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To my parents

“The only true wisdom is in knowing you know nothing”
- Socrates (469–399 BC) -





Abstract

Wide availability of computing resources at the edge of the network has lead to the
appearance of new services based on peer-to-peer architectures. In a peer-to-peer net-
work nodes have the capability to act both as client and server. They self-organize
and cooperate with each other to perform more efficiently operations related to peer
discovery, content search and content distribution.

The main goal of this thesis is to obtain a better understanding of the network
traffic generated by Gnutella peers. Gnutella is a well-known, heavily decentralized
file-sharing peer-to-peer network. It is based on open protocol specifications for peer
signaling, which enable detailed measurements and analysis down to individual mes-
sages. File transfers are performed using HTTP.

An 11-days long Gnutella link-layer packet trace collected at BTH is systematically
decoded and analyzed. Analysis results include various traffic characteristics and sta-
tistical models. The emphasis for the characteristics has been on accuracy and detail,
while for the traffic models the emphasis has been on analytical tractability and ease
of simulation. To the author’s best knowledge this is the first work on Gnutella that
presents statistics down to message level.

The results show that incoming requests to open a session follow a Poisson distri-
bution. Incoming messages of mixed types can be described by a compound Poisson
distribution. Mixture distribution models for message transfer rates include a heavy-
tailed component.
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Chapter 1

Introduction

This chapter begins with a short account of the Internet history, from early beginning
to present day. The aim is to expose the factors and chronological events that led to
the emerge of Peer-to-Peer (P2P) file-sharing technology as dominant form of Internet
traffic in terms of volume.

An overview of the motivation for this thesis is the subject of Section 1.2. That
is followed by a presentation of related work in Section 1.3. The main contributions
of this thesis work are described in Section 1.4. An outline for the contents of this
document is provided in Section 1.5.

1.1 Evolution of P2P

Two characterizing aspects of the Internet are its tremendous growth and heterogene-
ity. A search for “Internet growth” on Google reveals that Internet has grown from
four nodes in 1969 to over 350 million hosts in 2005 [Zak97, Zak05]. This figure is
in fact a low estimate of the true number of users since it relies only on hosts with
registered IP addresses. Many more hosts use private IP addresses behind Network
Address Translators (NATs). When taking those nodes into account the Internet size
estimates go beyond 900 million hosts [IWS05]. Furthermore, measurements indicate
that Internet growth in terms of network traffic has been roughly doubling every year
since 1997 [Odl03] and there seems to be no indication that the growth will slow down
any time soon. Increasing availability of low-priced telecommunication and network-
ing equipment on the Far East market, in particular in China and India, provides further
evidence towards that claim.
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CHAPTER 1. INTRODUCTION

Internet heterogeneity comes in terms of hardware, software and underlaying al-
gorithms. There is an abundance of Internet nodes using x86-compatible processors
(e.g., Intel Pentium and AMD Athlon), tightly followed by nodes using other proces-
sor types, such as PowerPC (e.g., Apple Macintosh), Motorola 68xxx, DEC Alpha,
and Transmeta Crusoe. The Microsoft Windows Operating Systems (OSs) (NT, 98,
and XP) are widespread since they are typically bundled with many of the Personal
Computers (PCs) sold on the market. However, alternatives such as Linux, Mac OS
X and FreeBSD are quickly gaining ground and high-performance server nodes of-
ten use some form of UNIX OS such as SUN OS or OpenBSD with a long history
of scalability, security and reliability. The TCP/IP suite of protocols has become the
de-facto standard for Internet communication and is available for all hardware and soft-
ware described above. Both the Internet Protocol (IP) and the Transport Control Pro-
tocol (TCP) are still evolving. IPv6 is aimed to resolve shortcomings in IPv4 related
to address space exhaustion, autoconfiguration and multicast [Com00]. There is much
ongoing research into adapting TCP algorithms to new environments (e.g., wireless
environments) as well as research on improving the existing TCP congestion control.
Currently, there are three main TCP implementations (Tahoe, Reno and Vegas) and a
number of experimental implementations (HighSpeed TCP, BIC TCP and Fast TCP).

Internet growth and heterogeneity were fueled mainly by two driving forces: wide
availability of integrated circuits using Very Large-Scale Integration (VLSI) technol-
ogy coupled with the appearance of “killer applications”. A killer application, gen-
erally speaking, refers to software or hardware which is so useful that it is adopted
immediately by a large number of users that push the technology to its limits.

E-mail, which appeared in the early 1970s, is very likely the first Internet killer ap-
plication. Although e-mail by itself did not push the technology to its limits, it attracted
a large number of users (most of them from academia) to the Internet by making it easy
to quickly exchange information. In the beginning of 1980 distributed newsgroups in
the form of Usenet were competing with e-mail and File Transfer Protocol (FTP) for
being the killer application.

Another decade passed until November 1990, when Tim Berners-Lee and Robert
Cailiau published their formal specification for the World Wide Web [BLC90]. Two
months later Tim Berners-Lee released the first web browser and web server [Wik05].
It took another two years for the Mosaic web browser to become available, followed
one year later by Netscape Navigator. The modern user interface implemented by these
browsers were very appealing to users and contributed significantly to the emergence
of the new killer application: the Web. The emergence of the Web coincided with a
sharp increase in the popularity of the client-server architecture paradigm in the early
1980s [ES05a]. This coincidence was most likely not entirely arbitrary, but correlated
with the fact that the Web was based on the client-server paradigm. Client-server ap-

2



1.1. EVOLUTION OF P2P

plication architectures segregate nodes into servers and clients. Server nodes are used
solely for providing services useful for client nodes.

By the late 1990s millions of commercial users had obtained access to the Internet.
Many of them had access to PCs with multimedia capabilities, in particular the ability
to play music Compact Discs (CDs). A process called “ripping the CD” was used
to copy the audio tracks from the CD to the PC’s harddisk allowing the users to mix
songs into custom playlists. The size of a full music CD is about 600 MB, which was
too large to be practical with the harddisk sizes at that time. Fortunately for users, a
new efficient audio compression format known as MP31 [Ins06] was already developed
in 1994. Using MP3 compression, data reduction by a factor of 10 was possible. Many
users exchanged MP3 files by e-mail or posted them to newsgroups and personal web
pages. However, finding specific songs was not easy. One way to search for them
was through web search engines such as Lycos and Altavista. There was also the
possibility to request specific songs on Internet Relay Chat (IRC) channels. A dramatic
improvement in finding songs occurred in May 1999 when Shawn Fenning released a
software called Napster, which is regarded as the first widespread P2P application for
file-sharing.

In the P2P approach, nodes are no longer segregated into servers and clients. In-
stead, each host acts as a server when other nodes request services from it, but also as
a client when it demands service for itself from other nodes. Thus, in the P2P architec-
ture paradigm nodes are in a continuous state of flux, acting simultaneously as clients
and servers.

Nodes using Napster software reported to the Napster central server the MP3 files
they made available for download. Users interested in finding a particular song queried
the server and obtained a list with all hosts that had matching files. Users could then
download the file directly from any host on the list. This approach to handle content
search and distribution via a central server is called centralized directory. The ease
of use and the efficiency of looking up files in the centralized directory transformed
Napster into a success almost over night.

The success of Napster became quickly a source of serious concern for major record
companies, who rapidly filed a lawsuit against Napster on grounds of copyright in-
fringement. The lawsuit made Napster immensely popular, attracting additional mil-
lions of users. However, Napster could not withstand the pressure of the lawsuit and
in July 2001 they were forced to shut down the central server [Enc05]. Without the
central server the client nodes could no longer search for files. Thus, the fragility of a
centralized directory system became clear.

Following Napster, a large number of P2P networks appeared: Gnutella, eDonkey,

1The official name is ISO-MPEG Audio Layer-3.
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CHAPTER 1. INTRODUCTION

FastTrack (used by Kazaa and Grokster), DirectConnect, BitTorrent and others. Many
of them implemented a P2P architecture with distributed control to avoid a fate sim-
ilar to that of Napster’s. In addition to that, the new systems were able to share any
type of computer files, not only MP3 songs. Advances in video compression such as
DivX [Div06] and XviD [LMMR06] allowed users to share entire movies, further ex-
acerbating the conflict with media copyright holders. This conflict has also contributed
to new ideas on how to improve data and user anonymity in P2P networks.

Currently, research is performed on the next generation of P2P systems that promise
to offer better scalability and more efficient content search and distribution through the
use of Distributed Hash Tables (DHTs).

The legal controversy surrounding P2P networking (or P2P networks) is an artifact
created by news reporting media, which erroneously use the term P2P as a synonym
for illegal file-sharing. It is the actual act of sharing copyrighted files that is not legal,
not the method by which this is done.

Actually, the P2P networking paradigm has been in use since the early days of
the Advanced Research Projects Agency Network (ARPANET). Legacy applications
such as the Domain Name System (DNS) and the Simple Message Transfer Protocol
(SMTP) still use it today. Similarly, the concept of file-sharing has been incorporated
in many applications with a long history: the UNIX command rcp, FTP, Network File
System (NFS), File and Printer Sharing for Microsoft Networks, etc.

1.2 Motivation
Research performed at Blekinge Institute of Technology (BTH) has a tradition of in-
vestigating new Internet services and applications, in particular their behavior in terms
of network traffic. Papers discussing measurements and modeling were published in
many areas, reflecting the state of art for communication technology at the time: Eth-
ernet, ATM, TCP, Web with emphasis on HyperText Transfer Protocol (HTTP) and
security, just to name a few.

Several publications from 2002–2003 such as [SGG02, GDS+03, KBB+03] indi-
cated the emergence of P2P as the next killer application. These papers sparked an
interest in the researchers at BTH to take a closer look at P2P services, and are to a
large extent responsible for planting the seeds for this thesis work.

In 2004, the company CacheLogic presented data from measurements performed
over a 6-month period with various Tier 1 Internet Service Providers (ISPs) and cable
providers across the world [Par04]. The data provided strong evidence that P2P traffic
is the largest data contributor in ISP networks, with BitTorrent being the leading appli-
cation. Newer measurements performed in 2005 [Par05] show that P2P is still generat-
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1.2. MOTIVATION

ing as much as 60% of the traffic on the Internet. However, the P2P application land-
scape has changed, with eDonkey and Gnutella generating traffic volumes comparable
to BitTorrent. It is likely that this is a reaction to the legal actions pursued by copy-
right holders against major BitTorrent sites (e.g., Supernova), which forced users to
switch over to technologies that provide better anonymity. Other measurement reports
conclude that P2P will continue to grow in the future [KBB+04, KBFC04, AG04].

Several companies have realized the potential in P2P networking and are currently
developing or offering products and services incorporating P2P technologies. The gen-
eral idea behind new services and applications is to push content distribution away
from central servers towards end-nodes, in an effort to diminish the traffic load on ISP
links and servers. Probably the best example is Skype [Com06], an application which
offers free phone calls over the Internet. Another example is BBC’s iMP [BBC06] that
provides recorded TV and radio programs. Other examples include using BitTorrent to
off-load web servers in content distribution. This approach is used by software compa-
nies, in particular by the video game industry, to distribute demos of their products. It is
also the modern way employed by companies such as Novell and RedHat to distribute
the latest Linux releases.

Other ideas rely on the fact that users use only a fraction of the harddisk storage
and computing capacity of their PCs. For example, users joining OceanStore [Ber06a]
share a portion of their local storage in exchange for economic compensation. Ocean-
Store service providers trade capacity among themselves transparently to the users. The
project SETI@Home [Ber06b] harnesses the computing power of idle PCs to analyze
radio data from outer space, hoping to discover signs of extraterrestrial intelligence.
SETI@Home is a form of Internet computing. Although, SETI@home is a client-
server systems, it exhibits several properties attributed to P2P systems [MKL+03].

All these developments indicate that P2P is here to stay and that it will be the
dominant form of digital content distribution, in terms of network traffic volume, in the
foreseeable future.

The main goal of this thesis is directed towards gaining a better understanding of
Gnutella traffic patterns. There are three main reasons why the Gnutella network was
selected for this thesis work. First, Gnutella was and still is a well-documented open
protocol. This means no reverse engineering or other type of guess-work is necessary
to decode protocol messages, thus allowing the research to focus on measurements
and analysis. Second, at the time when the thesis work started the Gnutella protocol
was among the most popular protocols. Last, but not least, the Gnutella Development
Forum and mailing list was and still is an invaluable source of information, especially
if one needs to follow the bleeding edge development of Gnutella.

A problem related to real-time content distribution such as video and audio is the
lack of Quality of Service (QoS) guarantees. There are two main proposals to adopt

5



CHAPTER 1. INTRODUCTION

QoS guarantees into the Internet architecture: Integrated Services (IntServ) and Dif-
ferentiated Services (DiffServ)[Wan00]. Unfortunately, none of them has been widely
adopted at present, mostly due to failure to convince ISPs to invest into these tech-
nologies. A number of suggestions [And01, LM04, SSBK04] have appeared that aim
at providing QoS by using overlay networks built on end-nodes without requiring the
involvement of ISPs. These overlays are very likely to become viable alternatives to
IntServ and DiffServ.

An important goal for future research at BTH is to use the results and models pre-
sented here to implement and validate a QoS overlay on top of a Gnutella-like P2P
network.

1.3 Related Work
There is a large body of literature that describes measurements and modeling of Gnu-
tella traffic. Only a subset is presented in this section, in particular the papers that
influenced the work presented in this thesis.

Perhaps the oldest and most cited paper is [AH00], which looks into the social
aspects of the Gnutella network. The authors instrumented a Gnutella client to log
protocol events. The main contribution of the paper was to show that only a few peers
contribute with hosting or adding new content to the Gnutella network, whereas the
majority of nodes would retrieve content without sharing any. The authors used the
term free-riding to describe this behavior and showed that it was just another form
of the tragedy of the commons phenomenon described more than three decades ear-
lier [Har68]. The conclusion of the paper was that the common belief that the Gnutella
network is more resilient to shutdowns due to distributed control does not hold very
well when only few nodes host the majority of content.

A dooms-day prediction was made by [Rit01], which through mathematical anal-
ysis, argued that due to its architectural design, in particular the volume of signaling
traffic, the Gnutella network will not be able to scale to more than a few hundred users.
Enhancements in message caching, flow control and dynamic hierarchical routing im-
plemented by major Gnutella vendors have rendered most of the conclusions in [Rit01]
obsolete.

In [SGG01, SGG02] the authors created crawlers for Napster and Gnutella net-
works. A crawler is a special purpose software agent, which discovers and records the
network topology through an automated, iterative process. The authors used informa-
tion from the crawlers to measure properties of individual peers (e.g., bandwidth and
latency). The data from their measurements indicated that both Gnutella and Napster
exhibit highly heterogeneous properties (e.g., connectivity, speed, shared data). This
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is contrary to the design assumptions used when those systems were built. Another
important finding, which supports the conclusions in [AH00], is that users are typically
unwilling to cooperate with each other, few of them acting as servers and the remaining
majority acting as clients.

A different approach was taken in [SW02]. The authors performed non-intrusive
flow measurements at a large ISP instead of using a crawler. Their goal was to ana-
lyze FastTrack (a protocol used by Kazaa and Grokster), Gnutella and DirectConnect
networks. Flows belonging to any of these networks were identified by well-known
port numbers. The major findings in the paper are that all three networks showed in-
creases in the traffic volume across consecutive months, skewed distributions for traffic
volume, connectivity and average bandwidth, few hosts with a long uptime, and uni-
formity in terms of number of P2P nodes from individual network address prefixes.

Measurements from a 1 Gbit/s link in the France Telecom IP backbone [AG04]
network revealed that almost 80 % of traffic on the link in question was produced by
P2P applications. Further, the authors showed that flows were partitioned into “mice”
— short flows, mostly due to signaling, and “elephants” — long flows due to data
transfers.

