily be
written to files with help of dedicated classes provided by the
OMNeT++ framework.

As RDP is designed to run on top of the Internet we have at-
tempted to use realistic Internet topologies in our simulations.
There are several challenges in modeling the Internet topology,
such as mapping the actual topology, characterising it, and
developing generation models that capture its fundamental
properties [26]. Several topology generators are available [26]–
[28], but the generated topologies differ significantly according
the characteristics of the network models used.

We have used the BRITE [26] software to generate network
models according to the Barabási-Albert model. BRITE is a
universal topology generator developed at Boston University. It
is designed to be a flexible, extensible, interoperable, portable
and user friendly topology generator.

OMNeT++ allows arbitrary parameters to be defined in
an external initialisation file which can be loaded in the
simulation at any time. This allows the user to control the

behaviour of the simulation without having to recompile the
source code. The parameters available in our initialisation file
are:

• the time-to-live (TTL) value of the packets,
• the destination node to which a route will be opened,
• the delay and bandwidth QoS constraints used for route

requests,
• the session arrival rate and session duration.
The destination node parameter can be a node identifier or

a discrete probability distribution used to randomly select a
node.

The RDP simulator currently supports Poisson arrivals and
exponentially distributed session durations. Thus, the session
arrival rate parameter describes the mean value λ of the Pois-
son distribution and the session duration parameter denotes the
mean value E[X] = 1/λ of the exponential distribution.

In our simulations each node in the network attempts once
to establish a route at a time instant described by the arrival
rate process. If RDP establishes a route, that route will last
for the duration of the session. The simulations are terminated
when all established sessions end.

V. SIMULATION TESTBED

We used the Barabási-Albert model for the network topolo-
gies in our simulations. This model is based on the idea that
self-organization in large networks leads to a state described
by a scale-free power-law distribution [29].

Power-laws are expressions of the form of

y ∝ xa

where ∝ means ”proportional to”, a is a constant and x and
y are arbitrary measures. Besides characterising the Internet,
power-laws also appear to describe natural networks such as
human respiratory systems and automobile networks [30].

The scale-free distribution in the Barabási-Albert model
can be explained by two mechanisms: incremental growth,
which refers to the gradual increase in size of the network,
and preferential connectivity referring to the tendency of new
nodes joining a network to connect to nodes that are highly
connected or popular.

The router Barabási-Albert model in BRITE interconnects
the nodes following the incremental growth idea. The proba-
bility P that a node i wants to connect to another node j in
the network is given by

P (i, j) =
dj∑

k∈V dk

where dj denotes the outdegree of node j, V is the set of
nodes that joined the network and

∑
k∈V dk denotes the sum

of outdegrees of all nodes previously joined the network [26].
When we talk about the outdegree we refer to the amount of
edges incident to a node.

The parameter settings for our simulations are provided in
Table I. The intuniform in the value field denotes a discrete
uniform distribution.

TABLE I
PARAMETER SETTINGS FOR THE EXPERIMENT

Parameter Value
TTL 7

Receiver intuniform(0, number of nodes)
Delay 1000

Bandwidth intuniform(64, Y)
Session arrival rate 10

Session duration 15

The difference between each simulation run is determined
by the amount of nodes and by the size of the interval from
which the bandwidth value is chosen, i. e. , by the variable
Y in Table I. Initially, there are 50 simulated nodes and this
number is incremented each simulation run by 50, until the
number of nodes reaches 950. The value of the bandwidth
constraint assigned to a route request is drawn from a discrete
uniform distribution. We use three intervals for the uniform
distribution: 64–1024 KB/s, 64–2048 KB/s and 64–5120 KB/s,
respectively. In each case, the upper bound of the interval
corresponds to the Y variable in Table I. This results in
three curves on each graph, each curve having a total of 19
simulation points. Each simulation point is simulated 10 times
and the results are used to computed the average. Furthermore,
each node runs in ”idle”-mode, which means that if a source
node does not receive an AP in time it will make no further
attempt to try to open a new connection.

We have instructed BRITE to generate flat ”ROUTER (IP)
ONLY” topologies with nodes randomly placed on a plane of
size 1000 × 1000 points. We have increased the number of
nodes by 50 for each generated topology, starting from a size
of 50 to 950 nodes.

