
TRAFFIC MEASUREMENTS OF P2P SYSTEMS 1

Traffic Measurements of P2P Systems
Dragos Ilie, David Erman, Adrian Popescu, Arne A. Nilsson

Dept. of Telecommunication Systems
School of Engineering

Blekinge Institute of Technology
371 79 Karlskrona, Sweden

{dragos.ilie, david.erman, adrian.popescu, arne.nilsson}@bth.se

Abstract— The paper reports on a measurement infrastructure devel-
oped at the Blekinge Institute of Technology (BIT) with the purpose
to do traffic measurements and analysis on Peer-to-Peer (P2P) traffic.
The measurement methodology is based on using application logging
as well as link-layer packet capture. This offers the possibility to
measure application layer information with link-layer accuracy. Details
are reported on this methodology, together with description of the
BIT measurement infrastructure. The paper also reports on traffic
measurements done on BitTorrent and Gnutella protocols from an end-
client perspective, together with some measurement results of salient
protocol characteristics. Preliminary results show a high degree of
variability of the BitTorrent and Gnutella traffic, where in the case of
Gnutella a large contribution is given by the signaling traffic.

I. INTRODUCTION

Over the last years, P2P file sharing systems have evolved to
be some of the major traffic contributors in the Internet [13]. P2P
applications have now become immensely popular to the Internet
community, due to characteristics like communication among equals
(computers are acting as both clients and servers) as well as pooling
and sharing of exchangeable resources such as storage, bandwidth,
data and CPU cycles. Although an exact definition of ”P2P systems”
is still debatable, such a system typically represents a distributed
computing paradigm where a spontaneous, continuously changing
group of collaborating computers act as equals in supporting appli-
cations such as resource redundancy, content distribution, and other
collaborative actions. The roles of the computers is determined based
on the perceived system performance.

In most cases the peers act from the network’s edge instead of
it’s core, and they can dynamically join and leave the network,
discover each other and form ad-hoc collaborative environments.
Each of the participating peers is sharing and exploiting the resources
brought collectively to the network pool. The resources needed for the
execution of a specific (application) task are dynamically aggregated
for the required time period, e.g., by swarming techniques. Beyond
that, the allocated resources return to the network pool. These features
allow the P2P system to still provide services even when losing
resources, in contrast to the classical client-server concept where
failures in the system may completely disrupt the service.

There are currently a number of architectural designs for P2P
systems, which follow different strategies used for resource discovery
and content distribution [16], [20], [27]. For instance, resource
discovery can be done either with the help of a centralized directory
(e.g., Napster [18]) or with the help of a decentralized directory
(e.g., KaZaa/FastTrack [14]) or with the help of query flooding
(e.g., Gnutella [15]). On the other hand, content distribution can be
done either in a distributed way (so-called ”pure P2P” system, e.g.,
Gnutella) or server mediated (so-called ”hybrid P2P”, e.g., Napster,
BitTorrent [3]) or based on a hybrid client/server model (e.g., SETI
[26], GRID [8]) or even based on a pure client/server model (e.g.,
WWW). Specific advantages and drawbacks are associated with every
architectural design, as reported in [16], [20].

A serious consequence however is related to the high traffic
volumes caused by P2P systems, which are due to both signaling
traffic and data traffic. Furthermore, another serious consequence
is related to the high variability introduced by P2P systems in the
Internet traffic patterns, with fluctuations that strongly variate in time
and space. For instance, recent measurement studies showed that P2P
traffic may come up to 80% of the total traffic in a high speed IP
backbone link carrying TCP traffic towards several ADSL areas and
that Long Range Dependence (LRD) properties and the degree of
traffic self-similarity in traffic seem to reduce with the predominance
of P2P traffic [2]. Other open problems in P2P systems are related
to the appearance of ”mice” (short transfers) and ”elephants” (long
transfers) phenomenon in Internet traffic, scalability, expressiveness,
efficiency and robustness of search mechanisms as well as security
issues.