The P2P traffic identification in [SW02, AG04] assumes that applications use well-
known ports. This assumption rarely holds nowadays, when P2P applications use dy-
namic ports in order to camouflage themselves. Karagiannis et al. [KBB+03, KBFC04,
KBB+04] use increasingly better heuristics to detect P2P traffic. Their measurement
results showed that, if anything, P2P traffic was not declining in volume. Further, they
showed that P2P traffic is using predominantly dynamic ports. Applications that cur-
rently use or will use encrypted connections would make the P2P flow identification
task even harder, if not impossible.

1.4 Main Contributions
The focus of this work has been on workload characterization for a single Gnutella
peer. In that context, the following contributions were made:

• Highly detailed statistical models and characteristics of Gnutella traffic crossing
an ultrapeer.

• Statistical methods to fit distributions to very large number of samples.

• Gnutella traffic decoder and accompanying TCP flow reassembly.

• Flexible software library for P2P traffic decoding, based on tcptrace.
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• Measurement infrastructure for P2P traffic based on tcpdump.

1.5 Thesis Outline
This licentiate thesis is organized as follows. The current chapter, Chapter 1, summa-
rizes major developments in the Internet until the current day, focusing on the concepts
of P2P networking and file-sharing. It also sheds some light upon the motivation behind
this work and presents concisely the main contributions.

Chapter 2 provides a short overview of the state-of-the-art of P2P technology. In
particular, it introduces the reader to various terms and definitions used throughout
the thesis. Further, it describes different types of P2P topologies, the process of peer
discovery, several approaches to content management and it concludes by listing im-
portant challenges lying ahead for P2P systems.

Chapter 3 offers a detailed presentation of the Gnutella protocol.
Different type of measurements and their advantages and disadvantages are the

topic of Chapter 4. The measurement infrastructure developed at BTH is described as
well.

Chapter 5 reviews basic statistics and notation. Then, various methods to fit statis-
tical models to data and test the quality of the fit are presented.

Chapter 6 describes characteristics of the Gnutella traffic inferred from a 11-days
long measurement trace. In addition, it presents statistical models for session, messages
and byte rates.

Finally, Chapter 7 summarizes this thesis by presenting the conclusions of this work
along with avenues for future work.

8



Chapter 2

Peer-to-Peer Networks

The primary goal of this chapter is to introduce P2P terminology and definitions that
will be used throughout the rest of the thesis.

In the field literature the term P2P is often used together with the words “com-
puting” or “networking”. Computing denotes the act of performing a sequence of op-
erations on some data by means of a computer. In distributed computing (e.g., P2P
computing) the sequence of operations is often distributed to a set of computers to
achieve some goal more efficiently. Networking is the exchange of data by intercon-
nected computers. Distributed computing typically relies on networking to perform its
task. This work focuses exclusively on networking.

In general, technical P2P literature tends to define P2P networking as a fuzzy re-
lationship among interconnected nodes that alternate between the roles of client and
server. The exact characteristics defining a P2P network seem quite elusive at first,
since authors tend to focus on the characteristics relevant to their work. Some attempts
to settle this situation can be found in [Sch01, MKL+03, ES05a]. In general these
definitions establish that a P2P network architecture implies a distributed network with
decentralized control and dynamic membership, in which participants share resources
(e.g., storage space, processing power, bandwidth) in order to achieve some common
goal. It should be noted that in this case the term bandwidth is used to denote available
channel or link capacity.

Section 2.1 provides basic definitions, which should ensure that more advanced
concepts can be described without any accidental confusion. The remaining sections
focus mostly on P2P taxonomy based on various characteristics of P2P networks.

The three main characteristics that define a P2P network are the overlay topology,
the bootstrap and peer discovery process as well as the functions of content manage-
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ment. Section 2.2 considers various forms of overlay topology and compares the advan-
tages and disadvantage of centralized architectures versus decentralized architectures
as well as the advantages and disadvantages of structured versus unstructured topolo-
gies. Section 2.3 summarizes the concepts of bootstrap and peer discovery. Content
management is the topic of Section 2.4 and covers content insertion, distribution and
search. In addition, various transport protocols are considered also. Finally, the last
section discusses some of the main challenges faced by P2P systems.

2.1 Definitions
The networking field relies heavily on the term “host” or “node”. Although trivial, the
following definition is adopted here for completeness.

Definition 2.1. A host or a node denotes a network entity (often a PC or workstation)
capable of communication. For the purpose of this work both names are equivalent.

Sometimes, the term host implies a node that offers some sort of service or stores
valuable information. Here, a host is no different from a node.

Definition 2.2. A network is a set of nodes interconnected in some way. Networking
is a term describing the exchange of data or services in a network.

It is important to differentiate between logical and physical networks. In a physical
network (e.g., an IP network) the node interconnections can be either optical links, a
shared medium (e.g., Ethernet), cable modems, serial cables or other type of physical
information carrier. In an overlay network, node interconnections are virtual. Directly
connected nodes in an overlay may be several hops away from each other in the physi-
cal network, as shown in Figure 2.1.

Use of overlays is not restricted to P2P networks. Technologies such as Multiproto-
col Label Switching (MPLS), IntServ and DiffServ span some form of overlay network
as well.

Definition 2.3. The way in which nodes of a network are interconnected defines the
network topology.

Unless otherwise specified, the thesis will consider only overlay topologies. Fur-
thermore, the physical network supporting the overlay will be assumed to be an IPv4
network.

Definition 2.4. A link is a direct node interconnection (one hop) in the overlay. Nodes
may be several hops away in the physical network.
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Figure 2.1: Physical network at the bottom, overlay network at the top

Definition 2.5. A path is a contiguous sequence of links connecting two nodes. The
node at each end of the path is called an end-node or end-point. Nodes on the path
between the end-nodes are called intermediate nodes. For directly connected nodes,
there are no intermediate nodes and the path between the end-nodes is equivalent to the
link connecting them.

Definition 2.6. A network in which every node is directly connected to the rest of
the nodes in the network has a full-mesh topology and it is called a fully-connected
network.

Full mesh networks are very expensive to implement since the number of links in-
creases1 as O(n2). Therefore, in practice different (less expensive) types of topologies
are employed together with some form of routing algorithm, which enables finding the
path between two arbitrary nodes.

When describing the direction of the data flow between end-nodes, the reverse path
is the opposite direction of the path. For example, given two end-nodes A and C on a

1The number of links required for a full-mesh network consisting of n nodes is n(n−1)/2.
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1-hop bi-directional path crossing node B, where the forward path is A → B → C, the
reverse path becomes C→B→A. On the forward path the node A is typically referred
to as the source node, node B is the transit node and node C is called the destination
node. The opposite relation (i.e., C is the source node and A is the destination node)
governs the reverse path. The adjective forward in forward path is optional and it is
used only if there is a risk of misunderstanding.

On path A→B→C, node A is upstream from node B and C, node B is downstream
from node A and upstream from C, and finally node C is downstream from both node
A and node B. Upstream and downstream notions are interchanged for the reverse path.

Definition 2.7. Network connectivity is a measure that defines on average the number
of paths connecting any two nodes in the network.

Network connectivity is a measure associated with routing resilience, which is the
ability to adapt to changes in the network topology. It is also important in terms of
content search and distribution.

Definition 2.8. Content, refers to any type of digital media (e.g., text, video, audio)
not necessarily as files explicitly, but also as streams of bytes or packetized in the form
of datagrams (e.g., Internet radio).

There are three main operations related to content, which can be performed in a
network:

Insertion Insertion is the function of adding content to the resource pool of
a network (e.g., making files available for download).

Distribution Distribution is the function of retrieving content from the re-
source pool of a network (e.g., downloading available files).

Control Control is the function of managing the resource pool of a net-
work (e.g., admission control, resource discovery, content re-
moval).

Definition 2.9. A client-server network is a network composed of two type of nodes:
server nodes dedicated to offering services or content and client nodes that use services
or consume content provided by server nodes.

A network is a form of system. Systems discussed in the thesis are based on specific
architectures, which are the high-level blueprints for the system. Thus, it is important
to differentiate between an architecture, which is a logical concept (e.g., a protocol

12



2.1. DEFINITIONS

or software specification) and a system, which is a working implementation of the
architecture in question.

In a pure client-server architecture all three content operations (insertion, distribu-
tion, control) are performed by the server.

Definition 2.10. A P2P network is the antithesis of a client-server network, in the sense
that nodes can arbitrary switch between the roles of server and client, or perform them
simultaneously. P2P networks rely on all nodes to share various resources: bandwidth,
processing power, memory, storage space, etc.

Since nodes implement both server and client functionality, the view is that they are
all equal to each other in that respect. This led to adoption of the term peer as synonym
for a P2P node. Another name in use is servent, which is a combination of the words
server and client.

In a pure P2P architecture all content operations (insertion, distribution, control)
are distributed equally among the peers. However, this is not entirely true for some
current P2P architectures, as it will be discussed in Chapter 2.4.

The majority of applications in IP-based networks use the Berkeley socket Appli-
cation Programming Interface (API) for remote communications. The following termi-
nology is required for many concepts discussed in the remaining part of the thesis.

Definition 2.11. A socket pair defines the end-points in the Berkeley socket API. It
consists of a 5-tuple: <source IP address, source port, destination IP address, destina-
tion port, protocol>. A socket is just one end of the communication channel consisting
of a 3-tuple: <IP address, port number, protocol>.

The term listening socket denotes an end-point that is waiting for a connection
attempt. The listening port denotes the port of a listening socket. According to the
Internet Assigned Numbers Authority (IANA), there are three categories of ports:

Designation Port number range
Well-known 0–1023
Registered 1024–49151
Dynamic 49152–65535

Table 2.1: Port division by IANA

Well-known ports are used by OS services. Traditionally, application use regis-
tered ports for listening sockets and dynamic ports for the end-point that initiates a
connection. P2P applications prefer to use dynamic ports exclusively to camouflage
their existence, mostly to escape censorship through network traffic filtering.
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2.2 Overlay Topology
This section is concerned with the organization of nodes in a P2P network. The network
architecture has a large impact on the resulting topology.

2.2.1 Centralized vs. Distributed Architectures

Client-server systems tend to use a star topology, with the server at the center and
the clients at the periphery. This is the typical example of a centralized architecture.
The first P2P system in wide-use, Napster, used a centralized architecture with a star
topology. In particular, Napster used a server where a list of active peers was kept
together with the file index shared by each peer. This allowed queries to be responded
to very quickly. However, the entire network depended on the central server. When
that server was shutdown the network vanished. The reason why Napster is regarded
as a P2P system in spite of its topology, is that peers could download data from each
other without involving the server.

The main lesson taught by Napster’s demise is that a resilient network must be
organized in such a way that failure of a few nodes should not noticeably affect the
other peers. This lesson pervaded the P2P community, since the next generation of
P2P networks were fully decentralized networks, Gnutella being the best example.
Fully decentralized networks use some form of mesh topology2, in which nodes have
the same function in the network (i.e., they are all equal). It turned out that, when these
networks reached a critical mass of peers, they could not scale due to massive volumes
of signaling messages among peers [SR02, CRB03].

A solution to this problem was presented almost three decades earlier in [KK77].
The paper suggests that large scalability can be achieved by introducing hierarchy into
the network. In a hierarchical network, nodes from a lower hierarchical level cluster
around nodes from higher hierarchical level. This principle has been successfully im-
plemented in DNS, interdomain routing (i.e., Classless Inter-Domain Routing (CIDR))
and mobile ad-hoc networks [XHG03]. P2P networks have also adopted a form of
hierarchy, such as ultrapeers in Gnutella and superpeers in Kazaa. Hierarchical P2P
networks are called hybrids [ES05b]. Ideally, hierarchical networks have a tree topol-
ogy. However, since cycles (path loops) occur in practice, it is more likely that real hi-
erarchical networks have some form of mesh topology. It should be noted that [KK77]
proposed a hierarchical routing scheme, which means that routing occurs at several
levels of aggregation. This scheme did not require a hierarchical topology. For hier-
archical P2P networks, the cost of maintaining a hierarchical topology is rather small

2In a mesh topology there are at least two nodes with two or more paths between them.

14



2.2. OVERLAY TOPOLOGY

since an overlay topology deals entirely with virtual connections. Therefore, the hier-
archy is implemented in this case either through routing, topology or a combination of
both.

2.2.2 Structured vs. Unstructured Architectures
Another form to differentiate among P2P networks is to partition them into structured
and unstructured systems.

In an unstructured system, peers are free to connect to any other peer in the overlay.
One problem with unstructured systems is that resource discovery is not very efficient
since it has to be implemented through some form of flooding or other forms of inten-
sive communication, as described in Chapter 2.4.

Attempts on how to improve the problem of content location have lead to the idea
of forcing peer connections to follow a specific structure that allows a distributed index
for content to be used. Structured systems rely on Distributed Hash Tables (DHTs).

A hash record is a data type consisting of a key with the corresponding value. Hash
keys are typically numerical values or strings, while the hash values are indexes in an
array and are therefore usually numerical. The array itself is called the hash table. A
hash function operates on a given hash key producing a corresponding unique hash
value (index) that points to a location in the hash table. This is the location where the
data is stored or the best place to start a search for it. The quality of a hash table and
its hash function is related to the probability of collisions. A collision happens when
two or more keys point to the same location in the hash table. This problem can be
solved by enlarging and rearranging the hash table, but will in general lead to severe
performance degradation.

DHTs are hash tables spread across many nodes in a network. Each node partici-
pating in a DHT is responsible for a subset of the DHT keys. When the hash function
is given a key it will produce a hash value that identifies the node responsible for that
particular key.

To facilitate more efficient key lookups, DHT algorithms force overlay peers to
form topologies that follow a certain structure, a so called DHT geometry. For example,
Chord [SMK+01] overlays use a circle structure while Content-Addressable Networks
(CANs) [RFH+01] uses a N-dimensional hypercube. Some DHT algorithms include
the notion of peer proximity, thus forcing new nodes arriving to the overlay to accept
low proximity neighboring nodes. This is a way to enforce locality, which means that
nodes are close in the real (IP) network.

Implementing hierarchical topology in a structured system is possible, but not very
common. To the author’s best knowledge, Coral [FM03] and Brocade [ZDHJ02] are
the only structured overlays to have currently implemented a hierarchical topology.
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2.3 Bootstrap and Peer Discovery

A new node wishing to join an P2P overlay for the first time has no a-priori knowledge
about other peers in the overlay. To join the overlay successfully, a node must first
have the listening socket of at least another peer, preferably a well-connected one. This
is called the bootstrap problem and solutions to it are called bootstrap algorithms.
A bootstrap algorithm must be efficient in the sense that it must find well-connected
neighbors in order to avoid small disconnected islands of peers.

Historically, one could obtain a peer’s listening socket either from web pages or
from selected IRC channels. This was however not very practical and therefore the
next step was to include a list of available peers with the distributions of new P2P
software releases.

However, this approach did not work well either, since listed peers were not avail-
able for long. Currently existing bootstrap algorithms rely on some form of central
servers as in the case of trackers in BitTorrent and GWebCache servers in Gnutella.
This implies that P2P networks take a few steps towards the client-server paradigm.
This is seen as a tradeoff between easier peer discovery and increased vulnerability
due to centralized control.

Peer discovery is the process of gathering information about the overlay topology
(e.g., neighbor peers, nodes joining or leaving the overlay), for the purpose of maintain-
ing or improving connectivity. Peer discovery is usually implemented by having nodes
periodically exchange information about known peers. In a hierarchical network, it is
usually the top nodes that can offer the best information about available peers.

2.4 Content Management

Content management can be divided roughly into three categories: insertion, distribu-
tion and control. It should be noted that, in terms of P2P content control, the focus
will be on content search, since the other areas of content control have not been widely
implemented.

