Measurement and Analysis of BitTorrent
Signaling Traffic

David Erman, Dragos Ilie, Adrian Popescu and Arne A. Nilsson

Dept. of Telecommunication Systems
School of Engineering
Blekinge Institute of Technology
371 79 Karlskrona, Sweden

{david.erman, dragos.ilie, adrian.popescu, arne.nilsson}@bth.se

Abstract

BitTorrent is a second generation Peer-to-Peer application that has been re-
cently developed as an alternative to the classical client-server model to reduce
the load burden on content servers and networks. The protocol relies on the use of
swarming techniques for distributing content. No search functionality is built into
the protocol, and the signaling is geared only towards an efficient dissemination
of data. The paper reports on measurement and analysis of BitTorrent traffic
collected at the Blekinge Institute of Technology (BIT), Karlskrona, Sweden. We
measure and analyze data from local BitTorrent client sessions at BIT. The char-
acteristics of the signaling traffic exchanged among the participating peers in a
BitTorrent distribution swarm are investigated. A dedicated approach based on
combining instrumentation at the application layer with flow identification and
extraction at the transport layer is used for traffic measurements.

1 Introduction

The popularity of peer-to-peer (P2P) networking has lead to a dramatic increase of
the volume and the complexity of traffic generated by P2P applications [6, 9, 10].
Applications like Napster, Gnutella, Kazaa and eDonkey have challenged some of the
most fundamental concepts that have guided the design of the Internet, e.g., the end-
to-end principle [1]. Conflicting interests of different nature have been created, such as
the inability to trust the behavior of individual users vs the demand for trustworthy
operation. Several important reasons behind the popularity of P2P networking are
related to the increased robustness through information redundancy (dissemination),
ability to easily share own resources on demand, presence of overlay routing and the

associated sharing of routing functions with the IP routing, fine-grained access control
policies, anonymity and encryption.

Over the last years a second generation of P2P applications and associated protocols
have appeared, which is best exemplified by the BitTorrent protocol [2]. BitTorrent
has been designed with the goal of efficient distribution and replication of content
such as CD-images of software and software updates. BitTorrent is a P2P content
distribution system designed to quickly, efficiently and fairly replicate data. The system
utilizes a central entity, the tracker, to register participating peers. There is no search
functionality built into the protocol, so the signaling is geared only towards an efficient
dissemination of data. The system relies on using swarming techniques for distributing
content, thus reducing the load on the content servers as well as on the networks.

There are actually only a few papers reporting on traffic characteristics of Bit Torrent
[4, 8]. This is because the protocol is very new, about two years old. Our paper is
a contribution towards a better understanding of the BitTorrent protocol and the
associated traffic.

The paper reports on measurement and analysis of BitTorrent traffic collected at
the Blekinge Institute of Technology (BIT), Karlskrona, Sweden. We measure and
analyze data from local BitTorrent client sessions at BIT. The characteristics of the
signaling traffic exchanged among the participating peers in a BitTorrent distribution
swarm are investigated. A specific approach is used for traffic measurements that is
based on combining instrumentation at the application layer with flow identification
and extraction at the transport layer.

Packet traces have been collected with the help of the well-known tcpdump ap-
plication [5] and a specific solution has been developed to filter out non-BitTorrent
traffic prior to decoding and analysis. The difficulty here is to solve the problems
related to the use of arbitrary ports and to identify the relevant BitTorrent sessions.
Further, a teptrace module [7] has been developed to decode the BitTorrent signaling
traffic. Collected data includes, among others, packet sizes, packet interarrival times,
handshake-rate, response times, overlay size and session duration of the P2P protocol.

The motivation is to build up stochastic models for key elements of the protocol
that can be further used to build up integrated performance testbed for conducting
experiments on P2P traffic control and engineering.

The rest of the paper is organized as follows. In Section 2 we provide a short review
of the BitTorrent system and the associated protocols. In Section 3 we report the
measurement infrastructure and data collection methodology. Section 4 presents the
traffic metrics used in the evaluation of BitTorrent signaling. Section 5 reports on some
of the most salient traffic characteristics made available through our measurements.
Finally, Section 6 concludes this paper.