Measurement studies and analysis of P2P traffic have been rather
limited so far. The reason is because of the complexity of this task,
which involves answering hard questions related to data retrieval and
content location, storage, data analysis and modeling of traffical and
topological characteristics as well as privacy and copyright issues.
Furthermore, the appearance of what we call the second generation
P2P protocols, best exemplified by BitTorrent, further complicated the
picture. Compared to the first generation P2P protocols, BitTorrent
relies on swarming techniques in combination with the “tit-for-tat”
mechanism for creating incentive in content distribution. No search
functionality is built into the protocol, and the signaling is geared
towards an efficient dissemination of data [6]. On the contrary,
the first generation P2P protocols (e.g., Gnutella) are intensively
using signaling traffic as well as the exchange of user resources
[9]. This protocol diversity further challenges the task of P2P traffic
measurements.

Some of the most relevant measurement studies on the first gener-
ation P2P protocols are provided in [1], [12], [17], [22]–[25], [28]. A
large part of the reported research is focused on P2P signaling traffic,
especially generated by the Gnutella and Napster systems. Usually,
P2P crawlers have been set up on the Internet to collect P2P topology
information. The drawback however is related to the fact that this
is an ”active probing” approach, with the well-known associated
problems (e.g., bandwidth-intensive, difficulties in mapping large
P2P systems, difficulties in collecting temporal dynamics of P2P
systems). Another drawback with some of the studies is because the
estimates and statistics of the collected P2P traffic are unreliable, due
to P2P systems actually having the ability to use arbitrary ports to
camouflage their existence.

There are actually only a few measurement studies done on the
second generation protocol BitTorrent [4], [10]. This is because the
protocol is quite new, about two years old. Traffic has been collected
from ”tracker” as well as with the help of modified clients. The
drawback however is related to the accuracy of the timestamps at the
application level, which is directly depending on the type and version



TRAFFIC MEASUREMENTS OF P2P SYSTEMS 2

of the computer hardware, OS and application software.
The paper is reporting on a measurement infrastructure developed

at the BIT with the purpose to do traffic measurements and analysis
of P2P traffic. The measurement methodology is based on using
application logging as well as link-layer packet capture. This offers
the possibility to measure application layer information with link-
layer accuracy. Details are reported on this methodology, together
with description of the BIT measurement infrastructure. Furthermore,
we also report some of the results obtained in our measurements,
which are in the form of salient characteristics of Gnutella and
BitTorrent protocols.

The reasons for doing traffic measurements on Gnutella are as fol-
lows. Gnutella is a system under strong development and the source
code is widely available. Due to its distributed nature, the system is
very appealing for developments and improvements. Especially dur-
ing the last two years the system has undergone various modifications
and enhancements. Some of the most important improvements are
the development of HTTP-like peer handshaking, traffic compression,
better query routing, minimized flood of queries, swarming, partial
file sharing, file magnets and UDP signaling [15]. Arguably, the
recent changes warrant a new look at how Gnutella behaves in the
network as well as invalidate some of the old studies. By doing
new measurement studies with higher accuracy, we have the choice
of better understanding the Gnutella system as well as calibrating
it against old data. Furthermore, we do traffic measurements on
BitTorrent because the BitTorrent system is very new, but also
because we want to understand the differences between the two
generation systems, best represented by Gnutella and BitTorrent.
In spite of differences in purposes and architectural designs, we
believe that it is important to understand the differences between these
systems in terms of file sharing efficiency and efficiency of incentives
to prevent free-riding (end-user point of view) but also in terms of
traffic variations and characteristics, scalability, and peer evolution
(teleoperators point of view). We are targeting at the development of
traffic heuristics to recognize P2P traffic at non-standard ports as well.
In a first phase, we measure the traffic generated by these systems
separately. In a later phase however, we will do traffic measurements
in a mixed environment to understand how the traffic created by the
two systems interact with each other. This is however a difficult task
as it is the one of classifying traffic aggregates.

The rest of the paper is as follows. In Section II we report the
measurement methodology used in our measurements. Section III
presents the BIT measurement infrastructure. Details about traffic
measurements done on Gnutella and BitTorrent are reported in
Section IV. Section V reports some of the results obtained in our
measurements. Finally, Section VI concludes the paper.

II. MEASUREMENT METHODOLOGIES

A mixed methodology for traffic measurements of P2P systems has
been developed at BIT, which is based on a combination of instru-
mentation at the application layer with transport flow identification
and extraction of packets captured at the link-layer. This solution
allows accurate measurements on both generations of P2P protocols.