2.4.1 Content Insertion

Content insertion deals with making content available to peers in the overlay. Depend-
ing on the P2P system in question, content insertion may require a number of protocol
messages or it can be entirely passive (i.e., no information about the new content is
sent to the overlay). The purpose of protocol messages is to inform other peers about
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the new content or to obtain authorization to publish the content. A node that con-
trols access to some content, including that content’s availability, is called the content
owner [SM05].

2.4.2 Content Distribution
Content distribution is the function of retrieving content from the resource pool. In its
simplest form it involves two peers, where one peer downloads the entire content from
the other peer, over a direct connection between them. The download time is propor-
tional to the bottleneck capacity (at link layer) between the two hosts and also to the
overall error rate on the IP path between them, given that errors trigger retransmissions.

In a more refined form of content distribution, the requester obtains a list with
several peers holding the resource. In the Gnutella protocol this is called a download
mesh, which is the name that will be used in the thesis. The download mesh can be
created in the following ways:

i) A dedicated entity keeps track of which peers serve the resource. This is similar
to the Napster server, or to the BitTorrent tracker.

ii) Several peers that have the desired resource respond to the resource query.

iii) Other peers that have recently retrieved the resource successfully save temporar-
ily to a local cache the host address or the address of the group of hosts from
where the resource was obtained. The information from the cache is used to
respond to the resource query.

iv) Peers that have recently served the content save temporarily to a cache the ad-
dresses of the hosts that have retrieved successfully the content. The information
from this cache can be used to respond to the resource query

v) A combination of the options above.

Given the download mesh, the resource requester may attempt to perform active
measurements to obtain statistics on the bottleneck capacity, response time and error
rate between the requester and each peer in the list. Then the requester selects the best
peer from the download mesh according to some criteria (e.g., highest capacity, low
response time, low error rate).

A natural step forward in the evolution of content distribution techniques was
swarming. With swarming, a peer instructs all or a subset of peers from the down-
load mesh to start uploading unique parts (blocks or byte ranges) of the content. This
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is in essence a form of capacity aggregation with the benefit of added redundancy. If a
peer has a corrupted file, then other peers can supply it.

Since corrupted content is quite common due to incomplete downloads, storage
media errors or malicious activity, the issues of error detection and correction become
quite important. The emergent solution for content in the form of stored files, is to apply
a hash function (e.g., Message-Digest algorithm 5 (MD5) or Secure Hash Algorithm
One (SHA-1)) to the file contents and send the hash value to requesters immediately
before uploading the file to them. Once the requester has downloaded the entire file
it applies the same hash function to its contents. If the computed hash value matches
the initial one, then the file was downloaded without errors. Otherwise, the peer can
attempt to re-download the file.

Due to the fact that initially, before distribution, a new file is available as a whole
only on one host, swarming could not be utilized until one or more peers downloaded
the complete file. Hosts that store the entire file are called seeds in BitTorrent termi-
nology. Further optimization to swarming was possible by using a technique called
Partial File Sharing (PFS). The term PFS appears to have been coined by the Gnutella
community, but the technique itself was used earlier as part of the BitTorrent swarming
functionality. Peers participating in PFS start downloading the new file from the seed.
As soon as they have a complete block of data they make it available for download to
other peers without waiting for the entire file to be retrieved. This enables swarming
at a very early stage, without waiting for several seeds to appear. The downside of
this technique is that if one of the pieces has errors this will not be detected until the
hosts downloading have received the entire file. At that point they apply the hash func-
tion to the file contents and discover that the hash values don’t match. They have no
other choice but to restart from scratch since there is no way to tell which block was
erroneous.

The solution to the problem of erroneous data blocks led to the idea of computing a
hash value for each block of the file. A more sophisticated approach called Tree Hash
EXchange format (THEX) [CM03] has been adopted by Gnutella. THEX defines the
format for a hierarchical type of hashes that can be applied to each data block of the
file and can also be used together to yield a hash for the entire file. Using THEX
downloading peers can check each piece and upon error request only that particular
piece, thus lowering the link utilization. Another solution is found in [MM03], where
the authors introduce path diversity into the network by dividing the stream of pieces
in smartly coded substreams. The receiver can rebuild the original file using only a
fraction of the substreams.
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2.4.3 Transport Protocols
The optimal transport protocol to be used for content distribution has been the source
of much debate. The contenders are three well-established protocols: TCP, HTTP and
User Datagram Protocol (UDP).

The initial use of TCP was motivated by its reliable nature and low overhead com-
pared to HTTP. However, advances in content distribution techniques moved the fo-
cus towards HTTP. HTTP retains the majority of TCP’s advantages and has additional
benefits such as flexible connection management, bandwidth optimization and error
notification [KR01]. The stateless request-response architecture was also appealing
for message-based P2P systems. In particular swarming and PFS benefited from the
range-request feature in HTTP.

TCP encounters however several problems when it is used in a heterogeneous P2P-
environment with many connections. When a node performs swarming it maintains
multiple simultaneous TCP connections to hosts from widely different geographic loca-
tions. The connections are then likely to have very different Round Trip Times (RTTs).
It was shown [LM97] that, in these conditions, the TCP behaves extremely unfair to-
ward the connections with a high RTT. In particular, connections with a high RTT have
been shown to get a smaller part of available bandwidth compared to those with lower
RTT. Other problems are:

i) TCP assumes that all segment loss is due to congestion and immediately reduces
the congestion window to half when an ACK times out. This is counterproduc-
tive in P2P, where most losses are due to data corruption and leads to below
optimal throughput performance.

ii) A segment lost in a stream can cause several other segments to be discarded.
Current implementations for TCP selective acknowledgments do not work well
for long fat pipes and lead to non-optimal throughput [Lei03, ELL06].

iii) The TCP three-way handshake adds considerable overhead when used in spo-
radic communication with many peers.

Some of these problems have prompted a transition to UDP-based transport proto-
cols. This is an unfortunate development, which in the long term may have a negative
impact on the Internet as a whole. The TCP congestion avoidance was developed in
order to prevent networks from going into congestion collapse. The UDP specification
does not define any flow or congestion control mechanisms. When an aggressive UDP
stream competes with a TCP stream on available bandwidth, the TCP connection gives
up bandwidth in order to avoid congestion. The UDP stream, on the contrary, expands
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to consume the bandwidth released by the competing TCP stream. If the number of
UDP streams grows much larger than the number of TCP streams, then congestion
collapse may become a phenomenon much more frequent than it is today.

2.4.4 Content Search

Content control is the management function that controls access to the resource pool
(e.g., admission control, resource discovery). P2P file-sharing systems have currently
favored distributed content control, where each peer controls access to locally stored
files. BitTorrent chooses a hybrid approach, in which a tracker is used to control re-
source location [Coh03].

Resource discovery (i.e., content search) is the process in which a node, called
requester, queries its peers about specific content. As far as users are concerned, a
query is a case-insensitive text string such as “adam smith wealth of nations”.
The query is matched by any file name that contains all the words in the query string,
perhaps ignoring words that appear frequently (e.g., the word “of”). More advanced
filtering may be implemented as well. The way the query string is processed in the
network is highly dependent on the P2P system in question.

In Napster’s centralized architecture the query strings were sent to the central server.
A database lookup was performed on the string and the results returned to requester.

This approach is not feasible for a decentralized system. Instead, a process called
query routing is used. Query routing means that a query is relayed towards the data
owner by intermediate nodes.

In an unstructured network this relies on some form of limited flooding. Each peer
that receives a query on one connection forwards it on all other peer connections it
maintains. The distance in number of hops that the query is allowed to travel, the
search horizon is controlled by a Time to Live (TTL) variable in the query. This ap-
proach is wasting large amounts of bandwidth due to two reasons: i) the query reaches
many nodes that are unable to answer it, ii) for popular content there may be lots of
redundant replies sent back. An improvement to limited flooding is called selective
forwarding. In selective forwarding, the requester sends its query on a very limited
number of connections and waits a while to see how many replies it gets. If it does not
get enough replies, it repeats the procedure on another small number of connections.

In a structured network the location of the content is defined by the DHT employed.
Query routing involves following a path in the DHT geometry (e.g., a straight line
path in Cartesian geometry for CAN [RFH+01]). Consequently, DHT-based networks
perform resource discovery more efficiently than unstructured networks. However, this
is true as far as users search by hash values, so called exact searches.
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An exact search operates on a hash value, usually created by the host responsible
for the content insertion operation. The hash value is obtained by applying a hash
function (e.g., SHA-1) to the content to be shared. To search for the content one has to
know the hash value. Knowing the file name, the author or the type of content does not
help. This is clearly more limiting than the keyword search allowed by unstructured
networks. On the other hand, the main advantage provided by exact searches is that
they locate the exact content as it was created by the original author.

Exact searches have been implemented on top of unstructured networks, although
for a slightly different purpose. A keyword search is performed initially in those im-
plementations. The query results sent back to the requester are of the form <file

name, file size, hash value, IP address, port>, perhaps with additional
elements. The file name denotes the name of the file matching the query, the file size
is the size in bytes, the hash value is the result of a hash function applied to the file
contents and the IP address and port define the listening socket. The requester selects
one of the entries to download the corresponding file. This triggers an exact search
using the hash value of the file. The way the results are aggregated depends on the P2P
software, but it is common that the results are ranked by bandwidth, proximity, RTT
etc. From the results, a number of different hosts are selected and each host receives a
download request for a range of bytes from the file size. This is in fact the swarming
functionality described in Section 2.4.2.

The reverse, implementing keyword searches in a DHT-based network has been
implemented as well, working in some cases more efficiently then in unstructured net-
works [CCR04].

2.5 Challenges
Although P2P networking has seen a tremendous development in recent years, there
are still several challenges to be overcome before it becomes a mature technology. The
main three challenges are: free-riding, junk content, security.

The free-riding problem was brought to attention in [AH00]. By analyzing Gnute-
lla traffic, the authors discovered significant amount of free riding. In particular they
discovered two types of free-riding:

i) A majority of nodes download files without offering any for upload.

ii) Only few nodes share desirable files.

The first type of free riding pushes P2P systems back towards the client-server
paradigm. In a fast-growing network, at some point the number of peers sharing no
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data (i.e., acting as clients) will dwarf the number of sharing peers (i.e., peers that act
as servers). Soon enough, the ”servers” will reach the maximum operational capacity
(in terms of bandwidth, storage, memory or processing power) and will collapse under
load causing the network utility to decrease dramatically. Even if congestion collapse
does not happen, peers are likely to experience high packet losses and low throughput
due to congestion. Further, since only few peers offer files, crippling a P2P network
becomes a matter of just shutting down the few ”servers” in operation.

In the second type of free-riding the majority of nodes share files of little interest
to each others, so-called junk content. Often, this is the case of P2P systems with a
basic form of admission control that allow users to join the overlay only if they share
a minimum volume of data (e.g., the case of DirectConnect). To pass the admission
control users share, for example, their main Windows directory or the /usr directory
in UNIX systems. The difference between this form of free-riding and the previous
one is that in this case the possibility of hash or file name collision increases. In other
words, it becomes more likely for two files with widely different content to have the
same file name or hash value. This would generate false positive query replies. The net
effect of this is a decrease in the service value provided by the network.

There are some reports [Orl03] revealing that junk content is not only a phenomenon
of free-riding but also a deliberate attempt by media record companies to fight online
piracy. The idea was to swamp P2P networks with a huge volume of decoys, for ex-
ample files that appear to contain popular music but consist of a random set of bits.
The decoys would make it difficult to find the real content and thus drastically dimin-
ish the value of the network. Further, it was hoped that decoy downloads, particularly
those using swarming will acerbate the effect, since users would not check the quality
of the content until the file download finished. The practice of maliciously inserting
replicating junk content is called network poisoning.

Network poisoning is just one form of attack on P2P networks. Unfortunately, for
current P2P systems network security appears to be a low priority item. Perhaps, more
whistle-blowers such as [Orl03] will contribute to an increased security awareness for
P2P system developers.
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Chapter 3

The Gnutella Protocol

Gnutella was first released on March 14th, 2000 by Justin Frankel and Tom Pepper,
founders of Nullsoft, a company which was acquired by America Online (AOL)1. As
soon as the Gnutella software was released it was downloaded by a large number of
users. Fearing legal problems, AOL stopped the distribution of Gnutella. However,
Gnutella users were able to reverse engineer the protocol and create compatible soft-
ware [Enc05]. The fall of Napster urged its users to look for a system without a central
point of failure. Many of the users adopted Gnutella as a Napster replacement for the
better.

Gnutella is a heavily decentralized P2P system. This is the opposite of Napster,
which used a centralized directory. Servents can share any type of resources, al-
though the currently available specification covers only computer files. The first “offi-
cial” Gnutella protocol was labeled version 0.4 [Cli03]. Eventually, Gnutella version
0.6 [KM02] was released with improvements based on the lessons learned from the
predecessor. The protocol is easily extensible, which has led to a variety of proprietary
and non-proprietary extensions (e.g., ultrapeers and the Query Routing Protocol). For
a while, the two protocol versions lived side by side and improvements were merged
from the v0.6 line into the legacy v0.4 line. However, there are indications that July
1st 2003 was sort of a “flag day” when Gnutella v0.4 peers were blocked from the
network. This was first discovered in the source code for gtk-gnutella v0.92, a
Gnutella servent [Man06]. The software checks if the current date is later than July 1
2003. If true, it disables Gnutella v0.4 signaling.

The activities of Gnutella peers can be divided into two main categories: signaling

1Before Gnutella, Nullsoft created the famous Winamp media player.
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and user data transfer (further referred to as data transfer). Signaling activities are
concerned with discovery and maintenance of overlay topology, content search and
other management functions. Data transfer occurs when a peer has localized a file of
interest. Peers transfer files over direct HTTP connections to the nodes hosting the
files.

3.1 Ultrapeers and Leaf Nodes
Initially, the Gnutella Network (GNet) was non-hierarchical. However, experience has
shown that the abundance of signaling was a major threat to the scalability of the net-
work [Rit01]. LimeWire (a company promoting an enhanced Gnutella servent) sug-
gested therefore the introduction of a two-level hierarchy: Ultrapeers (UPs) and Leaf
Nodes (LNs). UPs are faster nodes in the sense that they are connected to high-capacity
links and have a large amount of processing power available. LNs maintain a single
connection to their UP. A UP maintains 10-100 connections, one for each LN and 1-10
connections to other UPs [SR02]. The UPs perform signaling on behalf of the LNs,
thus shielding them from large volumes of signaling traffic. A UP does not necessarily
have leaf-nodes, in which case it works standalone.

Some servents may not be capable to become LNs or UPs for various reasons (e.g.,
they lack required functionality). In this case, they are labeled legacy nodes. In order
to improve the overall scalability of the GNet and to preserve bandwidth, UPs and LNs
may refuse to connect to legacy nodes.

According to the Gnutella Development Forum (GDF) mailing list, the Gnutella
community has recently adopted what is called support for high outdegree [Fis03a].
This implies that UPs maintain at least 32 connections to other UPs and 100–300 con-
nections to different lead nodes. LNs are recommended to maintain approximately 4
connections to UPs. The numbers may differ slightly between different Gnutella ven-
dors. The claim is that high-outdegree support allows a peer to connect to the majority
of GNet peers in 4 hops or less.

3.2 Peer Discovery
A Gnutella node that wants to join the overlay must solve the bootstrap problem. This
means the node must obtain information about the listening socket of at least another
peer that is already member in the overlay.

The old way to solve the bootstrap problem was to visit a web site that published
up-to-date lists of known peers. The first step involved selecting one of the peers listed
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on the page, cut-and-paste its address (i.e., the listening socket) from the web browser
into the Gnutella servent and trying to open a connection to it. This process would
continue until at least one connection was successfully opened. At this point signaling
traffic would, hopefully, reveal more peers to which the servent could connect. The
addresses of newly found peers were cached in the local hostcache and reused when
the servent application was restarted.