2 The BitTorrent Protocol

BitTorrent is a P2P protocol for content distribution and replication designed to
quickly, efficiently and fairly replicate data [2]. In contrast to other P2P protocols,
the BitTorrent protocol does not provide any resource query or lookup functionality,
but rather focuses on fair and effective replication and distribution of data. The sig-

naling is geared towards an efficient dissemination of data only. The protocol is fair
in the sense that peers exchange content in a tit-for-tat fashion. Non-uploading peers
are not allowed to download. The protocol operates over TCP and uses swarming,
i.e., peers are downloading parts, the so-called pieces, of the content from several peers
simultaneously. The consequence of this is efficient network utilization. The size of the
pieces is fixed on a per-resource basis and it can not be changed.

A peer interested in downloading some content by using BitTorrent must first obtain
a set of metadata, the so-called torrent file, to be able to join a set of peers engaging
in the distribution of the specific content. In the following we use the term swarm, or
distribution swarm, to define a set of metadata together with the associated network
entities. The metadata needed to join a BitTorrent swarm consists of the network ad-
dress information (in BitTorrent terminology called the announce URL) of the tracker
and resource information such as file size and piece size. An important part of the
resource information is a set of Secure Hash Algorithm One (SHA-1) hash values, each
corresponding to a specific piece of the resource. These hash values are used to verify
the correct reception of a piece. The resource information is also used to calculate
a separate SHA-1 hash value, the info field, used as an identification of the current
swarm. The hash value appears in both the tracker and peer protocols. The metadata
does not contain any information regarding the peers participating in a swarm.

A BitTorrent distribution swarm can be partitioned into three network entities and
two protocols. The first network entity is a centralized software, the so-called tracker,
which keeps lists of connected peers as well as information about their evolution. The
tracker replies to peer requests for other peer addresses and ports as well as records
simple statistics about the evolution of the swarm. The second entity is the set of active
peers, which can be further divided into seeds and downloading peers, or leechers.
A seed is defined to be a peer that has already retrieved an entire file or amount
of data, and has stopped downloading data from other peers. A seed however may
continue to serve other peers. Also, an initial seed is necessary for peers to be able
to start replicating the content. Finally, the third network entity is a server, usually
a webserver, which provides the metadata required for joining a specific swarm. The
distribution of the metadata is not necessarily done via HTTP, but it can be done in
any manner. Any way of distributing the torrent file is valid.

The BitTorrent protocols (except the metadata distribution protocol) are the tracker
protocol and the peer wire protocol. The tracker protocol uses HT'TP. Peers make
HTTP GET requests and the tracker sends responses in the returning HT'TP response
data. The purpose of the peer request to the tracker is to locate other peers in the
distribution swarm and to allow the tracker to record simple statistics of the swarm.
The peer sends a request containing information about itself and some basic statistics
to the tracker, which responds with a randomly selected subset of all peers engaged in
the swarm.

The peer wire protocol operates over TCP, and uses in-band signaling for peer
communication. Signaling and data transfer are done in the form of a continuous bi-
directional stream of length-prefixed protocol messages. A P2P session is equivalent
with a TCP session, and there are no protocol entities for tearing down a BitTorrent
session beyond the TCP teardown itself. Connections between peers are single TCP
sessions, carrying both data and signaling traffic. Once a TCP connection between two

peers is established, the initiating peer sends a handshake message containing the peer
id and info field hash (Figure 1). If the receiving peer replies with the corresponding
information, the BitTorrent session is considered to be opened and the peers start
exchanging messages across the TCP streams. In other cases, the TCP connection is
closed. Immediately following the handshake procedure, each peer sends information
about the pieces of the resource it possesses. This is done only once, and only by using
the first message after the handshake. The information is sent in a bitfield message,
consisting of a stream of bits, with each bit index corresponding to a piece index.

A peer maintains two states for each peer relationship, namely interested and
choked. If a peer is choked, then it will not receive any data unless unchoking oc-
curs. Usually, unchoking is equivalent with uploading. The interested state indicates
whether other peers have parts of the sought content. Interest should be expressed
explicitly, as should lack of interest. That means that a peer wishing to download
notifies the sending peer (where the sought data is) by sending an interested message,
and as soon as the peer no longer needs any other data, a not interested message is
issued. Similarly, for a peer to be allowed to download, it must have received an un-
choke message from the sending peer. Once a peer receives a choke message, it will no
longer be allowed to download. This allows the sending peer to keep track of the peers
that start downloading when unchoked. A new connection starts out choked and not
interested. A peer with all data, i.e., a seed, is never interested.