Log data
reduction

Postprocessing
and analysis

TCP Reassembly Application msg
flow reassemblywith tcpdump

Data collection

Log parsing

Fig. 1. Measurement procedures

A. Application logging

Application layer instrumentation involves modifying the specific
P2P protocol client to provide logs of pertinent protocol events.

This provides access to internal states of the application otherwise
not readily available, e.g., download completion ratio and number
of connected peers. The internal states may then be mapped to
various protocol events, and written into a logfile. Depending on
the complexity of the application, this methodology can be more
or less difficult. For instance, for the reference BitTorrent client, the
adding of logging functionality is fairly easy because the client is
written in an interpreted language. On the contrary, the Gnutella
client is a larger, and much more complex piece of software, and
the consequence is that this type of logging is considerably more
difficult.

The process of generating data suitable for analysis is generally
a two- or three-stage process. The stages are: log parsing, log data
reduction and postprocessing and analysis. If the logs are non-local,
i.e., the log creation is not controlled by the application (e.g., for
the case of publically available logs), they may contain errors and
inconsistencies. Non-locally generated logs thus usually require more
stringent error checks for the input data, with the consequence of
stricter constraints on the log parser. For locally generated logs, the
log format can be predefined and made suitable for the data reduction
step.

We used application logging for doing traffic measurements on
BitTorrent. We modified the BitTorrent client to generate a log of
all major state changes in the client. These logs were written to
compressed XML files for metric extraction. By using XML files,
the issue of creating a solid parser is made moot, as there are several
high-quality XML parsers readily available. Additional details on the
setup are presented in [6].

P2P applications may use arbitrary ports, as does BitTorrent [12].
These ports are configurable at run-time and they are often changed
from the default port ranges, e.g., to avoid firewalls and facilitate
the applications properly functioning behind NAT boxes. By logging
using application instrumentation, the issue of detecting which port
the application is using is circumvented. When using both application
logging and link-layer capture, we also have the opportunity to post-
filter the captured link-layer frames to reduce the amount of non-
relevant traffic that needs to be parsed and discarded during the
application stream reassembly.

An important issue regarding application logging is that the ac-
curacy of the event timestamps is directly linked to the accuracy
of the timers in the application runtime environment. Also, as the
events are collected only after processing in both the TCP/IP stack
in the operating system and the application itself, this further affects
the accuracy of the timestamps. In essence, the timestamps can be
viewed as being affected by an additive stochastic process, whose
major components are governed by applications running, and the
amount of processing needed in the TCP/IP stack.

B. Link-layer packet capture

There are situations where application logs may not be feasible,
e.g., when the source code for the peer software is not available or
when the complexity of the client makes it difficult to localize all
places in the source code required to achieve consistent application
logging. For instance, most of Gnutella signaling messages are actu-
ally compressed, with the consequence that the relationship between
the traffic volumes at the application and network layers cannot be
captured. Furthermore, to capture and to decode arbitrary flows of
Gnutella traffic means that one must examine all TCP flows that exist
at the link-layer at the particular time moment. Application logging
does not offer this possibility, as is it limited to only own flows and
thus cannot be used to capture and decode all Gnutella flows crossing
for instance a router.



TRAFFIC MEASUREMENTS OF P2P SYSTEMS 3

The major advantage of using link-layer packet capture lies in
the ability of capturing a snapshot of the entire network activity on
a LAN segment for an arbitrary length of time usually limited by
the amount of available storage. The snapshot can then be used to
analyze the traffic flow generated by an application and also to search
for various correlations that may exist between flows from different
applications. Furthermore, link-layer packet capture provides a higher
degree of timestamp accuracy than application logs, but at the price
of fairly complex stream reassembly software needed to facilitate
extraction of the application data stream. The current accuracy of the
timestamps is about 10µs, which is almost one thousand times better
than that provided by the application logs. Even better accuracy can
be obtained through the use of specialized hardware. A pertinent
drawback with packet traces is the need for massive amounts of
storage. For longer measurements of the order of weeks, data sizes in
the terabyte range are not uncommon. The measurement procedure
also requires more steps in addition to those used for application logs,
as it is shown in Fig. 1. The first three steps are: data collection, TCP
reassembly, and application flow reassembly. The last two steps are
identical to the ones for application logs.