Since peers in general have a short life span (i.e., they enter and leave the net-
work very often) [SGG02] the hostcache kept by each node frequently gets outdated.
Gnutella Web Cache (GWC) servers2 try to solve this problem. Each GWC server is
essentially an HTTP server offering a list of active peers with associated listening sock-
ets. The web page is typically rendered by a Common Gateway Interface (CGI) script
or Java servlet, which is also capable of updating the list contents. UPs update the list
continuously, ensuring that new peers can always join the overlay.

A list of available GWC servers is maintained at the main GWebCache web site.
This list contains only registered GWC servers. Unofficial GWC servers exist as well.

New Gnutella peers implement the following bootstrap algorithm: upon start they
connect to the main GWC Web site, obtain the list of GWC systems, try to connect
to a number of them, and finally end up building their own hostcache. Alternatively,
the node can connect to an unofficial GWC system or connect directly to a node in the
GNet. The last option requires a priori knowledge about the listening socket of a GNet
node.

Recently, it was observed that GWC servers were becoming overloaded. There
appeared to be two reasons behind the heavy load: an increase in the number of GWC-
capable servents and the appearance of a large number of misbehaving servents. The
UDP Host Cache (UHC) protocol was suggested as a way to alleviate the problem. The
protocol works as a distributed bootstrap system, transforming UHC-enabled servents
into GWC-like servers [GDF05].

3.3 Peer Connections

Assuming that a Gnutella servent has obtained the listening socket of a peer, it will then
attempt to establish a full-duplex TCP connection. The explanation below uses typical
TCP terminology calling the servent that has done the TCP active open client and its
peer server. Once the TCP connection is in place, a handshaking procedure takes place
between the client and the server:

2Also abbreviated as GWebCache servers.
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1. The client sends the string GNUTELLA CONNECT/0.6<CR><LF> where <CR>
is the ASCII code for carriage return and <LF> is the ASCII code for line feed.

2. The client sends all capability headers in a format similar to HTTP and ends with
<CR><LF> on an empty line, e.g.,

User-Agent: BearShare/1.0<CR><LF>

X-Ultrapeer: True<CR><LF>

Pong-Caching: 0.1<CR><LF>

<CR><LF>

3. The server responds with the string GNUTELLA/0.6 <status code><sta-

tus string><CR><LF>. The <status code> follows the HTTP speci-
fication with code 200 meaning success. The <status string> is a short
human readable description of the status code (e.g., when the code is 200 the
string is typically set to OK).

4. The server sends all capability headers as described in step 2.

5. The client parses the server response to compute the smallest set of common ca-
pabilities available. If the client still wishes to connect, it sends GNUTELLA/0.6
<status code><status string><CR><LF> to the server with the
<status code> set to 200. If the capabilities do not match, the client sets the
<status code> to an error code and closes the TCP connection.

If the handshake is successful, the client and the server start exchanging binary
Gnutella messages over the existing TCP connection. The connection lasts until one of
the peers decides to terminate the session. At that point the peer ending the connection
can send an optional signaling message to notify its peer. Then it closes the TCP
connection.

Modern servents include a X-Try header in their response if they reject a con-
nection. The header contains a list of listening sockets of recently active servents, to
which the other peer can try to connect. The purpose of the X-Try header is to increase
connectivity and reduce the need to contact a GWC server.

If the capability set used by the peers includes stream compression [Man03a] then
all data on the TCP connection, with the exception of the initial handshake, is com-
pressed. The type of compression algorithm can be selected in the capability header,
but the currently supported algorithm is deflate, which is implemented in zlib [GA05].
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3.4 Gnutella Message Headers
Each Gnutella message starts with a generic header that contains the fields shown in
Figure 3.1 (the numbers in the figure denote bytes):

GUID P T H Length

15 17 19 220

Figure 3.1: The Gnutella header

• Message ID using a Globally Unique ID (GUID) to uniquely identify messages
on GNet. Leaving out some details, the GUID is a mixture of the node’s Ethernet
MAC address and a timestamp [LMS05].

• Payload type code, denoted by P in Figure 3.1, that identifies the type of Gnutella
message. The currently supported messages are:

Message Code (hex)
PING 0x00
PONG 0x01
BYE 0x02
QRP 0x30
VEND 0x31
STDVEND 0x32
PUSH 0x40
QUERY 0x80
QUERY HIT 0x81
HSEP 0xcd

Table 3.1: Supported Gnutella messages and associated payload codes

• TTL to limit the signaling radius and its adverse impact on the network. Mes-
sages with TTL > 15 are dropped3. This field is denoted by T in Figure 3.1.

• Hop count to inform receiving peers how far the message has traveled, denoted
by H in Figure 3.1.

3Nodes that support high outdegree drop messages with TTL > 4.
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• Payload length in bytes to describe the length of the message, not including this
header. The payload length indicates where in the byte stream the next Gnutella
generic message header can be found.

The generic Gnutella header is followed by the actual message which may have its
own headers. Also, the message may contain vendor extensions. Vendor extensions are
used when a specific type of servent wants to implement experimental functionality not
covered by the standard specifications. It is recommended to implement vendor exten-
sions using the Gnutella Generic Extension Protocol (GGEP) [Tho02]. The protocol
provides a transparent way for regular servents to interact with the vendor servents.

3.5 Topology Exploration

Each successfully connected pair of peers starts periodically sending PING messages
between each other. The receiver of the PING message decrements the TTL in the
Gnutella header. If the TTL is greater than zero the node increments the hop counter in
the message header and then forwards the message to all its directly connected peers,
with the exception of the one from where the message came. Note that PING messages
do not carry any user data (not even the sender’s listening socket). This means that the
payload length field in the Gnutella header is set to zero.

PONG messages are sent only in response to PING messages. More than one
PONG message can be sent in response to one PING. The PONG messages are returned
on the reverse path used by the corresponding PING message. Each PONG message
contains detailed information about one active Gnutella peer. It also contains the same
GUID as the PING message that triggered it. The PONG receiver can, optionally,
attempt to connect to the peer described in the message.

UPs use the same scheme, however they do not forward PINGs and PONGs to and
from the LNs attached to them.

Gnutella peers are required to implement some form of flow control in an effort to
prevent PING-PONG traffic generated by malfunctioning servents from swamping the
network. A simpler flow control mechanism is specified in [Roh02b].

The BYE message is an optional message used when a peer wants to inform its
neighbors that it will close the signaling connection. The message contains an error
code along with an error string. The message is sent only to hosts that have indicated
during handshake that they support BYE messages.
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3.6 Resource Discovery
A Gnutella peer wishing to locate some specific resource (e.g., file) must assemble a
QUERY message. The message describes the desired resource using a text string. For
a file resource this is the file name. In addition, the minimum speed (i.e., upload rate)
of servents that should respond to this message is specified as well. There may be
additional extensions attached to the message (e.g., vendor extensions) but those are
outside the scope of the thesis.

In Gnutella v0.4, the QUERY message is sent to all peers located one hop away,
over the signaling connections established during the handshake. Peers receiving a
QUERY message forward it to all directly connected peers unless the TTL field indi-
cates otherwise. This is the controlled flooding approach, presented in Chapter 2.4,
which is inefficient in terms of consumed bandwidth.

The newer Gnutella v0.6 attempts to alleviate the problems by introducing a form
of selective forwarding called dynamic query [Fis03a]. A dynamic query first probes
how popular the targeted content is. This is done by using a low TTL value in the
QUERY message that is sent to a very limited number of directly connected peers.
A large number of replies indicate popular content, whereas a low number of replies
imply rare content. For rare content, the QUERY TTL value and the number of di-
rectly connected peers receiving the message are gradually increased. This procedure
is repeated until enough results are received or until a theoretical limit of the number
of QUERY message receivers is reached. This form of resource discovery requires all
LNs to rely on UPs for their queries (i.e., LNs do not perform dynamic queries).

If a peer that has received the QUERY message is able to serve the resource, it
responds with a QUERY HIT message. The GUID for the QUERY HIT message
must be the same as the one in the QUERY message that triggered the response. The
QUERY HIT message lists each resource name that matches the resource description
from the QUERY message4 along with the resource size in bytes and other information.
In addition, the QUERY HIT messages contain the listening socket which to be used
by the message receiver when it wants to download the resource. The Gnutella spec-
ification discourages the use of messages with size greater than 4 KB. Consequently,
several QUERY HIT messages may be issued by the same servent in response to a
QUERY message.

Some servents use the metadata extension mechanism [Tha01] to allow for richer
queries. The idea is that metadata (e.g., author, genre, publisher) is associated with
files shared by a servent. Other servents can query those files not only by file name, but

4For example the string linux could identify a resource called linux redhat 7.0.iso as well as a
resource called linux installation guide.txt.gz. Thus, this query yields two potential results. Both
results will be returned to the QUERY sender.
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also by the metadata fields.

3.6.1 Query Routing Protocol
The purpose of ultrapeers is to reduce the burden put on the network by peer signaling.
They achieve this goal by eliminating the PING messages among leaf nodes and by
employing query routing. There are various schemes for ultrapeer query routing but the
recommended one is the Query Routing Protocol (QRP) [Roh02a]. Ultrapeers signal
among themselves by using PING and PONG messages.

QRP [Roh02a] was introduced in order to mitigate the adverse effects of flooding
used by the Gnutella file queries and it is based on a modified version of Bloom fil-
ters [HB70]. The idea is to break a query into individual keywords and have a hash
function applied to each keyword. Given a keyword, the hash function returns an in-
dex to an element in a finite discrete vector. Each entry in the vector is the minimum
distance expressed in number of hops to a peer holding a resource that matches the
keyword in the query. Queries are forwarded only to leaf nodes that have resources that
match all the keywords. This substantially limits the bandwidth used by queries. Peers
run the hash algorithm over the resources they share and exchange the routing tables
(i.e., hop vectors) at regular intervals.

Individual peers (legacy nodes or UPs) may run QRP and exchange routing tables
among themselves [Fis03b]. However, the typical scenario is that legacy nodes do not
use QRP, LNs send route table updates only to UPs, and UPs propagate these tables
only to directly connected UPs.

3.7 Content Distribution
Data exchange takes place over a direct HTTP connection between a pair of peers. Both
HTTP 1.0 and HTTP 1.1 are supported but use of HTTP 1.1 is strongly recommended.
Most notably, the use of features such as range request and persistent connections is
encouraged as well.

The range request feature allows a peer to continue an unfinished transfer from
where it left off. Furthermore, it allows servents to utilize swarming. Swarming is not
part of the Gnutella protocol and regular Gnutella servents (i.e., servents that do not
explicitly support swarming) can be engaged in swarming without being aware of it.
From their point of view, a peer is requesting a range of bytes for a particular resource.
The intelligence is located at the peer downloading data.

The persist connection feature is useful for swarming. It allows a peer to make
several requests for different byte ranges in a file, over the same HTTP connection.
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When a peer locates interesting content it should open a direct HTTP connection to
the listening socket specified in the QUERY HIT message. If the QUERY HIT sender
(i.e., the resource owner) is behind a firewall, incoming TCP connections are usually
rejected.

To work around this problem, when a firewall is detected the downloader must
send a PUSH message over the signaling connection. The message contains the listen-
ing socket of the resource requester and is routed along the reverse path of the received
QUERY HIT message. The resource owner can use the information in the PUSH mes-
sage to establish a TCP connection to the requester’s listening socket. If the TCP
connection is established successfully, the host behind the firewall sends the following
string over the signaling connection:

GIV <File Index>:<Servent Identifier>/<File Name><LF><LF>

The <File Index> and <Servent Identifier> are the values found in the cor-
responding PUSH message and <File Name> is the name of the resource requested.
Upon the receipt of the message the receiver issues an HTTP GET request on the newly
established TCP connection:

GET /get/<File Index>/<File Name> HTTP/1.1<CR><LF>

User-Agent: Gnutella<CR><LF>

Connection: Keep-Alive

Range: bytes=0-<CR><LF>

<CR><LF>

Figure 3.2 shows a simple GNet scenario, involving three legacy peers. It is as-
sumed that Peer A has obtained the listening socket of Peer B from a GWC server.
Using the socket descriptor, Peer A attempts to connect to Peer B. In this particular
example, Peer B already has a signaling connection to Peer C.

The first three messages between Peer A and Peer B illustrate the establishment of
the signaling connection between the two peers. The two peers may exchange capabil-
ities during this phase as well.

The next phase encompasses the exchange of network topology information with
the help of PING and PONG messages. The messages are sent over the TCP connec-
tion established previously (i.e., during the peer handshake). It is observed that PING
messages are forwarded by Peer B from Peer A to Peer C and in the opposite direction.
Also, it can be observed that PONG messages follow the reverse path taken by the
corresponding PING message.

At a later time the Peer A sends a QUERY message, which is forwarded by Peer B
to Peer C. In this example, only Peer C is able to serve the resource, which is illustrated

31



CHAPTER 3. THE GNUTELLA PROTOCOL

Gnutella message over

Separate HTTP connection

established TCP connection

TCP connection

PONG

PING

PING

PONG

PONGQUERY

QUERY

QUERY HIT

QUERY HIT

PONG

PONG

PING

PING

HTTP response

HTTP GET

Peer A Peer CPeer B
GNUTELLA CONNECT/0.6

GNUTELLA/0.6 200 OK

GNUTELLA/0.6 200 OK

Figure 3.2: Example of a Gnutella session

by the QUERY HIT message. The QUERY and QUERY HIT messages use the exist-
ing TCP connection, just like the PING and PONG messages. Again, it is observed that
the QUERY HIT message follows the reverse path taken by the corresponding QUERY
message.

Finally, Peer A opens a direct HTTP connection to Peer C and downloads the re-

32



3.8. OTHER FEATURES

source by using the HTTP GET method. The resource contents are returned in the
HTTP response message.

The exchange of PING-PONG and QUERY-QUERY HIT messages continues until
one of the peers tears down the TCP connection. A Gnutella BYE message may be sent
as notification that the signaling connection will be closed.

3.7.1 Optimizations
The Hash/URN Gnutella Extensions (HUGE) specification [Moh02] provides a way
to identify files by Uniform Resource Names (URN) and in particular by hash values,
such as SHA-1. The advantages of using HUGE and SHA-1 is that files with the
same content but different names can be discovered through the QUERY–QUERY HIT
mechanism and that file integrity can be checked upon download by recomputing the
SHA-1 hash value.

In order to speed up file downloads and to distribute the load among servents, when
a peer sends a QUERY HIT message, it includes a list of peers that are known to have
the same file (i.e., the download mesh). The simplest way a servent can build such a
list, is to remember the list it obtained itself when it downloaded the file. Download
meshes require support for the HUGE extension. The main benefit lies in their ability
to enable efficient swarming.

Partial File Sharing (PFS) is an optimization of swarming and download meshes.
Servents that support PFS do not wait to download the whole file before replying to
matching QUERY messages. If a servent requests the file before its download has
completed, the servent that has the partial file sets the Content-Range header in the
HTTP reply informing the other peer about the amount of available data.

3.8 Other Features
Gnutella has support for many other important features, albeit outside the scope of the
thesis. The remainder of this section will present some of these features briefly.

3.8.1 Horizon Size Estimation Protocol
The Horizon Size Estimation Protocol (HSEP) [Sch04] is used to obtain estimates on
the number of reachable resources (i.e., nodes, shared files and shared kilobytes of
data). Hosts that support HSEP announce this as part of the capability set exchange
during the Gnutella handshake. If the hosts on each side of a connection support HSEP,
they start exchanging HSEP message approximately every 30 seconds. The HSEP
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message consists of n max triples. Each triple describes the number of nodes, files
and kilobytes of data estimated at the corresponding number of hops from the node
sending the message. The n max values is the maximum number of hops supported by
the protocol. 10 hops is the recommended value [Sch04].