The choke/unchoke and interested/not interested mechanism provides fairness in
the BitTorrent protocol. As it is the transmitting peer that decides whether to allow
a download or not, peers not sharing content will be reciprocated in the same manner.
To allow peers that have no content to join the swarm and start sharing, a mechanism
called optimistic unchoking is employed. From time to time, a peer with content will
allow even a non-sharing peer to download.

Data transfer is done in parts of a piece (called sub-piece) at a time, by issuing a
request message. The sub-pieces are typically of size 16384 or 32768 bytes. To allow
TCP to increase the throughput, several requests are usually sent back-to-back. Each
request should result in the corresponding sub-piece to be transmitted. If the sub-piece
is not received within a certain time (typically one minute), the non-transmitting peer
is snubbed, i.e., it is punished by not being allowed to download, even if unchoked.
Data transfer is done by sending a piece message, which contains the requested sub-
piece (Figure 2). Once the entire piece, i.e., all sub-pieces, has been received, and the
SHA-1 hash of the piece has been checked, a have message is sent to all connected
peers.

3 Traffic Measurements

A specific approach has been used for traffic measurements that is based on combining
instrumentation at the application layer with flow identification and extraction at the
transport layer. The objectives are to capture the type and sizes of protocol objects,
to test for the presence of heavy-tailed properties, to find out structural similarities or
differences among characteristics of sessions as well as to search for possible invariant
characteristics across object flows.

Peer A Peer B Peer C
interested

interested

request(piece,subpiece)
request(piece,subpiece)

Peer A Peer B

request(piece,subpiece)

request(piece,subpiece)

unchoke

unchoke

piece(subpiece)
- boi
pieoe(s ibpiece) piece(subpiece)
bitfield exchan piece(subpiece)
message exchange have have

Figure 1: BitTorrent handshake procedure Figure 2: BitTorrent protocol exchange

In this study, statistics about new connections as well as about the following pro-
tocol messages have been collected: bitfield, request, choke, unchoke, interested, not
interested, piece, and have.

A specific measurement infrastructure has been developed for the collection of P2P
traffic, with both passive measurements and active participation of a BitTorrent client
in a real BitTorrent swarm [3]. Passive measurements involves flow identification and
extraction at the transport layer. To this end we have developed extensions to the
popular tcp flow reassembly software teptrace [7], to obtain message timings from the
TCP flows and separate the captured tcpdump traces on a per-peer or per-statistic
basis. For the other part of traffic measurements, we have instrumented the reference
BitTorrent client to provide us with application layer data not readily available in the
transport layer, e.g., download completion ratios and number of connected peers. The
application instrumentation generates a verbose log of all major state changes in the
BitTorrent client and writes these changes to an XML file for later metric extraction.
Combining these two approaches provides us with a powerful set of performance eval-
uation tools. For this paper, the tcpdump traces have been used only to estimate the
accuracy of the application level timestamps.

In addition to the modified versions of tcptrace and BitTorrent client, specific soft-
ware has been developed for postprocessing the application logs and create suitable
output for further calculations in Matlab as well.

The BitTorrent system uses, like many other P2P applications, arbitrary ports [6].
Even though the protocol has a predefined default port range for connections, clients are
free to modify the ports used to suit network parameters like firewall settings and NAT
status. Since it is not possible to dynamically change capture filters during runtime
with tcpdump, that means that all traffic on non-reserved ports must be collected.
Since BitTorrent uses in-band signaling, the entire link layer frame must be therefore
collected to capture all protocol messages. The obvious drawback is related to the
generation of large tracefiles. We use the application logs to extract the IP addresses
and TCP ports used during the client sessions in the network. In a later phase, we

post-filter the main trace to obtain the specific addresses and ports. By modifying the
client and taking measurements at the application level, we circumvent the issue of
arbitrary port numbers, although the price is that we lose accuracy in the process [3].