The router Barabási-Albert model does not handle delays,
but BRITE still assigns propagation delay mapped to the
distance between nodes in the plane. The delay constraint is
set to the opportunistic value of 1 second. As a consequence,
the QoS delay constraint will always be satisfied. Furthermore,
we have assumed in our simulations loss-free links. Therefore
our current experiments with the router Barabási-Albert model
analyse only the bandwidth performance of the RDP.

We generate session arrival rates following the Poisson
distribution with λ = 10 and session duration times follwing
the exponential distribution with expected value E[X] = 15.

VI. PERFORMANCE ANALYSIS

In this section we evaluate the RDP performance in terms
of protocol overhead. In our analyis, the overhead is a function
of the number of nodes in the overlay. We use the following
metrics to determine the protocol overhead:

• route establishment ratio (%), computed as

total number of established routes
total number of route requests

• average bandwidth utilization (B/s), obtained by

total number of bytes sent
simulation time

• global denied request ratio, assessed as

total number of denied requests
total number of requests

• global load ratio, defined as

total number of bytes sent
simulation time × total available bandwidth

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 100 200 300 400 500 600 700 800 900 1000

R
ou

te
 E

st
ab

lis
hm

en
t R

at
io

 (
%

)
Nodes

Route Establishment Ratio (%)

U[64:1024]
U[64:2048]
U[64:5120]

Fig. 4. Simulation result: Route Establishment Ratio (%)

The route establishment ratio, shown in Figure 4, has an
overall decreasing slope. This indicates that finding feasible
paths becomes more difficult with an increasing number of
nodes. There are several reasons why a route cannot be
established:

i) no feasible path exists between source and destination,
ii) insufficient free bandwidth on feasible links due to

previous RDP requests,
iii) too small TTL value in the CP (henceforth referred to

as the TTL problem).
In the case when there is no feasible path between source

and destination, there is not much that can be done. This case
occurs when there is no path connecting the source node to the
destination node or when there is no feasible path satisfying
the combination of QoS constraints.

The second case for failing to establish a route is when
previous RDP requests on a feasible link have allocated so
much bandwidth that the amount of remaining free bandwidth
is to small to satify the current constraint. In this case the ap-
plication that uses RDP can attempt to use a lower bandwidth
constraint, which may allow it to establish a feasible path.

The TTL problem is the reason for the decay of the curves in
Figure 4. This problem can be solved by increasing the TTL
value. However, an increase of the TTL will also increase
the timeout Tout, which will result in longer durations for
bandwidth reservation as well as additional flooding of the
network by CPs.

Figure 5 shows the number of average number of bytes sent
per second due to RDP messages. It can be observed that the
curves displayed follow roughly a linear growth. This is an
indication that from the perspective of this metric the overlay

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 100 200 300 400 500 600 700 800 900 1000

A
ve

ra
ge

 b
yt

es
 p

er
 s

ec
on

d
(K

iB
/s

)

Nodes

Average bytes per second

U[64:1024]
U[64:2048]
U[64:5120]

Fig. 5. Simulation result: Average bytes sent per second (KB/s)

network can scale to a large number of nodes. The fluctuations
in the tail of the curve (i. e. , in the region of large number of
nodes) can be explained by differences in the topology and
simulation time between each simulation run.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0 100 200 300 400 500 600 700 800 900 1000

A
ve

ra
ge

 li
nk

 lo
ad

 r
at

io
 (

%
)

Nodes

Average link load ratio

U[64:1024]
U[64:2048]
U[64:5120]

Fig. 6. Simulation result: Link load ratio (%)

The average link load ratio curves shown in Figure 6
appear to level out when the number of nodes increases. This
is a manifestation of the TTL-problem. When the network
radius grows source nodes will not be able to reach all the
destinations in the network due to small TTL value in the
CPs. This means that CPs will traverse only a fraction of the
links available in the network. Since the average link load
ratio is computed over all links in the network, this value will
decrease while the network radius increases, provided that the
TTL is kept the same.

VII. CONCLUDING REMARKS

During the RDP simulations we observed that if for a given
request there is a high number of feasible links, this will create
a large number of CPs that are duplicated and forwarded.
Often, different CPs from the same flow arrive at the same
itermediate node by travelling over different routes. Therefore
it can be useful to introduce a mechanism that alleviates this
behavior. Such a mechanism would block each CP that arrives

at a node if a CP belonging to the same flow has already
passed that node. This would lower the protocol overhead at
the cost of increased computational overhead per node. We
are currently in the process of extending RDP to include this
feature.