The horizon size estimation can be used to quantify the quality of a connection.
For example the higher the number of reachable resources, the higher the quality of the
connection.

3.8.2 File Magnets and Magma Lists
Building on HUGE, file magnets are the bridge between the Web and P2P networks.
Web pages can include special Universal Resource Locator (URL) links called file
magnets, which encode URNs to resources available on the P2P network. When a user
clicks on such a link, the web browser transfers the URN to the local Gnutella servent,
which will perform a query on GNet.

A Magma list is a list of file magnets, for example the favorite documents, music
or pictures shared by a Gnutella user.

3.8.3 Passive/Active Remote Queueing (PARQ)
Most servents limit the number of uploads that can occur simultaneously, in order to
preserve bandwidth. When PARQ is used, download requests are queued at the servent
hosting the file [Man03b]. The specification allows servents to check their place in
the download queue. It allows hosts to temporarily (maximum 5 minutes) become
unavailable. This feature can be useful if the servent crashes or temporarily looses its
Internet connection.

3.8.4 Reliable UDP File Transfer
Firewall-to-Firewall (F2F) or Reliable UDP File Transfer (RUDP) allows two fire-
walled hosts, both of them connected to Internet through NAT servers, to transfer files
among themselves over UDP [Gnu05]. The technique to open the UDP ports in the fire-
wall is known as “UDP hole punching” and it is fairly well documented in [SFK05].

3.8.5 LAN Multicast
Recently, a specification [BMQD04] was made available that allows servents located
on the same Local Area Network (LAN) to take advantage of IP multicast when trans-
ferring files. The advantages of LAN multicast is that file transfers are more efficient
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due to IP multicast and generally much faster due to higher bandwidth, lower latency
and lower number of hops.
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Chapter 4

Traffic Measurements

Traffic measurements tend to be divided into active and passive measurements. The
main difference between the two is that in active measurements specific patterns of
traffic are injected into the network and analyzed when they exit the network. Changes
on the injected traffic pattern are used to draw inferences about various properties of
the network. The ping and traceroute applications are very simple examples of ac-
tive measurement tools. Web and P2P crawlers that discover the network topology and
properties of the nodes in it are another example. In the case of passive measurements,
traffic flows seen at specific nodes are observed or recorded, without the necessity of
sending any traffic in the network. This is the approach used for this thesis and the
subject of this chapter. In particular, the focus is on passive application layer measure-
ments.

The goal of network traffic measurements is to capture observable properties of
data transfers over a network. The properties can be ordered in a three-level hierarchy
of statistics: message unit statistics, session statistics and flow statistics.

An application message unit is a chunk of application data, which, if received
correctly, is recognized as a complete protocol data unit (PDU).

Related data are said to form a session. For example, a TCP session covers all data
between and including the three-way handshake and the FIN segments. In the case of
HTTP, a session is roughly defined as all TCP sessions required to download a web
page with all embedded items. A general application layer definition for a session can
be that of a group of related message units exchanged for the purpose of accomplishing
a specific task.

A flow is defined by arbitrary data exchanged between two hosts. A flow typically
contains one or more sessions. Sometimes, it is interesting to observe the behavior
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of several flows as a whole, e.g., all the flows from a specific source or all the flows
going to a particular destination. In this case the group of flows in question is called an
aggregate flow.

General statistics that apply to all levels of the hierarchy are interarrival times, du-
ration, transfer rates and sizes. Other specialized statistics may be available, depending
on the application, e.g., peer swarm size [EIP05] in BitTorrent, a replicating P2P dis-
tribution system.

The simplest way to report the result of measurements is to organize the statistics as
time series, where each element of the time series consists of a timestamp, statistic type
and measured value. In practice, the element structure is more sophisticated, containing
meta-information, events triggered within the application and even nested elements.

There are two main approaches to perform application layer measurements for net-
work traffic. In the first approach, called application logging, the traffic is measured
by the application itself. The other approach is to obtain measurements indirectly, by
monitoring traffic at the link layer and performing application flow reassembly using
a specially designed application. This approach is referred to as flow reassembly. A
mixture of these two approaches is possible as well.

4.1 Application Logging
Unless already supported, application logging requires changes in the application soft-
ware to record incoming and outgoing network data and other events of interest, e.g.,
transitions between application states, failures, CPU and memory usage. This im-
plies modifying the application source code. In the case of open source software these
changes can be performed rather straightforwardly. However, for closed source soft-
ware one needs to negotiate an agreement with the vendor to obtain and modify the
source code.

The advantage of application logging is that measurement data is readily available
from within the application itself. Measurement code embedded at relevant places
in the application is able to continuously monitor all variables of interest. On the
other hand, the main disadvantage associated with this method is related to timestamp
accuracy. The accuracy of the timestamp is affected by three main factors: drift in the
frequency of the crystal controlling the system clock, latency in the operating system
(OS) and latency in the network stack.

The frequency drift of the crystal is due to temperature changes and age. Its influ-
ence on the timestamp is in the order of about 1 µs [PV02].

Latency in the OS refers to the delay between the time when a user-space process
requests a timestamp from the operating system and the time when the timestamp is
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available to the process. The delay is largely accounted for by scheduling in the kernel
when the calling process is temporarily preempted by other processes. The problem is
increasingly worse for interpreted programs, e.g., the reference BitTorrent client which
is a Python script. In this case the timestamps are subject to additional scheduling
imposed by the interpreter.

A significant amount of queueing and scheduling occurs in the TCP/IP stack as
well, especially in the routines for IP and TCP reassembly. The effect is that times-
tamps at the application layer are only indicative for the actual time when packets enter
or leave the link-layer at the node in question.

4.2 Flow Reassembly
The flow reassembly method attempts to address some of these problems by moving
the measurements closer to the network. Link-layer measurements have enjoyed a long
tradition in the network community. However, since the interest is now moving towards
events at the application layer, one needs to develop dedicated software able to decode
application layer messages from the observed link-layer traffic, essentially replicating
parts of the application of interest.

Flow reassembly involves mainly three stages: link-layer capture, transport stream
reassembly, (e.g., TCP reassembly), and application message decoding.

A plethora of link-layer capture software is available under very liberal licenses on
the Internet, (e.g., tcpdump and ethereal [JLM05, Cc05]). The common denomina-
tor for this software is that in a shared-medium LAN such as Ethernet, the capturing
software forces the network interface to work in promiscuous mode, thus enabling it to
monitor all traffic in the LAN. However, an issue to consider carefully when selecting
capture software, is the timestamping operation. The operation should be performed as
close as possible to the place where the frame is read from the network card (if possible
in the network driver or on the card itself). Failure to do so may lead to inaccuracies
that are similar to those of application logging.

Transport stream reassembly deals with missing or duplicate packets and with pack-
ets arriving in wrong order. At the IP layer this involves reassembly of IP fragments.
At the TCP layer, the transport stream reassembly replicates the TCP reassembly func-
tionality from the network stack.

The main problem with regards to TCP reassembly is to obtain the same TCP state
transitions that occurred at the time when the traffic was recorded. This is particularly
hard to do in a heterogeneous network environment, since different OSs handle special
TCP conditions in different ways. For example, retransmitted segments may overlap
the data received previously and one must decide whether to keep the old or the new
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data. Windows and UNIX take opposing views of this scenario [PN98]. A solution to
minimize the inconsistencies in protocol implementations is to use a traffic normalizer
[HP01]. Similar problems apply to reassembly of IP fragments.

Application message decoding uses reassembled transport layer flows to obtain
application messages exchanged by end-points. This is also the point where statistics
(e.g., the ones described at the beginning of this chapter) can be computed.

The main advantage of flow reassembly is that it provides a more accurate view of
how the application affects the network. Furthermore, flow reassembly can be run on
a dedicated host different from the hosts participating in the application session. Such
a dedicated node has also the possibility to analyze all traffic passing by the recording
interface. In contrast, application logging can only provide information about the flows
in which the measuring host is an active participator. Furthermore, the flow reassembly
method can save link-layer traffic to disk for off-line analysis.

A major disadvantage associated with flow reassembly is that all application states
must be inferred from the recorded network traffic. This is not always possible, since
certain application state transitions may be independent of network events. Another
disadvantage is that a lot of existing functionality (e.g., IP and TCP reassembly) are
duplicated. A well-known programming mantra states that the probability to encounter
bugs increases proportionally to the volume of new code. An even more serious prob-
lem is related to the link-layer capture. On heavily loaded links, the hardware may not
be able to record all data and will start dropping frames. This has an impact on the
host performing the measurements but not necessarily on the host participating in the
application layer session.

Off-line traffic analysis features similar to those found in flow reassembly can be
implemented using application logging, by adding suitable message recording points
in the software application. This means in fact a measurement method that is a mixture
between application logging and flow reassembly. Such a mixed methodology has the
advantages of both methods, e.g., no need to infer application state from link-layer
traces, and no need to decide beforehand what statistics to collect.

4.3 BTH Measurement Infrastructure
A measurement infrastructure dedicated to P2P measurement has been developed at
BTH [IEPN04a, IEPN04b, EIP05]. It consists of peer nodes and protocol decoding
software. Tcpdump [JLM05] and tcptrace [Ost05] are used for traffic recording and
protocol decoding. Although the infrastructure is currently geared towards P2P proto-
cols, it can be easily extended to measure other protocols running over TCP.

The BTH measurement nodes run the Gentoo Linux 1.4 operating system, with
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kernel version 2.6.5. Each node is equipped with an Intel Celeron 2.4 GHz processor,
1 GB RAM, 120 GB hard drive, and 10/100 Mbit/s Ethernet network interface. The
network interface is connected to a 100 Mbit/s switch in the lab at the Department
of Telecommunication Systems, which is further connected through a router to the
GigaSUNET backbone as shown in Figure 4.1(a).

Measurements performed at BTH showed that the recording step alone accounts
for about 70% of the total time taken by measurements. Traffic analysis is not possible
when the hosts are recording traffic. The main reason is the protocol decoding phase,
which is I/O intensive and requires large amounts of CPU power and RAM. To over-
come this problem a new distributed measurement infrastructure shown in Figure 4.1(b)
is under development.

Switch 10/100 Mbit

BTH router

BitTorrent

Internet

Gnutella
nodenode

(a) Measurement setup

Switch 10/100 Mbit

Dual-homed
Gnutella

Dual-homed
BitTorrent

node

Switch 10/100 Mbit

Data processing
workstationData processing

workstation

node

Private LAN

BTH router

Internet
Link used for NFS traffic

Internet access router

(b) Distributed measurement setup

Figure 4.1: Measurement network infrastructures

When used in the distributed infrastructure, the P2P nodes are equipped with an
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additional network interface, which we refer to as the management interface. P2P
traffic is recorded from the primary interface and stored in a directory on the disk.
The directory is exported using the Network File System (NFS) over the management
interface. Data processing workstations can read recorded data over NFS as soon as it
is available. Optionally, the data processing workstations can be located in a private
LAN or Virtual Private Network (VPN) in order to increase security, save IP address
space and decrease the number of collisions on the Ethernet segment. In this case, the
Internet access router provides Internet access to the workstations, if needed.

Log data
reduction

Postprocessing
and analysis

TCP Reassembly Application msg
flow reassemblywith tcpdump

Data collection

Log parsing

Figure 4.2: Measurement and traffic stages

Figure 4.2 shows the measurement process flow. The first stage from the left is
the traffic collection stage that is described in Section 4.3.1. The following two stages
are the TCP reassembly stage described in Section 4.3.2 and the application message
flow reassembly described in Section 4.3.3. The last two stages, log data reduction and
postprocessing and analysis, are described in Section 4.3.4. The log parsing stage was
used for analysis of BitTorrent application logs [EIPN04, EIP05]. However, the log
parsing stage is not relevant to this thesis and will not be described any further.

4.3.1 Traffic Collection
Each measurement node has tcpdump 3.8.3 installed on it. When the node is run-
ning measurements, tcpdump is started before the Gnutella servent in order to avoid
missing any connections. Tcpdump can also be run on a different node in the network,
provided that the ultrapeer switch port is mirrored to the port where the tcpdump host
is recording or if the switch is replaced with a hub and both the tcpdump host and the
ultrapeer are connected to it.

During the data collection stage, tcpdump collects Ethernet frames from the switch
port where the ultrapeer node is connected. The collected data is saved in PCAP format.
Since most P2P applications can use dynamic ports, all traffic reaching the switch port
must be collected. However, to increase the performance during data collection and
data processing, one can turn off most or all server software on the ultrapeer node. It is
possible, in addition, to apply a filter to tcpdump that drops packets used by traditional
services, which are running on well-known ports (e.g., HTTP, FTP, SSH).
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The volume of collected data can be quite large, (e.g., the resulting trace file could
grow well beyond 2 GB in less than one day). The data volume is directly related to the
number of peers the servent connects to. In our case we observed on average 130 peers
(100 leaf nodes and 30 ultrapeers) and collected approximately 33 GB PCAP data in
eleven days. Most file systems do not allow this amount of data to be stored in one
file. The solution to this problem is to have tcpdump spread the recorded data across
several files, each 600 MB large. This file size is suitable for storage on a recordable
CD.

4.3.2 TCP Reassembly

Assuming that the measured P2P application runs over TCP, the next step is to reassem-
ble the TCP frames to a flow of ordered bytes. The TCP reassembly module builds on
the TCP engine available in tcptrace.

The module reads the tcpdump traces in the order they were created. Each trace is
scanned for TCP connections. When found, they are stored in a list with connection
records. Further, when a new TCP segment is found in the trace file, the module scans
the connection list comparing the socket pair of the segment with each entry in the
list. If no entry matches the socket pair of the new segment, then a new connection
is considered to be found and a record is created for it, which finally is added to the
connection list. Otherwise, the connection record matching the socket pair is retrieved
and sent together with the new segment to the TCP reassembly engine.

The TCP reassembly engine is similar to the one used by the FreeBSD TCP/IP stack
as described in [WS95]. For each active connection, the reassembly engine keeps a
doubly linked list, which is referred to as the reassembly list. When given a connection
record and a new segment, it retrieves the correct reassembly list and then it inserts
the new segment in the correct place in the list. The reassembly engine is capable of
handling out-of-order segments as well as forward and backward overlapping between
segments.

4.3.3 Application Flow Reassembly

Whenever new data is available, the application data reassembly module is notified.
Upon notification, it asks the TCP reassembly module for a new segment from the
reassembly list corresponding to the socket pair received with the notification. When
it receives the new segment, it interprets the contents according to the specification for
the protocol it decodes. Since application messages may span several segments and
since a segment may contain data from two consecutive messages, each segment is
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appended to the end of a data buffer before further processing. A contiguous data flow
containing at least one application message is thus created.

In the case of a new Gnutella connection, the application reassembly module first
waits for the handshake phase to begin. If the handshake fails, the connection is marked
invalid and it is eventually discarded by the memory manager.

If the handshake is successful, the application reassembly module scans the capa-
bility lists sent by the nodes involved in the TCP connection. If the nodes have agreed to
compress the data, the connection is marked as compressed. Further segments received
from the TCP reassembly module for this connection are first sent to the decompressor,
before being appended to the data buffer.

The decompressor uses zlib’s[GA05] inflate() function to decompress the data
available in the new segment. Upon successful decompression the decompressed data
is appended to the data buffer.

Immediately after the handshake phase, the application reassembly module at-
tempts to find the Gnutella message header of the first message. Using the payload
length field, it is able to discover the beginning of the second message. This is the only
way to discover message boundaries in the Gnutella protocol and thus track application
state changes. Based on the message type field in the message header, the correspond-
ing decoding function is called, which outputs a message record to the log file. The
message records follow a specific format required by the postprocessing stage. The
format is described briefly in Appendix C.

4.3.4 Postprocessing
Since the logs can grow quite large, they can be processed through an optional stage
of data compression. The compression is achieved by using the on-the-fly deflate

compression offered by zlib. Additional data reduction can be achieved if the user is
willing to sacrifice some detail by aggregating data over time.