The reported measurements have been done by having instances of the BitTor-
rent client software join several distribution swarms. An instrumented version of the
reference BitTorrent client has been used to avoid potentially injecting non-standard
protocol messages in the swarm. The client was instrumented to log all incoming and
outgoing protocol messages together with a UNIX timestamp. The BitTorrent client
is implemented in Python, an interpreted programming language [11]. The drawback
is that the accuracy of the timestamps is reduced compared to the actual arrival times
of the carrying IP datagrams. By comparing the actual timestamps of back-to-back
messages at the application level with the corresponding TCP segments, we have found
that the accuracy was approximately 10ms.

The application logs have been collected as XML files, giving about 18 GBytes of
log files. By this, much flexibility is obtained when postprocessing the logged data
as well as that this is less error prone than the common practice of log parsing since
robust XML parsers already exist. After post-processing and extraction of statistics
the total amount of data was over 20 GBytes.

The traffic reported in this paper has been collected over a three week time period
at two measurement points in Blekinge, Sweden [3]. The first measurement point was
the networking lab at BIT, Karlskrona, which is connected to the Internet through a
100 Mbps Ethernet network. The second measurement point was placed at a local ISP
with 5 Mbps link. Both measurement points were running the Gentoo Linux operating
system, on standard PC hardware. A number of twelve measurement have been done,
each of them with a duration of two to seven days (Table 1).

For the first measurement point, no significant amount of different software was
running simultaneously with the BitTorrent client. At the second measurement point,
the BitTorrent client was running as a normal application, together with other software
such as web browsers and mail software. The first measurement point can be viewed
as a dedicated BitTorrent client, while the second corresponds to normal desktop PC
usage patterns.

The measurements 1 through 3 (Table 1) have been done with a single instance of
the instrumented BitTorrent client running. As TCP is known to be very aggressive
in using the network, this has been done to minimize the effects of several clients
competing for the available bandwidth and to establish a point of reference for the rest
of client sessions. Measurements 4 through 8 were started and done simultaneously, as
were measurements 11 and 12. The other measurements were done with some temporal
overlap, as shown in Figure 3.

An important issue regarding traffic measurements in P2P networks is the copy-
right. The most popular content in these networks is usually copyrighted material.
To circumvent this problem, we joined BitTorrent swarms distributing several popular
Linux operating system distributions. Notably, we joined both the RedHat Fedora
Core 2 (FC2) test and release versions. The FC2 *Tettnang’ version was released on
May 18th, while the rest of the content was available at the start of the measurements.
This gave us an unique opportunity to study the dynamic nature of the FC2 swarms.
The contents of the measured swarms are reported in Table 2. Two of the swarms

Number | Records | Start | Duration | Location]

1 10770695 | 2004-05-03 | 2 days, 20 hours | BIT
2 10653466 | 2004-05-06 | 3 days, 19 hours | BIT
3 10990569 | 2004-05-12 | 4 days, 4 hours BIT
4 12567283 | 2004-05-17 | 7 days BIT
5 13691459 | 2004-05-17 | 7 days BIT
6 11754838 | 2004-05-17 | 7 days BIT
7 1943636 2004-05-17 | 7 days BIT
8 7321166 2004-05-17 | 7 days BIT
9 687046 2004-05-13 | 3 days, 7 hours ISP
10 2881803 2004-05-18 | 5 days, 23 hours | ISP
11 9252170 2004-05-22 | 7 days ISP
12 5599997 2004-05-22 | 7 days ISP
Table 1: Measurement summary
Pty rrrrrryprr P el
May 1 May 8 May 15 May 22 May 29
(1] [3][

\ 11-12

Figure 3: Temporal structure of measurements

have been measured from both measurement points to allow for comparisons, one with
temporal overlap, and another without overlap.

| Content | Pieces | Size | Measurements |
RedHat Fedora Core 2 test3 CD Images 8465 22GB | 1-3
RedHat Fedora Core 2 test3 DVD Image 16708 | 43 GB | 6, 10
Slackware Linux Install Disk 1 2501 650 MB | 4
Slackware Linux Install Disk 2 2627 670 MB | 5
Dynebolic Linux 1.3 2522 650 MB | 7,9
Knoppix Linux 3.4 2753 700MB | 8
RedHat Fedora Core 2 ‘Tettnang’ CD Images | 8719 22GB | 12
RedHat Fedora Core 2 ‘Tettnang DVD Image | 16673 | 4.3 GB | 11

Table 2: Content summary

4 Traffic Metrics

The BitTorrent client application logs are in essence timestamped protocol events.
This means that metrics like interarrival and interdeparture times are readily available
by simple calculations. The possibility does exist to compute detailed statistics on
several levels of aggregation as well. Most notably, this offers the possibility to look

into potential burstiness on timescales that are decided by the timestamp accuracy.