Throughout our simulation runs we used the following
formula to calculate the timeout value of the timers:

Tout = 0.2 · (TTL−Hops).

This is a simple formula but has the downside of yielding
values that are larger than necessary. A better approach would
be that the timer value should depend on the QoS delay
constraint, available in every CP packet. Since the CP will
be dropped if the overall path delay exceeds the QoS delay
constraint, the delay constraint can act as an upper bound. We
are considering the following new equation to compute the
timeout:

Tout = 2
DQoS

TTL
× SSF × (TTL−Hops)

= 2DQoS × SSF × (1− Hops

TTL
)

DQoS is the QoS delay constraint, the factor 2 is used to allow
an AP to be sent in response to a CP, SSF is a safety scaling
factor used to overcome problems when for example the last
links on a path to a destination has a significantly greater
value then the first links, TTL is the time-to-live value and
hops the amount of hops that the CP already has passed. All
these parameters are available in CPs. The introduction of the
DQoS parameter can solve the problem with bandwidth being
reserved for too long time by one flow when the TTL-value
is increased.

VIII. FUTURE WORK

Our future work will focus on issues present in the current
version of RDP. In particular, we plan to address the TTL-
problem, extend the protocol to alleviate the issue with mul-
tiple CPs being routed over the same link and to test the new
timeout formula discussed in the previous section. Another
important issue that needs to be dealt with is the behavior of
RDP in the presence of churn.

Additionally, we intend to run the simulation on different
types of topologies (e. g. , Waxman and hierarchical topolo-
gies). Also, we plan to observe the protocol behavior in the
presence of session arrivals and session durations generated by
long-range dependence processes. This may provide additional
clues on how to improve RDP’s performance. When the pro-
tocol reaches maturity we plan to test it in a live environment
such as PlanetLab.

ACKNOWLEDGMENTS

We would like to thank the Swedish Internet Infrastructure
Foundation (IIS) and Euro-NGI for granting and supporting
the ROVER project during 2006 and 2007.

REFERENCES

[1] R. Braden, D. D. Clark, and S. Shenker, RFC 1633: Integrated Services
in the Internet Architecture: an Overview, IETF, Jun. 1994, category:
Informational.

[2] S. Blake, D. L. Black, M. A. Carlson, E. Davies, Z. Wang, and W. Weiss,
RFC 2475: An Architecture for Differentiated Services, IETF, Dec. 1998,
category: Informational.

[3] G. J. Armitage, “Revisiting IP QOS,” ACM SIGCOMM Computer
Communications Review, vol. 33, no. 5, pp. 81–88, Oct. 2003.

[4] G. Bell, “Failure to thrive: QoS and the culture of operational network-
ing,” in Proceedings ot the ACM SIGCOMM Workshops, Karlsruhe,
Germany, Aug. 2003, pp. 115–120.

[5] L. Burgsthaler, K. Dolzer, C. Hauser, J. Jähnert, S. Junghans, C. Macián,
and W. Payer, “Beyond technology: The missing pieces for QoS suc-
cess,” in Proceedings ot the ACM SIGCOMM Workshops, Karlsruhe,
Germany, Aug. 2003, pp. 121–130.

[6] T. A. Forum, Private Network-Network Interface Specification Version
1.0 (PNNI 1.0), The ATM Forum, Mar. 1996, af-pnni-0055.000.

[7] O. C. Ibe, Essentials of ATM Networks and Services. Boston, MA,
USA: Addison Wesley, 1997, ISBN: 0-201-18461-3.

[8] D. G. Andersen, “Resilient overlay networks,” Master’s thesis, Dept. of
Electrical Engineering and Computer Science, Massachusetts Institute
of Technology, May 2001.

[9] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. Rowstron,
and A. Singh, “Splitstream: High-bandwidth multicast in a cooperative
environment,” in Proceeding of IPTPS’03, Berkeley, CA, USA, Feb.
2003.

[10] Y. Cui, B. Li, and K. Nahrstedt, “oStream: Asynchronous streaming
multicast in application-layer overlay networks,” IEEE Journal on
Selected Areas in Communications, vol. 22, no. 1, pp. 91–106, Jan.
2004.