The postprocessing module interprets the (optionally compressed) log data and it is
able to demultiplex it based on different types of constraints: message type, IP address,
port number, etc. The data output format of this stage is suitable for input to numerical
computation software such as MATLAB and standard UNIX text processing software
such as sed, awk and perl.
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Chapter 5

Statistical Modeling

The measurement infrastructure described in the previous chapter was used to collect
P2P network traffic crossing the BTH ultrapeer. By decoding the recorded traffic data,
flows were recreated at several layers in the TCP/IP stack. The flows consist of discrete
protocol data units: IP datagrams at the network layer, TCP segments at the transport
layer, and finally, Gnutella messages at the application layer. The Gnutella messages
can also be logically grouped in peer sessions. The time when the protocol data units
reached the link layer and their size were recorded. For peer sessions, the session dura-
tion was recorded in addition to time and size. These quantities randomly change value
over time. The term random does not imply that the Gnutella system behaves haphaz-
ardly, but rather that its traffic patterns are so complex that a deterministic description
is not feasible. Instead, a statistical approach similar to the one introduced in [Pax94]
is better suited to describe the quantities of interest.

The first section of this chapter presents the framework used for data analysis in this
thesis. Elements of traffic self-similarity and heavy-tailed distributions are discussed
in Section 5.2. Methods to identify distribution family from which a data sample is
drawn are the subject of Section 5.3. Section 5.4 focuses on the problem of parameter
estimation for such distributions. After the parameters of the distribution have been
estimated, the distribution is fully specified. Section 5.5 is concerned with goodness-
of-fit methods, which are procedures for quantifying how well the fully specified dis-
tribution matches the data. Since single distributions cannot always provide a good fit,
especially when data shows multi-modal tendencies, Section 5.6 presents a method to
fit finite mixture distributions. The information from these sections is combined into a
modeling methodology, detailed in Section 5.7.
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5.1 Framework
Each quantity of interest is modeled by a random variable X that changes its value
whenever a new protocol data unit (or session) is considered. In other words, X obtains
its values from the entire population of possible values, not only from those available
from the recorded network traffic. The actual values taken by X are denoted by the
small letter x. The random variable X is assumed to have a theoretical distribution
FX (x;θ).

Definition 5.1. The theoretical Cumulative Distribution Function (CDF) FX (x;θ) of a
random variable X is defined as

FX (x;θ) , P[X ≤ x], (5.1)

where , is the equality by definition operator, x is some value on the real line, and θ is
a set of one or more parameters that control the distribution function (e.g., θ = {µ,σ}
in the case of the normal distribution).

Definition 5.2. It is assumed that a CDF FX (x;θ) has a corresponding Probability
Density Function (PDF) fX (x;θ) defined as

fX (x;θ) ,
dFX (x;θ)

dx
. (5.2)

The derivative must exist at all points of interest otherwise impulse functions are re-
quired as in the case of discrete distributions [Kle75].

It is often useful to observe how fast the CDF decays for large values of x. For that
purpose it is better to use the Complementary CDF (CCDF) function.

Corollary 5.1. Assuming a CDF function FX (x;θ), the corresponding CCDF function
is:

FX (x;θ) , 1−FX (x;θ) = P[X > x] (5.3)

For each quantity of interest, the set of values extracted from the recorded traffic
is considered a random sample from the population of the random variable X . The
elements of the random sample are denoted by X1,X2, . . . ,Xn and the actual recorded
values by x1,x2, . . . ,xn. The index n is the number of available values from the measure-
ment. The set of recorded values x1,x2, . . . ,xn is called the data sample to differentiate
it from the random sample where the elements are random variables.
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The term random sample is used in the traditional sense, which implies that the
samples X1,X2, . . . ,Xn are independent and identically distributed. This may be seen as
a problem since there have been several reports over the years showing evidence that
certain types of network traffic exhibit correlations over large time scales [LTWW94,
PF95, CTB98]. Models that can take into account that specific type of correlations
(e.g., superpositioned ON-OFF sources or M/G/∞) tend to be very complex. Whereas
accounting for correlations can be critical for some applications, the aim here is to
obtain analytically tractable models suitable for use in standard simulators, such as
ns-2 [sof06] and OmNeT++ [Var06]. Therefore, the models presented in this work take
the form of single probability distributions or mixtures of two distributions.

The modeling methodology employed in this work consists roughly of three steps:

i) Identify a distribution family F(·) through exploratory data analysis.

ii) Using the available data, estimate the parameter(s) θ of the distribution from
the previous step. Denote the estimated parameter(s) by θ̂ and the estimated
distribution by F̂X (x; θ̂).

iii) Quantify the quality of the fit.

Each step is thoroughly explained in the subsequent sections. Before that, termi-
nology and notation used to describe several important properties of network traffic are
explained.

5.2 Traffic Self-Similarity

In 1994, Leland et al. [LTWW94] published a seminal paper in which they show that
aggregated Ethernet traffic in a LAN presented burstiness on a wide range of time
scales. The implications of the paper were that traditional traffic models based on the
Poisson process would underestimate the variations of network traffic and the peak
values generated.

The observed phenomenon is called statistical self-similarity and it implies that
specific statistical properties are repeated across many time scales, in a fractal-like
behavior. In order to describe self-similarity, the authors of the paper used a discrete-
time covariance stationary stochastic process1 Xt , t = 1,2, . . . to describe the volume of

1A covariance stationary process is a second-order (wide-sense) stationary stochastic process.
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traffic collected from the LAN. The following characteristics of a discrete-time second-
order stationary process are useful for describing their finding [Sta02]:

µ = E[Xt ] mean

σ 2 = Var [Xt ] = E
[

(Xt −µ)2] variance
RXt (τ) = E[Xt Xt+τ ] autocorrelation

CXt (τ) = RXt (τ)−µ2 autocovariance

ρXt (τ) =
CXt (τ)

σ 2 correlation coefficient

(5.4)

It should be noted that many papers on the topic of self-similarity refer to the correlation
coefficient as autocorrelation function. Furthermore, these papers often assume zero
mean, which means that R(τ) and C(τ) are equivalent.

What Leland et al. did, was to analyze the Xt process at increasingly larger scales
of time aggregation. They defined a new process X (m)

k such that

X (m)
k =

1
m

mk

∑
t=m(k−1)+1

Xt (5.5)

where k = 1,2, . . . and m defines the scale of aggregation. The traditional theory based
on Poisson processes predicted that when m grows the process tends to white noise.
However, the researchers found that X (m)

k retains its bursty structure across the time
scales. Further analysis revealed that

Var
[

X (m)
k

]

∼ Var [Xt ]

mβ , β = 2−2H, 0.5 ≤ H ≤ 1

lim
m→∞

R
X (m)

k
(k) = RXt (k)

(5.6)

which is consistent with the definition of statistical self-similarity and long-range de-
pendence [Sta02, WPRT03]. The equations show that statistical properties of the pro-
cess are preserved (apart from a scaling factor) across time scales. The term H denotes
the Hurst parameter and is used to measure the persistence of a process. By persis-
tence it is meant the range of dependence or “memory”, which is inherent in the time
series making up the process. An asymptotic second-order self-similar process pro-
cess is called a Short-Range Dependent (SRD) process for H-values close to 0.5. The
dependence of the process is increasingly larger for H-values close to 1. This type of
process is called Long-Range Dependent (LRD) [PW00]. Although it is possible to
define long-range processes that are not self-similar or self-similar processes that are
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not long-range dependent, typical traffic models assume the range 0.5 < H < 1 where
Long-Range Dependent (LRD) processes are self-similar and vice versa [Sta02].

For a SRD process the autocovariance function, C(τ), decays geometrically fast:

C(k) ∼ c1 ak, as k → ∞, 0 ≤ c1 < ∞, 0 < a < 1. (5.7)

where ∼ means “asymptotic to”. On the other hand, C(τ) decays hyperbolicly slow for
a LRD process:

C(k) ∼ c2 k−b, as k → ∞, 0 ≤ c2 < ∞, 0 < b < 1. (5.8)

The consequence is that for a SRD process the autocovariance function is summable,
whereas for a LRD process it is not: ∑−∞

k=−∞ C(k) = ∞ [WPRT03]. This is the phe-
nomenon of persisting correlations mentioned in the previous section in conjunction
with sample independence.

The paper of Leland et al. was followed by others that provided ample evidence that
self-similarity is present in various types of network traffic. In addition, some of the pa-
pers [PKC96, WTSW97, CB97] investigated the origins of self-similarity. Informally,
the results put forward suggest that self-similarity is caused by traffic sources and hu-
man behavior, “think time”, when both factors exhibit very large degrees of variability.
Such variability can be best characterized by heavy-tailed distributions. Heavy-tailed
distributions are a subset of a larger class of subexponential or long-tailed distribu-
tions. Long-tailed distributions decay slower than exponential distributions. The term
tail refers to large x-values for which the corresponding CCDF value is very small, but
non-negligible. Heavy-tailed distributions are a more restrictive subclass, since they
require infinite variance. A random variable X has a heavy-tailed distribution if:

lim
x→∞

FX (x) = lim
x→∞

P[X > x] = cx−α , 0 < α < 2, c > 0 (5.9)

When the tail index α is 0 < α < 1, the heavy-tailed distribution has infinite mean
in addition to infinite variance. This is in contrast to the larger class of long-tailed
distributions that posses finite moments [PW00].

The Pareto distribution is a good example of heavy-tailed distribution. The lognor-
mal and Weibull distributions are subexponential, but not heavy-tailed. In particular,
the Weibull distribution has finite variance [PW00]. Paxson and Floyd provide proof
that the lognormal distribution is not heavy-tailed [PF95]. Gaussian or Gamma and
exponential distributions are called light-tailed distributions and are not part of the
subexponential class [PW00]. For light-tailed distributions the CCDF-values in the tail
are negligible.
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5.3 Exploratory Data Analysis
The first step in the modeling methodology employed is to identify a distribution family
FX (x,θ). This is done through an Exploratory Data Analysis (EDA) approach that
combines graphs of the data (e.g., histograms and distribution plots) and summary
statistics (e.g., mean, median and standard deviation) [DS86, MB03].

The histograms and distribution plots are the main EDA tools. Using them, the
EDA user is aided in recognizing a family of distributions that provides good match for
the data. However, the summary statistics provide some numerical guidance in case of
uncertainty. Even so, this procedure is highly subjective.

After the unknown parameters of the distribution family are estimated, the candi-
date distribution is fully specified. The next step is to use formal numerical methods to
asses the quality of the fit, as described in Section 5.5.

5.3.1 Summary Statistics
Five different types of statistics are used to summarize a random sample: maximum,
minimum, mean, median and standard deviation. All definitions in this section assume
a random sample X1,X2, . . . ,Xn of length n > 1. The corresponding order statistics are
X(1) ≤ X(2) ≤ ·· · ≤ X(n).

Definition 5.3. The X(n) = max[X1, . . . ,Xn] and X(1) = min[X1, . . . ,Xn] statistics select
from the random sample the largest and smallest value, respectively.

The difference X(n) −X(1) defines the range of the data sample.

Definition 5.4. The sample mean X is defined as

µ̂ = X =
1
n

n

∑
i=1

Xi (5.10)

X is an unbiased estimator of the first population moment, that is of the expected
value E[X ]. For a symmetric distribution the actual value of X represents the “center”
of the data range. For a skewed distribution, the median statistic is a more appropriate
representation of centricity.

Definition 5.5. If the sample size is odd, n = 2k +1, the sample median is the middle
order statistic X(k+1). If the sample size is even, n = 2k, the sample median is the
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average of the two middle order statistics

median =
X(k) +X(k+1)

2
(5.11)

Definition 5.6. The sample standard deviation is defined as

σ̂ =

√

1
n−1

n

∑
i=1

(Xi −X)2 (5.12)

5.3.2 Histogram Plots
A histogram plot is a graph of tabulated frequencies for a univariate data sample
x1,x2, . . . ,xn of length n. If the frequencies are normalized such that the area below
the histogram is equal to one, then the histogram can be viewed as rough estimate of
the probability density function.

In order to build a histogram one must begin by dividing the range r of the data into
a number of m contiguous bins. Each bin i covers a portion of length2 L of the data
range. The boundaries of the bin i are denoted by bi and bi+1. Next, the data values
are sorted and placed into bins that correspond to their value. The number of entries in
each bin represents the frequency fi of the bin i. To obtain the probability of each bin,
the frequencies fi are normalized such that the probability pi of bin i is:

pi =
fi

n
(5.13)

Then, according to [LK00]

pi ≈ P[bi < X ≤ bi+1] =

bi+1
∫

bi

fX (x)dx = fX (y)L for some y ∈ (bi,bi+1) (5.14)

An important question is how to choose the bin length L or equivalently the number
of bins m. Histograms using bins that are too wide fail to reveal specific characteristics
of the data such as multi-modality (i.e., mixture of distributions) or impulses at the ori-
gin. These are called undersmoothed histograms. On the other hand, if the bin width

2Bins of equal length are assumed.
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is too small the histogram is likely have a jagged appearance that could complicate
the identification of the underlaying distribution or even worse, it may present false
evidence of multi-modality. In this case the histogram is called an oversmoothed his-
togram. Research into optimal bin width has lead to the thumb rules [Wan97, VR99]
presented in Table 5.1.

Name Bin width
Sturges’ formula L = r/(1+ log2 n)

Scott’s rule L = 3.49σ̂ n−1/3

Friedman-Diaconis L = 2(q.75 −q.25)n−1/3

Table 5.1: Various rules for choosing histogram bin width

The terms σ̂ , q.75 and q.25 denote the estimated standard deviation, the 0.75-quantile,
and the 0.25-quantile, respectively. Figure 5.1 shows an example of how the histogram
of specific data can look like when the bin width is too large, too small and when it is
chosen using the Friedman-Diaconis method.

The rules in Table 5.1 work well in many situations. Unfortunately, none of them is
a panacea. In fact, for some distributions it is necessary to manually adjust the number
of bins in order to obtain a smooth histogram [VR99].

5.3.3 EDF Plots

The Empirical Distribution Function (EDF) Fn(x)3 of a random sample is an approxi-
mative representation of the true CDF for population from which the sample is drawn.

Definition 5.7. Given a random sample X1,X2, ...,Xn of length n drawn from a distribu-
tion FX (x), denote the corresponding order statistics by X(1) ≤ X(2) ≤ ·· · ≤ X(n). Then,
the EDF Fn(x) is defined as

Fn(x) ,















0 x < X(1)
i
n

X(i) ≤ x < X(i+1)

1 X(n) ≤ x.

(5.15)

3Normally, the notation Fn(x) is used to denote an EDF. However, this notation could conflict here with
the notation used for a CDF and is therefore written using a calligraphic letter: Fn(x).
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Figure 5.1: Poisson distribution with λ = 400: histogram for 2000 samples and super-
imposed density function.
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For large samples, Fn(x) converges uniformly to the population FX (x) for all x-
values [DS86].

Corollary 5.2. Assuming a EDF Fn(x)

F n = 1−Fn (5.16)

is the corresponding Complementary EDF (CEDF).

The histogram, the EDF and the CEDF are complementary views of the sample
distribution. In particular, CEDF plots with logarithmic xy-axes are used regularly in
the thesis to identify heavy-tailed distributions and to asses the fit of estimated distri-
butions. The terminology used for CCDF and CEDF plots is to denote as “body” the
values of F n(x) for x ≤ ξ and as “tail” the values of F n(x) for x > ξ . The point ξ on
the x-axis is in general dictated by the type of data analysis performed.

5.4 Parameter Estimation

Parameter estimation is the second step of the modeling methodology used in this the-
sis. It is assumed that a distribution family FX (x;θ) with a set of unknown parameters
θ has been identified as described in Section 5.3. The next step is to define point esti-
mators Θ̂ = E (X1,X2, . . . ,Xn). Point estimates θ̂ are obtained by replacing the random
variables in Θ̂ with observed values.