Out of substantial amounts of logged data, specific software has been written to
extract several important statistics and metrics, to characterize the peer behavior only,
and not the entire swarm [3]. To measure the true size of the swarm, active probing of
the tracker is necessary. This is, however, subject for future work. The goal is to use
accurate characterization and modeling of the behavior of a peer in modeling entire
swarms.

A number of metrics have been used for the characterization of the BitTorrent
signaling traffic [3]. The most important ones are as follows:

Download time

This is the time it takes for the modified client to do a complete download. This time
also provides information about the peer changes from being both a downloading and
uploading peer to being a seed, thus offering the possibility to collect statistics about
the seed and leecher states.

Session duration and size

A BitTorrent session is equivalent with a TCP session, given that the BitTorrent hand-
shake is completed. As BitTorrent protocol messages are fixed-length messages, there
is a one-to-one mapping between the messages sent and received during a session and
the session size. A BitTorrent session time is given by the TCP session time, whereas
the session size is given by the amount of data transmitted during the TCP session.

Number and type of messages

We count the number of messages of each type in both upstream and downstream
directions. Together with the session duration and size, this gives us valuable insights
into the behavior of a peer.

Host persistence

We also count the number of unique host IP addresses and peer client IDs. If a given
host IP address has a one-to-one mapping to a peer ID and we have a long session
time, the peer is considered to be persistent. Persistent peers indicate a healthy swarm
in the sense that new peers are more likely to find a larger number of seeds in a swarm
with many persistent peers than in one with less persistent peers.

Peer swarm size

The peer swarm size refers to the number of peers observed by the measuring client
at any given time. This is not the size of the entire swarm, i.e., the total number of
collaborating peers, but the number of peers to which the measuring peer is connected.
Information about the total swarm size is only available at the tracker, and therefore
it is not considered in the reported measurements.

Piece response times

The piece response time is defined to be the time elapsed between the moment of
the initial request for any subpiece belonging to a given piece to the moment of the
transmission of the associated have message. This parameter gives us the possibility
to estimate the downstream bandwidth usage.

Piece popularity

The popularity of a piece is given by the number of requests for any subpiece of a given
piece. This gives an indication of the effectiveness of the piece selection algorithms of
the requesting peers.

5 Traffic Characteristics

Table 3 reports summaries of the measured download times and rates. It is observed
that the time before our peer went into the seeding mode varies from roughly 20 minutes
up to 6.5 hours. As the content sizes vary with each measurement, we also provide the
average download rate for the entire content, i.e., the size/time quota. The download
rates also show large disparity, with rates ranging from just over 120 kBytes to over
1.3 MBytes. The measurements 1 through 3 are clearly the most demanding ones in
terms of bandwidth utilization.

Download

Time (s) | Rate (bps)
1 1930 1149520
2 1932 1147908
3 1681 1319445
4 2607 251424
5 3397 202644
6 23000 190416
7 1237 534282
8 6005 120153
9 2723 242776
10 23475 186570
11 19431 224927
12 9106 250989

Table 3: Summaries of download time and average download rate

A summary of the session sizes and durations is reported in Table 4. We also report
the number of sessions and unique peer IPs and peer client IDs. It is observed that
measurement 6 is different, with regards to both mean session size and session length.
Further, the maximum session size for this measurement is more than twice than that
of any other measurement. The mean session size is observed to be about twice than
that of the corresponding measurement of the same content (measurement 10). As
measurements 6 and 10 have the largest session sizes, it is very likely that the session
size is related in this case to the total content size (4.3GB).

The minimum session lengths are all set to 0, indicating that all of them are shorter
than the accuracy provided for by the application logs. These very short sessions are
also indicated in the minimum session sizes, and they correspond to a session containing
only a handshake or an interrupted handshake.