Data collection was done by using tcpdump [11] on the peer
nodes. In order to avoid packet loss in tcpdump all unnecessary
services on the BIT peer nodes were turned off. In addition to that,
tcpdump was instructed to accept only TCP traffic. Furthermore,
the Gnutella and BitTorrent measurements were run sequentially
in order to avoid interference between the two types of traffic.
Altough combinations of different types of peer-to-peer traffic may
be interesting to observe, this was outside the scope of this paper and
it is currently planned to be done in the future.

The TCP reassembly module is based on tcptrace [19]. Tcp-
trace has some basic TCP reassembly functionality but that was
not enough for our purposes. Instead, a new TCP reassembly engine
was written similar to the one used by FreeBSD as described in [21].
Among the features present in the engine is the ability to handle
out-of-order segments as well as forward and backward overlapping
between segments. Our experiments have shown that the module is
sensitive to missing segments due to frames dropped by tcpdump
when the link was under heavy load. Furthemore, the process is very
CPU intensive, which makes it unsuitable for real-time processing.

The application flow reassembly module extracts peer messages
from each reassembled TCP connection. This process involves finding
the peer connection setup, the message boundaries in the TCP stream
and optionally data decompression in the case of compressed streams
[9]. Furthermore, data reduction can be achieved by compressing the
logs using the zlib library [7] as well as by data aggregation over
time. During postprocessing the logs are demultiplexed based on user
chosen constraints: message type, IP address, port number, etc. The
output format is usually a two-column table suitable for tools such
as MATLAB and gnuplot.

III. BIT MEASUREMENT INFRASTRUCTURE

The P2P measurement infrastructure developed at BIT consists of
peer nodes and protocol decoding software [5]. Tcpdump [11] and
tcptrace [19] are used for traffic recording and protocol decoding.
Although the infrastructure is currently geared towards P2P protocols,
it can be easily extended to measure other protocols running over TCP
as well. Furthermore, we plan to develop similar modules to measure
UDP-based applications as well.

The BIT measurement nodes run the Gentoo Linux 1.4 operating
system, with kernel version 2.6.5. Each node is equipped with an
Intel Celeron 2.4GHz processor, 1GB RAM, 120GB hard drive,
and 10/100 FastEthernet network interface. As shown in Fig. 2, the
network interface is connected to a 100Mbit switch in the lab at

our department, which is further connected through a router to the
GigaSUNET backbone.

Switch 10/100 Mbit

BIT router

BitTorrent

Internet

Gnutella
nodenode

Fig. 2. Measurement setup

Our experience with the current setup has been that the traffic
recording step alone accounts for about 70% of the total time taken
by measurements. Protocol decoding is not possible when the hosts
are recording traffic. The main reason is the protocol decoding phase,
which is I/O intensive and requires large amounts of CPU power and
RAM memory. To overcome this problem we are developing the
distributed measurement infrastructure shown in Fig. 3.

Switch 10/100 Mbit

Dual-homed
Gnutella

Dual-homed
BitTorrent

node

Switch 10/100 Mbit

Data processing
workstationData processing

workstation

node

Private LAN

BIT router

Internet
Link used for NFS traffic

Internet access router

Fig. 3. Distributed Measurement Setup

When used in the distributed infrastructure the P2P nodes are
equipped with an additional network interface, which we refer to as
the management interface. P2P traffic is recorded from the primary
interface and stored in a directory on the disk. The directory is
exported using the Network File System (NFS) over the management
interface. Data processing workstations can read recorded data over
NFS as soon as it is available. Optionally, the data processing
workstations can be located in private LAN or VPN in order to
increase security, save IP address space and decrease the number of
collisions on the Ethernet segment. In this case, the Internet access
router provides Internet access to the workstations, if needed.

IV. TRAFFIC MEASUREMENTS

The measurement infrastructure described in section III has been
used to collect three sets of measurements of the P2P protocols
BitTorrent and Gnutella [5].