The optimality of point estimators is decided by concepts such as bias, efficiency,
consistency and sufficiency. An unbiased estimator is one for which E[Θ̂] = θ [LM86].
Furthermore, an estimator Θ̂1 is more efficient than an estimator Θ̂2 if Var

[

Θ̂1
]

<

Var
[

Θ̂2
]

. By consistency it is meant that a sequence of estimators converges towards
the “true” value of the parameter. Sufficiency is concerned with the amount of in-
formation intrinsic to the sample, which is lost or kept when a particular estimator
is used [MGB74, LM86]. These are large topics outside the scope of this thesis. It
is sufficient to mention that maximum likelihood estimators are in general at least as
good as other estimators for large sample size. However, the equations that appear in
the course of using the method can be non-linear and difficult to solve. In this case
numerical solutions are required [MGB74, LM86, MR99]. Similar problems appear
when the method is used with mixture distributions. Therefore, a secondary method,
denoted minimum-absolute-error, is introduced as well. In addition for providing point
estimates, the minimum-absolute-error method is used as goodness-of-fit measure as
described in Section 5.5.
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5.4.1 Maximum Likelihood Method

The Maximum Likelihood (ML) method is based on the concept of likelihood function,
which is defined as the joint PDF of a number of random variables [MGB74].

Definition 5.8. Given n random variables X1,X2, . . . ,Xn drawn from a distribution
FX (x;θ), and the corresponding observed values x1,x2, . . . ,xn, the likelihood function
L (θ) is defined as

L (θ) , fX1,X2,...,Xn(x1,x2, . . . ,xn) (5.17)

which is the joint distribution of X1,X2, . . . ,Xn.

Corollary 5.3. For a random sample X1,X2, . . . ,Xn with common distribution FX (x;θ)

L (θ) =
n

∏
i=1

fX (xi;θ), (5.18)

which follows from the definition of a random sample.

Intuitively, the likelihood function L (θ) for a random sample drawn from a dis-
crete PDF is the probability that the random sample will assume the observed val-
ues [MR99]:

L (θ) = P[X1 = x1;θ ]P[X2 = x2;θ ] . . .P[Xn = xn;θ ] (5.19)

It becomes evident that the optimal θ̂ is the value that maximizes L (θ). This
idea can be applied in a similar manner to random samples from a continuous PDF.
Assuming certain regularity conditions [MGB74], the solution Θ̂ = E (X1,X2, . . . ,Xn)
to the equation

dL (θ)

dθ
= 0 (5.20)

is the ML estimator. When the random variables are replaced with the actual observed
values, one obtains the ML estimate θ̂ = E (x1,x2, . . . ,xn). Sometimes it is easier to
solve the equation

d ln [L (θ)]

dθ
= 0 (5.21)

instead of Equation 5.20 [MGB74].
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5.4.2 Minimum-Absolute-Error Method
The minimum-absolute-error method seeks to find an estimate θ̂ that minimizes the
difference between the EDF, Fn(x), and the estimated CDF, F̂X (x; θ̂), over all x.

Definition 5.9. For a data sample x1,x2, . . . ,xn, the difference between Fn(x) and
F̂X (x; θ̂) is defined as the cumulative absolute error ε(θ), such that

ε(θ) ,
n

∑
i=1

∣

∣F̂X (xi; θ̂)−Fn(xi)
∣

∣ (5.22)

The estimate θ̂ is the θ -value that minimizes ε(θ). .

Since this method relies on the EDF, θ̂ cannot be solved for analytically. Numerical
algorithms to obtain solutions for it are discussed in Section 5.7.

5.5 Goodness-of-Fit
This section describes the final step of the modeling methodology. It is assumed that
a candidate distribution, F̂X (x; θ̂), has been fitted to the random sample X1,X2, . . . ,Xn
by using the methods presented in Section 5.3 and Section 5.4. The focus here is on
quantifying the quality of the fit. In statistics, this usually involves a goodness-of-fit
test. The goodness-of-fit test is a hypothesis test [LK00]:

H0 : The random sample X1,X2, . . . ,Xn is drawn from the distribution F̂X (x; θ̂)
(5.23)

where H0 is the null hypothesis. The alternative hypothesis, H1, is composite, which
means that it simply states that H0 is false without specifying an alternative distri-
bution [DS86]. To test the hypothesis, a test statistic and a significance level η are
required. The statistic acts on a random sample and selects the outcome of the test.
The significance level is the a priori chosen probability for a Type 1 error that is, for
rejecting the null hypothesis when it is, in fact, true.

The best known goodness-of-fit tests are Chi-Squared (χ2), Kolmogorov-Smirnov,
and the Anderson-Darling tests. However, for very large sample size these tests gener-
ally reject H0 (Type 1 error) [Ber94, LK00, BCNN01]. Therefore, a different approach
is used, one where the hypothesis test is avoided.

Definition 5.10. A goodness-of-fit measure is defined to be a statistic that describes
the discrepancy between a fitted distribution and the data used for the fit. Given a
random sample X1,X2, . . . ,Xn, and two candidate distributions, F̂X (x; θ̂1) and ĜX (x; θ̂2),
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the goodness-of-fit measure provides a discrepancy (error) estimate for each candidate
distribution. The distribution having the smaller error estimate is, according to the
goodness-of-fit measure, a better fit.

The cumulative absolute error ε(θ) from Definition 5.9 is a good example of a
goodness-of-fit measure.

A goodness-of-fit measure called error-percentage measure (E%) was introduced
in [EIP05] and used later in [Erm05, IEP06]. The method is based on the Probability
Integral Transform (PIT) [LK00, BCNN01]. The PIT method works as follows. Given
a continuous random variable R with CDF FX (x), then

FX (R) = P[X ≤ R] = Y (5.24)

with P[Y ≤ y] d
= U [0,1], where U [0,1] denotes the uniform distribution between zero

and one4. The algorithm to compute E% is shown below.

Algorithm 1 Calculate Error Percentage

Fit a distribution F̂X (x; θ̂) to the random sample X1,X2, . . . ,Xn
Obtain the order statistics X(1),X(2), . . . ,X(n)

Transform the random sample with PIT: Ûi = F̂X (X(i); θ̂), i = 1, . . . ,n

E% = 100
∑n

i=1

∣

∣Ui −Ûi
∣

∣

nEmax
, where Ui =

i
n

d
= U [0,1]

return E%

If the distribution F̂ is a perfect fit, then the PIT transforms the random sample to a
uniform distribution, U [0,1]. However, since perfect fittings rarely occur in reality, the
transformed distribution, Û , only approximates the uniform distribution. The discrep-
ancies between U and Û are computed and their average is normalized to the highest
possible error Emax for the distribution U [0,1] where [Erm05],

Emax =

1
∫

0

sup{U(x),1−U(x)} dx =

1/2
∫

0

[1−U(x)] dx+

1
∫

1/2

U(x) dx

=

[

x− x2

2

]1/2

0
+

[

x2

2

]1

1/2
=

3
4

(5.25)

4The symbol d
= denotes equality in distribution.
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Range 0 ≤ E% < 2 2 ≤ E% < 4 4 ≤ E% < 6 E% ≥ 6
Quality Excellent Good Acceptable Poor (unacceptable)

Table 5.2: Quality-of-fit mapping

E% is expressed in the form of a percentage. The criteria used here to accept a candidate
distribution is that E% < 6. This value will be called the accepted error percentage. The
accepted error percentage was decided experimentally by observing that most distribu-
tions that provide a visually acceptable fit in both body and tail have E% < 6. Table 5.2
presents a mapping between various E% ranges and qualitative statements about the fit.

In essence, the E%-measure is based on the minimum-absolute-error method. To
prove this, assume the random variables in the expression for Ûi are replaced with
observed values x1,x2, . . . ,xn. It follows that Ûi becomes an EDF Fn(i), according to

Definition 5.7. Furthermore, Ui = FX (i), since Ui
d
= U [0,1], by definition. The sum

used in the expression for E% becomes therefore

n

∑
i=1

|FX (i)−Fn(xi)| (5.26)

which is equivalent to the sum in Equation 5.22.
By finding the θ̂ that minimizes the expression for E% one can simultaneously

obtain the minimum-absolute-error estimate and a goodness-of-fit measure for it. This
is the approach used here and it is referred to as the E%-method.

The main disadvantage of the E%-method is that it cannot be used with discrete
distributions. The reason is that, according to [DJ50], when the PIT method is applied
to a discontinuous distribution, the transformed variable is not uniformly distributed.
However, most distributions considered in this thesis are or can be approximated with
continuous distributions without sacrificing accuracy.

5.6 Finite Mixture Distributions

Sometimes a single PDF cannot accurately describe the distribution of the random
variables of interest and at least two probability distributions must be mixed. Typically,
one component of the mixture accounts for the main body of the empirical distribution
and a different one describes the behavior in the tail. The crux of the problem becomes
to find a way to combine the two distributions in a meaningful way. The method used
here is based on finite mixture distributions as described in [TSM85].
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Definition 5.11. A mixture distribution FX (x) with two components has the following
density and distribution function, respectively:

fX (x) = πg1(x)+(1−π)g2(x) (5.27)
FX (x) = πG1(x)+(1−π)G2(x) (5.28)

where g1(x) and g2(x) are PDFs, G1(x) and G2(x) are CDFs and π is a constant called
mixing weight. The mixing weight π is selected such that 0 < π < 1 and it decides how
much each component is allowed to influence the distribution FX (x).

It is assumed that a random sample, X1,X2, . . . ,Xn of the data has been collected.
The first step is to construct an empirical distribution, Fn(x), from the random sample.

The next step is to identify a distribution family G1(·) that matches the body of the
data, preferably the tail as well. Then, the parameters of the distribution are estimated,
yielding a specific distribution function Ĝ1(x; θ̂1). Ĝ1(x; θ̂1) is visually compared to
the true distribution to asses the fit in the tail. If the fit is good, then the goodness-of-fit
measure E% is computed as explained in Section 5.5. Otherwise, it is necessary to find
the cutoff point xc and the corresponding cutoff quantile, qc, where Ĝ1 diverges from
the true distribution. The probability mass between qc and 1 is used to identify the
distribution family, Ĝ2(·) that matches the tail. The parameters of the new distribution
must be estimated as well, yielding θ̂2. Then, a finite mixture distribution is assembled:

F̂(x; θ̂) = πĜ1(x; θ̂1)+(1−π)Ĝ2(x; θ̂2) (5.29)

where π = qc. Since the single distributions, Ĝ1 and Ĝ2, are now combined in a finite
mixture, the parameters θ̂1 and θ̂2 must be recomputed5. Their original values may be
used as a starting point. An optimal value for π must be computed as well. The param-
eter set θ̂ in F(x; θ̂) is the set containing the parameters for both distributions and π ,
i.e., θ̂ = {θ̂1, θ̂2,π}. Numerical methods for computing the set of optimal parameters
θ are presented in Section 5.7.

It is often the case that a mixture distribution (in particular one with only two com-
ponents) still cannot describe the data accurately enough. This may be improved by
increasing the number of components in the mixture distribution at the expense of an
increase in the number of parameters. However, a different approach was used here.

Typically, the major discrepancies between the estimated distribution and the true
one appear either in the body or in the tail. If, for example, the discrepancies appear
in the tail, one can attempt to improve the model accuracy by adjusting the values of
the distribution parameters. However, this is likely to decrease the accuracy of the

5Recall that G1 was estimated using the entire probability mass.
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model in the body. Similarly, attempts to increase the accuracy in the body may lead
to (higher) discrepancies in the tail. Thus, a trade-off is required, accuracy in the body
versus accuracy in the tail. Accordingly, a decision must be taken on which part of the
distribution (body or tail) is more important to model accurately.

For example, in the case of transfer rates the tail of the distribution models high
rates of traffic (bursts) that occur rarely. On the other hand, the body of the distribu-
tion models the “average” size of transfer rates. Because of our interest in workload
characterization, the distribution tail is deemed more important than the body. This is
because bursts of traffic have a greater impact on the workload than the typical traffic.
Interarrival times, session durations and packet sizes are all treated in a similar man-
ner. It is the “worst-case” scenario that dictates which part of the distribution is more
important.

Although the generation of random variates from mixture distributions is not within
the scope of this thesis, a short overview is provided in Appendix B for reference.

5.7 Methodology Review
The goal of this section is to bring together the methods discussed previously into a
formal process that can be used to model properties of network traffic. As mentioned
before, it is assumed that the property of interest has been measured (sampled) n times.
The values x1,x2, . . . ,xn resulting from the n measurements are assumed to be the result
of a random sample X1,X2, . . . ,Xn. The complete process for building the statistical
models is presented in Algorithm 2 on page 61.

Step 15–16 may be confusing since no criteria has been provided on how to decide
between selecting a different quantile and starting over. Here, the quantile was changed
in increments of 0.05 to either sides of the original value. If that did not result in any
improvement, the decision was to start over.

The process presented here was implemented using the statistical software package
R [R D05]. R is an interpreted computer language with syntax similar to S and S-PLUS.
The software package contains in addition to the language, a run-time environment
with graphics, a debugger and a large library of functions.

As mentioned in Section 5.4.2, the minimum-absolute-error method and indirectly
the E%-method rely on numerical optimization for finding a minimum. Also ML es-
timation requires numerical optimization in many cases where no closed form ML
estimators exist. In the thesis the R-functions optimize() and optim() have been
used for numerical optimization.

The function optimize() performs optimization in one dimension. The underlay-
ing algorithm is, according to the R documentation, “...a combination of golden section
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Algorithm 2 Methodology for statistical modeling
1: Use EDA visual tools (i.e., histogram, EDF and CEDF plots) to explore the data.

The summary statistics provide hints about range, skewness and spread
2: Select a distribution family G1, which appears to provide a good fit
3: Estimate the unknown parameters θ1 using ML-estimation to obtain a candidate

distribution Ĝ1X (x, θ̂1)

4: Compare the plots of ĝ1X (x; θ̂1), Ĝ1X (x; θ̂1), and Ĝ1X (x; θ̂1) to the histogram, EDF,
and CEDF plots obtained in Step 1

5: if high visual discrepancy then
6: Go back to Step 1
7: end if
8: Compute E% for Ĝ1X (x; θ̂1) using x1,x2, . . . ,xn.
9: if E% < 6 then

10: return E% and Ĝ1X (x, θ̂1)
11: end if
12: Identify the cutoff quantile qc
13: Fit a distribution G2(·) to the probability mass (1−qc) as outlined in Step 1–8
14: if E% > 6 then
15: Either go back to Step 12 and select a different quantile qc or,
16: Go back to Step 1. This is equivalent to starting over. Try using a different

distribution family G1(·)
17: end if
18: Assemble the mixture distribution F(·) = π G1(·)+(1−π)G2(·)
19: Estimate the unknown parameters θ = {θ1,θ2,π} using E% method. Use the esti-

mated values from previous steps as initial values
20: if E% < 6 then
21: return E% and FX (x;θ)
22: else
23: Go back to step 1
24: end if
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search and successive parabolic interpolation. Convergence is never much slower than
that for a Fibonacci search. If ’f’ has a continuous second derivative which is positive
at the minimum (which is not at ’lower’ or ’upper’), then convergence is superlinear,
and usually of the order of about 1.324.”, and a reference [Bre73] is provided. More
information about golden search and parabolic interpolation can be found in [PTVF92].

General purpose multi-dimensional optimization is performed by the optim() func-
tion. The function has support for several optimization algorithms. In this thesis the
default algorithm, Nelder-Mead [PTVF92, LRWE98, MF04], is used primarily. The
algorithm does not require any derivatives, being quite stable although not extremely
efficient in terms of number of iterations.