Another pertinent feature is the quota of the number of unique IPs to the number
of unique peers for the case of measurement 8. The quota for this measurement is
observed to be slightly above 0.25, while none of the other measurements are below
0.5. This indicates that either users are stopping and restarting their clients several
times, or that users are sharing IPs, such as peers behind a NAT box.

Session length (s) Session size (MB) Peers®

| Sessions
Mean Max | Min | Std | Mean Max | Min® | Std D P

1 29712 343 98991 0 | 2741 27.49 647.26 73 70.65 | 2024 | 1314
2 46022 233 | 117605 0 | 2316 27.15 646.03 73 64.05 | 1876 1394
3 28687 465 | 171074 0 | 3614 28.54 539.20 73 61.70 | 1913 | 1319
4 13493 750 143707 0 | 3942 49.88 671.99 73 100.65 1813 | 1143
5 12354 910 | 180298 0 | 4504 57.08 668.53 73 | 116.10 | 1747 962
6 10685 1207 | 223235 0 | 7016 74.25 | 3117.79 73 | 247.74 | 1033 619
7 4444 218 46478 0 | 1642 49.96 431.13 78 76.48 279 184
8 17287 231 87026 0 | 1972 33.11 695.94 73 | 109.31 1656 406
9 3043 294 29163 0 | 1719 21.62 408.05 78 42.27 193 166
10 9701 652 | 267497 0 | 5907 37.78 | 1499.85 73 | 109.08 444 305
11 43939 448 | 141509 0 | 3791 17.22 475.86 73 52.73 | 1841 1067
12 68288 197 | 292241 0 | 2580 8.31 987.89 73 30.63 | 2177 | 1152

Table 4: Summary of sessions and peers

%Unique peer client IDs and IP addresses
bThis column measured in bytes.

Table 5 summarizes the number of messages received on a per-message basis. In
addition, column 5 shows the number of the incoming connection requests collected in
our measurements.

The request and have messages clearly dominate in terms of number of messages
sent, while the interested and not interested messages are the least common ones. This
is observed to be valid for all measurements, except for measurement 2, which has
almost 5 times more incoming interested messages than the measurement with the
second highest number of interested messages.

The high number of request and have messages found in our measurements is an
expected result, as the peer is acting as a seed for most of the time spent in the swarm.
When seeding, a peer never receives piece messages, and the downloading peer must
request data by the request message. The have messages are accounted for by the fact
that every completed piece download results in such a message being transmitted.

request not piece new | bitfield | unchoke have int. choke | cancel
‘ ‘ ‘ int ‘ conn. ‘
1 3316470 | 504 135615 | 29746 28024 27120 | 3651835 2905 | 26314 6500
2 | 3044768 | 489 135797 | 46047 45054 19117 | 3984881 14602 | 18061 9059
3 | 3276644 | 493 135682 | 28714 27092 40705 | 3941658 2430 | 39955 7628
4 | 5596270 | 406 40167 | 13502 12935 29628 1206000 2041 28640 14643
5 | 6163605 | 401 42176 12364 11827 32325 1197813 2059 | 31452 11508
6 | 4501907 | 191 277261 10688 9659 24239 | 2090892 2147 | 23639 6244
7 810019 52 40371 4445 4370 290 198885 230 122 1255
8 | 3347256 | 766 44328 17292 16623 9270 404038 2012 8579 18999
9 217336 37 40426 3045 2996 1114 139472 259 956 3061
10 838379 79 | 268429 9703 9181 13015 570367 692 | 11936 9085
11 1835910 | 470 | 268575 | 43957 42848 54090 | 4713440 2573 | 52458 17313
12 1118110 | 348 139943 | 68297 67373 37925 | 2619333 3242 | 36872 25047

Table 5: Summary of downstream protocol messages

The summary of the outgoing messages reported in the Table 6 again shows the
very low number of interested and not interested messages. The major bulk of the
outgoing messages is however accounted for by the piece messages. This is again an
expected result, as request messages generate a piece message in response. The absence

of transmitted choke messages for the measurement 7 indicates that there has been a
continuous exchange of data between peers. Regarding the request and have messages,
these are tightly coupled to the number of pieces present in the content. The higher
number of request messages is explained by the fact that these messages correspond to
only a single subpiece.