A. BitTorrent measurements

Two sets of BitTorrent measurements have been performed. The
first set used the instrumented version of the reference BitTorrent



TRAFFIC MEASUREMENTS OF P2P SYSTEMS 4

client as the main measurement tool, with only partial packet capture
to determine timestamp accuracy. The second set involved full packet
capture and stream reassembly in addition to application logging.

The traffic for the first set of measurements was collected at two
different locations over a three-week time period starting on May
3rd 2004. One location was the networking lab at BIT (100 Mbps
Ethernet) and the other one was a local ISP with a 5 Mbps link.
The measurements represent 12 different runs (with lengths of 2 to
12 days) of the instrumented client, 3 of which were run as the
only active application. This was done so as to establish a point
of reference without applications competing for available bandwidth.
To measure more realistic scenarios, the rest of the runs were done
with some temporal overlap [6]. A total of 20GB of uncompressed
XML logs were collected in the first set of measurements. After
postprocessing, the amount of logs was over 25GB. The logs contain
approximately 100 million protocol messages from almost 300000
individual sessions. The BitTorrent log files contain a list of client
software states, e.g., tracker announcements, new connections, choke,
unchoke, interested, uninterested, along with the timestamps when the
state change took place.

The second set of traces were collected as tcpdump traces at
the BIT networking lab during one week, starting June 4th, 2004. A
single instance of the reference client was run as the only application
on the measurement node. The set contains 150GB of data, out
of which 143GB are tcpdump traces. The rest of the data are
application logs and postprocessed logs. Approximately 22 million
messages were transmitted in 53000 sessions during the second
measurement set.

An important issue regarding traffic measurements in P2P networks
is the copyright issue. The most popular content in these networks
is usually copyrighted material. To circumvent this problem, we
joined BitTorrent swarms distributing several popular Linux operating
system distributions.

Traffic metrics like peer swarm size, download time, number and
types of messages, host persistence and piece popularity have been
measured [6]. Some of the most interesting results follow. Figure
4 shows the evolution of the number of connected peers during
the downloading (also known as the leech phase) for measurement
number two. The peer is preconfigured to keep 50 connections up,
and the figure clearly indicates a healthy swarm. The client finds
the preconfigured number of peers in less that 5 minutes, and does
not drop below this number during the entire downloading phase. A
short downloading phase with a stable number of peers are two key
indicators of swarm health.

 10

 20

 30

 40

 50

 60

12:10 12:15 12:20 12:25 12:30 12:35 12:40 12:45 12:50 12:55 13:00 13:05N
um

be
r 

of
 c

on
ne

ct
io

ns

Time

Fig. 4. Swarm size for leech phase

Depending on the type of data being shared in a BitTorrent swarm,
the participating peers display different download dynamics. Figure 5
shows the reaction of a swarm to the release of a new version of the
RedHat Linux distribution. The leftmost time series is from a swarm
sharing the final test release of the distribution, and the rightmost is
from a swarm sharing the final release. The final release version was
released on May 18th, 2004. The swarm clearly reacts to the release
of a newer version, as the swarm size has been halved in less than
one day.

Another key issue for a resource sharing system of the incentive,
or “tit-for-tat”, type is the amount of time peers remain in the swarm

 10

 20

 30

 40

 50

 60

May 17 May 18 May 19 May 20 May 21 May 22 May 23 May 24 May 25 May 26 May 27 May 28 May 29 May 30

N
um

be
r 

of
 c

on
ne

ct
io

ns

Time

Fig. 5. Evolution of swarm size in reaction to changing resource availability

after their download is complete. Figure 6 shows the empirical density
of the session lengths for the measurement set 2. Note that the x-
axis is in hours. The predominance of very short sessions is due to
peers connecting to find out whether there is any interesting data on
any given peer. A connection attempt is necessary for this, as this
information is exchanged during the protocol handshake.

10^-5

10^-4

10^-3

10^-2

10^-1

10^0

0 20 40 60 80 100 120 140

E
m

pi
ric

al
 p

ro
ba

bi
lit

y

BitTorrent session length(h)

10^-5

10^-4

10^-3

10^-2

10^-1

10^0

0 20 40 60 80 100 120 140

E
m

pi
ric

al
 p

ro
ba

bi
lit

y

BitTorrent session length(h)

Fig. 6. Empirical density function for BitTorrent session length

B. Gnutella measurements

The third set of measurements consists of a one-week long link-
layer packet trace of Gnutella signaling traffic. The observed traffic
was flowing across one of the peer nodes at BIT running as a Gnutella
ultrapeer node. Ultrapeers are Gnutella hosts with more CPU power
and connection to high-capacity links. The ultrapeers shield regular
nodes from large volumes of signaling traffic.