[11] Z. Li and P. Mohapatra, “QRON: QoS-aware routing in overlay net-
works,” IEEE Journal on Selected Areas in Communications, vol. 22,
no. 1, pp. 29–40, Jan. 2004.

[12] L. Subramanian, I. Stoica, H. Balakrishnan, and R. Katz, “OverQoS: An
overlay based architecture for enhancing Internet QoS,” in Proceedings
of NSDI, San Francisco, CA, USA, Mar. 2004.

[13] D. Ilie and A. Popescu, “A framework for overlay QoS routing,” in
Proceedings of 4th Euro-FGI Workshop, Ghent, Belgium, May 2007.

[14] K. De Vogeleer, “QoS routing in overlay networks,” Master’s thesis,
Blekinge Institute of Technology (BTH), Karlskrona, Sweden, Jun. 2007,
MEE07:24.

[15] D. Ilie, “Overlay routing protocol (ORP),” Dec. 2004, unpublished
architecture and design document.

[16] S. Chen and K. Nahrstedt, “Distributed quality-of-service routing in
high-speed networks based on selective probing,” in Proceedings of
LCN, Lowell, MA, USA, Oct. 1998, pp. 80–89.

[17] E. Gelenbe, M. Gellman, R. Lent, P. Lei, and P. Su, “Autonoumous
smart routing for network QoS,” in Proceedings of ICAC, New York,
NY, USA, May 2004, pp. 232–239.

[18] E. Gelenbe, R. Lent, A. Montuori, and Z. Xu, “Cognitive packet
networks: QoS and performance,” in Proceedings of IEEE MASCOTS,
Ft. Worth, TX, USA, Oct. 2002, pp. 3–12.

[19] D. Ilie, “Optimization algorithms with applications to unicast QoS rout-
ing in overlay networks,” Blekinge Institute of Technology, Karlskrona,
Sweden, Research Report 2007:09, Sep. 2007, ISSN: 1103-1581.

[20] J. Behrens and J. J. Garcia-Luna-Aceves, “Distributed, scalable routing
based on link-state vectors,” in Proceedings of SIGCOMM, London, UK,
Aug. 1994, pp. 136–147.

[21] J. J. Garcia-Luna-Aceves, “Loop-free routing using diffusing computa-
tions,” IEEE/ACM Transactions on Networking, vol. 1, no. 1, pp. 130–
141, Feb. 1993.

[22] Z. J. Haas and M. R. Pearlman, “The performance of query control
schemes for the zone routing protocol,” IEEE/ACM Transactions on
Networking, vol. 9, no. 4, pp. 427–438, Aug. 2001.

[23] C.-K. Toh, “Associativity-based routing for ad-hoc mobile networks,”
Wireless Personal Communications Journal, vol. 4, no. 2, pp. 103–139,
Mar. 1997.

[24] P. Leach, M. Mealling, and R. Salz, RFC 4122: A Universally Unique
IDentifier (UUID) URN Namespace, Jul. 2005, category: Standards
Track.

[25] A. Varga, “OMNet++,” Mar. 2006, http://www.omnetpp.org.
[26] A. Medina, A. Lakhina, I. Matta, and J. Byers, “BRITE: Universal

topology generation from a user’s perspective,” Boston University,
Boston, MA, USA, Tech. Rep. BUCS-TR-20001-03, Apr. 2001.

[27] J. Winick and S. Jamin, “Inet-3.0: Internet topology generator,” Univer-
sity of Michigan, Ann Arbor, MI, USA, Tech. Rep. CSE-TR-456-02,
2002.

[28] E. W. Zegura, K. L. Calvert, and S. Bhattacharjee, “How to model an
internetwork,” in Proceedings of IEEE Infocom, vol. 2, San Francisco,
CA, USA, Mar. 1996, pp. 594–602.

[29] A.-L. Barabasi and R. Albert, “Emergence of scaling in random
networks,” Science, vol. 286, pp. 509–512, 1999. [Online]. Available:
http://www.citebase.org/abstract?id=oai:arXiv.org:cond-mat/9910332

[30] M. Faloutsos, P. Faloutsos, and C. Faloutsos, “On power-law rela-
tionships of the internet topology,” in Proceedings of SIGCOMM,
Cambridge, MA, USA, Aug. 1999, pp. 251–262.