[# [request | piece | not int. | unchoke | bitfield | int. [have [choke | cancel |
1 137007 3251948 63 11792 29714 68 8465 9553 970
2 137271 2964836 63 17471 46020 70 8465 13301 894
3 136738 3189175 62 16545 28682 64 8465 14085 1011
4 42709 5468908 76 25476 13489 86 2501 22740 855
5 44862 6032599 146 25759 12353 157 2627 23749 725
6 291200 4394389 91 23166 10661 197 16708 18943 555
7 40497 808844 18 4445 4444 18 2522 0 140
8 47413 3296616 100 19380 17281 136 2753 8672 423
9 40906 213693 16 3192 3042 19 2522 193 220
10 285650 753074 71 21304 9673 214 16708 15222 611
11 281921 1660868 67 35698 43927 157 16673 31279 812
12 145517 960802 76 49093 68271 125 8719 34570 701

Table 6: Summary of upstream protocol messages

Finally, Figure 4 shows an example of evolution of the swarm size obtained in the
measurement 2. It is observed for instance in the leech figure the short download time
and high download rate that are typical for the swarm. By quickly connecting to the
preconfigured number of peers, the client instantly has a large number of peers from
which to download, increasing thus the probability of fast downloading. For the seeding
phase, the number of connected peers seems to display a daily variation pattern for
this measurement.

Number of connections
w
o
T
1
1

May 07 May 08 May 09 May 10
T T T T T T T T T T TT T T T

i i i i N i i . I I I I I I I I
12:00 18:00 00:00 06:00 12:00 18:00 00:00 06:00

12:00 18:00 00:00 06:00 12:00 18:00 00:00 06:00 12:00
Time

Number of connections

Figure 4: Swarm size evolution for leech phase (up) and seed phase (down)

6 Conclusions

A measurement study of BitTorrent signaling traffic has been reported for traffic col-
lected at the Blekinge Institute of Technology (BIT), Karlskrona, Sweden. The charac-
teristics of the signaling traffic exchanged among the participating peers in a BitTorrent
distribution swarm have been investigated. A specific approach has been used for traf-
fic measurements that is based on combining instrumentation at the application layer
with flow identification and extraction at the transport level.

Our future work will be about further analysis of the obtained results, to find out
structural similarities or differences among characteristics of peers and swarms as well
as to search for possible invariant characteristics across object flows.

References

[1] Blumenthal M. S. and Clark D. C., Rethinking the Design of the Internet: the
End-to-End Arguments vs. the Brave New World, ACM Transactions on Internet
Technology (TOIT), Vol. 1, No. 1, August 2001.

[2] Cohen B., Incentives Build Robustness in BitTorrent)
http://bitconjurer.org/BitTorrent

[3] Erman D., Hlie D. and Popescu A., Peer-to-Peer Traffic Measurements, Technical
Report, Blekinge Institute of Technology, 2004.

[4] Izal M., Urvoy-Keller G., Biersack E. W., Felber P. A.; Al Hamra A. and Garces-
Erice L., Dissecting BitTorrent: Five Months in o Torrent’s Lifetime, 5th Passive
and Active Measurement Workshop, PAM2004, Antibes, France, 2004.

[5] Jacobson V. et al, tcpdump software, ftp://ee.lbl.gov, June 1989.

[6] Karagiannis T., Broido A., Brownlee N., Claffy K. and Faloustos M., File-Sharing
in the Internet: A characterization of P2P traffic in the backbone, technical report
University of California, Riverside, USA, 2003.

[7] Ostermann S., TCPTRACE: A TCP connection analysis tool ,
http://jarok.cs.ohiou.edu/software/tcptrace/teptrace.html

[8] Qiu D. and Srikant R., Modeling and Performance Analysis of BitTorrent-
Like Peer-to-Peer Networks, technical report University of Illinois at Urbana-
Champaign, USA, 2004.

[9] Saroiu S., Gummadi K. P. and Gribble S. D., Measuring and Analyzing the Char-
acteristics of Napster and Gnutella Hosts, Multimedia Systems Journal, Vol. 9, No.
2, August 2003.

[10] Sen S. and Wang J., Analyzing Peer-To-Peer Traffic Across Large Networks,
IEEE/ACM Transactions on Networking, Vol. 12, No. 2, April 2004.

[11] van Rossum G. et al, Python, http://www.python.org