The trace was collected using the approach described in Section II-
B. The total amount of PCAP data is approximately 75GB. The
tcpdump data generated approximately 9.2GB of compressed log
files, which is equivalent to approximately 90GB uncompressed log
files. The recorded traffic contains 282 million IP datagrams. The log
files show 773 thousand Gnutella sessions that were used to exchange
763 million Gnutella messages. The Gnutella log files use a simple
format, where each line contains the timestamp, the source and the
destination, message type as well as various details related to the
message in question.

Since the software is able to decode Gnutella traffic down to indi-
vidual message elements both session metrics and message metrics
can be obtained. The session metrics include, e.g., session interarrival
time, session duration, number of messages in a session and number
of bytes in a session. Some of the message metrics that can be
obtained are message type, size, duration, rate and byte rate.

Details of the performed measurements are reported in [9], some
of which are reported below.

Fig. 7 shows the empirical density function (i.e., histogram nor-
malized to unity) for the size of Query Routing Protocol (QRP)
messages. It appears that the density function is bi-modal, although
more thorough analysis is required. Furthermore, it appears that most



TRAFFIC MEASUREMENTS OF P2P SYSTEMS 5

10^-5

10^-4

10^-3

10^-2

10^-1

10^0

0 1k 2k 3k 4k 5k 6k

E
m

pi
ric

al
 p

ro
ba

bi
lit

y

Message size (bytes)

10^-5

10^-4

10^-3

10^-2

10^-1

10^0

0 1k 2k 3k 4k 5k 6k

E
m

pi
ric

al
 p

ro
ba

bi
lit

y

Message size (bytes)

Fig. 7. Empirical density function for QRP message size

QRP messages have a size of about 1kB. The observed maximum size
of the QRP messages is slightly above 5kB. This is greater than the
4kB size recommended in [15].

10^-6

10^-5

10^-4

10^-3

10^-2

10^-1

10^0

0.0 2.0M 4.0M 6.0M 8.0M 1.0G 1.2G

E
m

pi
ric

al
 p

ro
ba

bi
lit

y

Session size (bytes)

Fig. 8. Empirical density function for number of session bytes

The measurement sample displayed in Fig. 8 shows the empirical
density function of the number of bytes transferred due to peer
signaling for the duration of a Gnutella session. Most sessions tend to
transfer very little data. This could be explained by a large number of
unsuccessful Gnutella handshakes due to peers being busy or off-line.

V. CONCLUSIONS

A measurement infrastructure developed at BIT with the purpose to
do traffic measurements and analysis on P2P traffic has been reported.
The measurement methodology is based on using application logging
as well as link-layer packet capture. Details have been reported on
both methods, together with description of the BIT measurement
infrastructure. Furthermore, details regarding traffic measurements
done on BitTorrent and Gnutella protocols, together with some
measurement results of salient protocol characteristics, have been
reported as well.

Our future work will be about further development of the measure-
ment infrastructure towards a distributed measurement setup as well
as further analysis of the obtained results. The goal is to find structural
similarities or differences among characteristics of the protocols as
well as to search for possible invariant characteristics across object
flows.

REFERENCES

[1] Eytan Adar and Bernardo A. Huberman. Free riding on gnutella. First
Monday, 5(10), October 2000. http://firstmonday.org/issues/issue5 10/
adar/index.html.

[2] Nadia Ben Azzouna and Fabrice Guillemin. Experimental analysis of the
impact of peer-to-peer applications on traffic in commercial ip networks.
European Transactions on Telecommunications: Special Issue on P2P
Networking and P2P Services, 2004.

[3] Cohen B. Incentives build robustness in bittorrent.
http://bitconjurer.org/BitTorrent.

[4] Qiu D. and Srikant R. Modeling and performance analysis of bittorrent-
like peer-to-peer networks. Technical report, University of Illinois at
Urbana-Champaign, USA, 2004.

[5] David Erman, Dragos Ilie, and Adrian Popescu. Peer-to-peer traffic
measurements. Technical report, Blekinge Institute of Technology,
Karlskrona, Sweden, 2004.

[6] David Erman, Dragos Ilie, Adrian Popescu, and Arne A. Nilsson.
Measurement and analysis of BitTorrent traffic. In NTS 17, August
2004.

[7] Jean-loup Gailly and Mark Adler. zlib. http://www.gzip.org/zlib.
[8] Grid. Grid. http://www.globus.org.
[9] Dragos Ilie, David Erman, Adrian Popescu, and Arne A. Nilsson.

Measurement and analysis of Gnutella signaling traffic. In IPSI 2004,
September 2004.

[10] M. Izal, G. Urvoy-Keller, E.W. Biersack, P.A. Felber, A. Al Hamra,
and L. Garcés-Erice. Dissecting bittorrent: Five months in a torrent’s
lifetime. In PAM2004, 2004.

[11] Van Jacobsen, Leres C., and McCanne S. Tcpdump.
http://www.tcpdump.org.

[12] Thomas Karagiannis, Andre Broido, Nevil Brownlee, K Claffy, and
Michalis Faloutsos. File-sharing in the internet: A characterization of
p2p traffic in the backbone. Technical report, University of California,
Riverside, 2003.

[13] Thomas Karagiannis, Andre Broido, Nevil Brownlee, Claffy K, and
Michalis Faloustos. File sharing in the internet: A characterization of
p2p traffic in the backbone. Technical report, University of California,
Riverside, USA, 2003.

[14] KaZaa. Kazaa. http://www.kazaa.com.
[15] Tor Klingberg and Raphael Manfredi. Gnutella 0.6. The

Gnutella Developer Forum (GDF), 200206-draft edition, June 2002.
http://groups.yahoo.com/group/the gdf/files/.

[16] James F. Kurose and Keith W. Ross. Computer Networking, A Top-
Down Approach Featuring the Internet. Addison-Wesley, 2003. ISBN:
0-201-97699-4.

[17] David Liben-Nowell, Hari Balakrishnan, and David Karger. Analysis of
the evolution of peer-to-peer systems. In Proceedings of the Annual ACM
Symposium on Principles of Distributed Computing, pages p 233–242.
ACM, 2002.

[18] Napster. Napster. http://www.napster.com.
[19] Shawn Ostermann. Tcptrace. http://www.tcptrace.org.
[20] Larry L. Peterson and Bruce S. Davie. Computer Networks, A Systems

Approach. Morgan Kaufmann, 2003. ISBN: 1-55860-833-8.
[21] Gary R. Wright and W. Richard Stevens. TCP/IP Illustrated: The

Implementation, volume 2. Addison-Wesley, 1995. ISBN: 0-201-63354-
X.

[22] Stefan Saroiu, Krishna P. Gummadi, Steven D. Gribble Richard J. Dunn,
and Henry M. Levy. An analysis of internet content delivery systems.
In Proceedings of the 5th Symposium on Operating Systems Design and
Implementation (OSDI), 2002.

[23] Stefan Saroiu, P. Krishna Gummadi, and Steven D. Gribble. A measure-
ment study of peer-to-peer file sharing systems. In Proceedings of the
Multimedia Computing and Networking (MMCN), January 2002.

[24] Stefan Saroiu, P. Krishna Gummadi, and Steven D. Gribble. Measuring
and analyzing the characteristics of napster and gnutella hosts. Multi-
media Systems Journal, 8(5), 2002.

[25] Subhabrata Sen and Jia Wang. Analyzing peer-to-peer traffic across large
networks. IEEE/ACM Transactions on Networking, 12(2), 2004.

[26] Seti. Seti. http://www.seti.org.
[27] Dimitrios Tsoumakos and Nick Roussapoulos. A comparison of peer-to-

peer search methods. In Proceedings of the International Workshop on
the Web and Databases (WebDB), pages San Diego, California, USA,
2003.

[28] Demetris Zeinalipour-Yatzi and Theodoros Folias. A quantitative anal-
ysis of the gnutella network traffic. Technical report, University of
California, Riverside, 2002.