When the Nelder-Mead algorithm fails to converge to a solution, the L-BFGS-
B [BLNZ94] algorithm is used instead. This algorithm requires a lower and an upper
bound for each variable. The thumb rule used to provide the bounds is to allow vari-
ables with initial values m0 ≥ 1 a range of 0.2m0 between the upper and lower bound.
For variables with initial values m0 < 1 the range between bounds was 0.1m0. This
thumb rule was designed empirically and is by no means optimal in any way. In fact,
the bounds needed often additional adjustment to obtain convergence.
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Chapter 6

Gnutella Traffic Characteristics

Two sets of Gnutella measurements were performed at BTH resulting in two different
link-layer packet traces. The first set of measurements was done in the early develop-
ment phase of the BTH measurement infrastructure (May 2004), and the second set of
measurements was performed one year later (July 2005). During the time that passed
between the two measurements, the Gnutella system was subject to several changes in
terms of extensions to the protocol specification. New features such as dynamic query,
download mesh, PFS and UDP file transfers were adopted by a majority of servents,
thus profoundly changing the characteristics of the Gnutella network traffic. The older
measurement data is therefore less relevant in describing Gnutella traffic characteris-
tics. Consequently, the decision was to abandon it in favor of the new measurement
data from July 2005. The statistical analysis presented here was performed exclusively
on the new packet trace.

New results concerning traffic characteristics and traffic models for Gnutella sig-
naling traffic as well as insights from the statistical analysis of the data are reported in
this chapter. The environment in which the measurements took place and overall trace
statistics are described in Section 6.1. The subsequent three sessions describe statistics
and models for sessions, messages and IP datagrams.

In order to keep the mathematical formulas brief we use the following conventions.
CDFs are denoted by capital letters and PDFs by lower case letters, as in Table 6.1.
The parameters are as follows: µ and σ are the mean and standard deviation, while
α , β and κ are the shape, scale and location parameters. For the uniform distribution,
a and b are the lower and upper boundary, respectively, of the range of x-values for
which the distribution is valid. In particular, the parameter a is equivalent to a location
parameter, while (b−a) is equivalent of a scale parameter [LK00]. A quick review of
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the distributions used in the thesis is available in Appendix A. All logarithmic EDF-
plots use log10-transformations for both axes.

Uniform uX (x;a,b) UX (x;a,b)
Poisson poX (x; µ) POX (x; µ)
Exponential expX (x; µ) EXPX (x; µ)
Normal nX (x; µ ,σ) NX (x; µ ,σ)
Log-normal lnX (x;α ,β ) LNX (x;α ,β )
Pareto paX (x;α ,κ,β )1 PAX (x;α ,κ,β )

Table 6.1: Model notation

6.1 Environment and Packet-Trace Statistics
The results presented here were obtained from an 11-days long link-layer packet trace
collected from the BTH network with the methods described in Chapter 5. The gtk-

gnutella servent at BTH was configured to run as ultrapeer and to maintain 32–40
connections to other ultrapeers and ≈ 100 connections to leaf nodes. The number of
connections is a vendor preconfigured value, which is close to the suggested values
[Fis03a, SR02]. Although gtk-gnutella is capable of operation over UDP, this func-
tionality was turned off. Consequently, the ultrapeer used only TCP for its traffic. No
other applications, with the exception of an SSH daemon, were running on the ultra-
peer for the duration of the measurements. One SSH connection was used to remotely
check on the status of the measurements and the amount of free disk space. The SSH
connection was idle for most of the time. The firewall was turned off during the mea-
surements.

The total amount of PCAP data collected with tcpdump is approximately 33 GB.
The PCAP data generated approximately 45 GB log files. The recorded traffic contains
234 million IP datagrams. The log files show 604 thousand Gnutella sessions that were
used to exchange 267 million Gnutella messages. A total of 423 thousand sessions
(70%) were unable to perform a successful Gnutella handshake. The main reasons
for the unsuccessful handshakes are filled-up connection queues2 and refusal to accept
uncompressed connections. The remaining sessions consist of 181 thousand sessions
where both peers used compression, 22 where one of the peers used compression and
10 uncompressed sessions.

1This is a Generalized Pareto Distribution. More details are available in Appendix A.
2Code 409: “Vendor would exceed 60% of our slots”.
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6.2 Session Characteristics
A Gnutella session is defined to be the set of Gnutella messages exchanged over a TCP
connection between two directly connected peers that have successfully completed the
Gnutella handshake. The session lasts until the TCP connection is closed by either FIN
or RST TCP segments. The session duration is computed as the time duration between
the instant when the first handshake message (CLI HSK) is recorded (at link layer)
until the measured time of the last Gnutella message on the same TCP connection. The
session is not considered closed until both sides have sent FIN (or RST) segments.

An incoming session is defined as a session for which the CLI HSK message
was received by the ultrapeer at BTH. Outgoing sessions are sessions for which the
CLI HSK message was sent by the ultrapeer at BTH. Tables 6.2 and 6.3 show dura-
tion (in seconds), number of exchanged messages and bytes for incoming and outgoing
sessions, respectively. Table 6.4 shows the same statistics when no distinction is made
between incoming and outgoing sessions.

In the column denoted “Samples” the first number shows the number of valid Gnu-
tella sessions that is used to compute the statistics. A Gnutella session is considered
valid (in the sense that it is used to compute session statistics) if the Gnutella handshake
was completed successfully and at least one Gnutella message was transfered between
the two hosts participating in the session. The number in parenthesis is the total num-
ber of observed sessions, valid and invalid. In the case of the BTH ultrapeer, only 30%
of the all sessions were valid (31.5% and 13.4% when considering only incoming and
outgoing sessions, respectively).

The tables show that outgoing sessions transfer about 40 times more data than in-
coming sessions. Furthermore, by comparing the mean and median values for mes-
sages and bytes it can be observed that a few incoming sessions transfer the majority
of incoming data. This can be partly accounted for by the hierarchy inherent in Gnute-
lla: ultrapeers are bound to transfer more data than their leaf nodes. In addition, most
incoming sessions have very short duration (< 1 second), which can be observed by
comparing the mean and median duration values for incoming sessions. This translates
in little data being exchanged.

Many of the short connections were terminated with the reception of a BYE mes-

Type Max Min Mean Median Stddev Samples
Duration (s) 767553 (8.9 days) 0.03 517.30 0.86 6780.99 173711 (551168)
Messages 7561532 (7.6M) 4 585.18 11 22580.99 173711 (551168)

Bytes 535336627 (535.3M) 780 53059 1356 2034418 173711 (551168)

Table 6.2: Incoming session statistics
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Type Max Min Mean Median Stddev Samples
Duration (s) 470422 (5.4 days) 0.12 3949.86 2459.10 11170.80 7094 (52904)
Messages 2644660 (2.6M) 6 23145.15 15716.50 58627.75 7094 (52904)

Bytes 182279191 (182.3M) 1574 2173564 1457360 4458468 7094 (52904)

Table 6.3: Outgoing session statistics

Type Max Min Mean Median Stddev Samples
Duration (s) 767553 (8.9 days) 0.03 651.98 0.87 7036.85 180805 (604072)
Messages 7561532 (7.6M) 4 1470.34 11 25375.64 180805 (604072)

Bytes 535336627 (535.3M) 780 136258 1357 2219411 180805 (604072)

Table 6.4: Incoming and outgoing session statistics

sage with code 200 Node Bumped. A plausible explanation for this is peer bandwidth
management. Many Gnutella software packages allow the user to specify several band-
width limits: for the peer as a whole, for signaling traffic, for downloads and uploads,
and for each peer connection. The bandwidth cap can be implemented either by drop-
ping non-essential messages or, in a more aggressive form, by dropping entire sessions
(i.e., TCP connections). The hypothesis is that the short sessions are a result of the
aggressive form of bandwidth management.

The discussion points out that peers are highly heterogenous in terms of duration
and volume of traffic. This assertion is also supported by the standard deviation values
shown above. These findings confirm results already presented in [SGG01, SW02,
AG04]. Following the taxonomy used in [AG04, BC02], the sessions can be divided
into “mice” and “elephants”, that is into sessions carrying small amounts of data and
sessions responsible for large volumes of traffic. Sessions can also be classified by
their duration into “dragonflies”, that is very short sessions, and “tortoises”, sessions
with very long duration. The interpretation of these findings is that in the long run
some of the peers will effectively act as “servers”, whereas the remaining peers act as
“clients”. The possible consequences of this development were already discussed in
Section 2.5: content availability and distribution suffers if the few “servers” available
no longer offer their services.

6.2.1 Session Interarrival and Interdeparture Times
The statistics and models for session interarrival and interdeparture times are shown
in Table 6.5 and Table 6.6. Interarrival times can be modeled by the lognormal dis-
tribution, which is subexponential. In contrast, session interdeparture times require a
mixture distribution with a heavy-tailed component (i.e., the Pareto distribution) to pro-
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DIR Max Min Mean Median Stddev Samples
IN 1119.01 4.05e-6 5.47 2.20 20.38 173710 (551167)

OUT 5192.62 0.20e-3 133.99 71.78 210.34 7093 (52903)

Table 6.5: Session interarrival and interdeparture times statistics (sec)

DIR Model E%

IN LNX (x;0.71,1.08) 3.0%
OUT 0.77EXPX (x;0.01)+0.23PAX (x;0.7,0,132.9) 3.3%

Table 6.6: Session interarrival and interdeparture times (sec)

vide an acceptable fit. The quality of the fit is shown in the CCDF plots in Figure 6.1.
An interesting characteristic was observed when all session interarrival times were

considered, that is even those for invalid sessions. It turns out that the set of all in-
terarrival times is exponentially distributed with parameter λ = 0.58, as shown in Fig-
ure 6.2(a). The session arrival rate was analyzed to verify that this is not a measurement
error. It is well-known that exponentially distributed interarrival times imply a Poisson
arrival rate [Kle75]. As it can be observed from Figure 6.2(b), a Poisson distribution
POX (x;0.58) fits well, at least visually. Unfortunately, no E% measure can be provided
since the method does not work with discrete distributions. However, the EDF of the
data should leave little doubt that the data is indeed Poisson distributed. The EDF is
plotted without log-scaled axes, since most of the data, 99.9% of the probability mass,
is clustered around the values 0,1, . . . ,4.

The same relation does not hold for outgoing traffic which is modeled by a mix-
ture distribution 0.88LNX (x;−2.32,1.41) + 0.12EXPX (x;0.008) with 1.1% error, as
observed in Figure 6.3.

Gnutella sessions are created when servents establish a number of peer connections,
which guarantees enough connectivity to find desired resources with high probability.
For example, the BTH ultrapeer maintains on average 130–140 peer connections. If
the number of connections drops below a specific threshold (dependent on the Gnutella
implementation), the servent attempts to open more connections. Although the user
can manually open connections to a specific peer, this rarely happens. Thus, one can

Statistic Model E%

Interarrival times (sec) EXPX (x;0.58) 1.7%
Rate (session/second) POX (x;0.58) N/A

Table 6.7: Gnutella (valid and invalid) session interarrival times
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Figure 6.1: Gnutella session interarrival and interdeparture times (sec)

rule out human intervention and proceeding by assuming session initiations are fully
automatic.

A possible explanation for the appearance of the exponential distribution is as fol-
lows. A session initiation is defined by the arrival of a CLI HSK message, which is
the first part of the Gnutella three-way handshake. Consequently, the model for incom-
ing sessions describes the arrival of a mixture of CLI HSK messages from different
sources. Following the arguments from [SW86, CR02, CCLS03], a model where the
arrivals are generated by a number of point processes is assumed. Then according
to [CM65, CR02], the superposition of the arrival point processes will converge, under
some mild assumptions, to a Poisson distribution as the number of sources increases.

6.2.2 Session Size and Duration
The session size and duration models are reported in Table 6.8. It should be noted
that the session duration statistic has a very complex CCDF, which cannot be modeled
with only two distributions. This is the only model reported here that uses a mixture of
three distributions. Alternatively, the upper 5% of the tail can be modeled with a Pareto
distribution.

68



6.2. SESSION CHARACTERISTICS

log x

lo
g 

P[
X

≥
x]

−5
−4

−3
−2

−1
0

−6 −5 −4 −3 −2 −1 0 1

50.0%
80.0%
90.0%
95.0%
99.0%

Empirical
Exponential (1.7% error)

(a) Interarrival times (sec)

0 2 4 6 8 10

0.
0

0.
1

0.
2

0.
3

0.
4

x

P[
X

≥
x]

50.0%
80.0%
90.0%
95.0%
99.0%

Empirical
Poisson

(b) Incoming session rate (sessions/sec)

Figure 6.2: Gnutella (valid and invalid) session interarrival times and incoming session
rate
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Figure 6.3: Gnutella (valid and invalid) session interdeparture times (sec)
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Statistic Model E%

Session size (bytes) 0.69NX (x;1356,5.9)+0.31LNX (x;9.0,3.17) 4.7%
Session duration (sec) 0.57NX (x;0.85,0.07)+

0.33LNX (x;0.37,0.96)+
0.10UX (x;18.45,2460) 2.3%

Session duration, upper 5% (sec) PAX (1.1,1800,1870.4 2.4%

Table 6.8: Session size and duration models

Most of the observed session sizes (64.8%) lie in the range 1300–1400 bytes, and
out of the remaining 35.2%, 9.6% are smaller than 1300 bytes and 25.6% are larger
than 1400 bytes.

6.3 Message Characteristics
In this section message statistics are reported for each Gnutella message type. The type
UNKNOWN denotes messages with a valid Gnutella header, but with unrecognized
message type. These messages are either experimental or corrupted. The type ALL is
used for statistics computed over all messages, irrespective of type. Only models for
aggregated message streams (i.e., message type ALL) are presented

Table 6.9 shows interarrival times for messages received by the BTH ultrapeer and
Table 6.10 shows interdeparture times for messages sent by the BTH ultrapeer. Al-
though the PCAP timestamps have microsecond resolution [Tor05], the times presented
have only 100 µs precision. This is due to memory limitations in the postprocessing
software.

Summing over the number of samples for each message type does not add up to the
value shown in the number of samples for message type ALL. The reason is the analy-
sis software which ignores messages that generate negative interarrival/interdeparture
times. Negative times appear because the application flow reassembly handles several
(typically more than a hundred) connections at the same time. On each connection
the timestamp for arriving packets is monotonically increasing. However, the interar-
rival/interdeparture statistics presented here are computed across all connections. To
ensure monotonically increasing timestamps even in this case, new messages from ar-
bitrary connections are stored in a buffer, where they are sorted by timestamp. The
size of the buffer is limited to 500,000 entries due to memory management issues. By
summing the entries in the “Mean” column in Table 6.17 it can be observed that, on
average, there are 280 incoming and outgoing messages per second. This means that
the buffer can store about 30 minutes of average traffic and much less during traffic
bursts. If there are delayed messages due to TCP retransmissions or other events, they
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Figure 6.4: Gnutella session size and duration

reach the buffer too late and are discarded.
The large interarrival and interdeparture times in handshake messages (CLI HSK,

SER HSK, FIN HSK) in Table 6.9 and Table 6.10 occur because once a servent reaches
the preset amount of connections, it no longer accepts or attempts to open new con-
nections until one or more of the existing connections is closed. This behavior also
explains the large interarrival and interdeparture times for BYE messages.

It is interesting to see that interarrival times are exponentially distributed. An argu-
ment similar to the one in Section 6.2.1 can be used to explain the cause for it. How-
ever, the arrival process is not a pure Poisson process, but rather a compound Poisson
process [Ros92, CM65, Kle75] since simultaneous message arrivals do occur. To see
why that happens, recall that before the messages can be extracted from the TCP flows,
those flows pass through a decompression layer. Typically, a single TCP segment car-
ries several Gnutella messages. All of them receive the same timestamp, since they
traveled in bulk all the way from the source. Models for the bulk-size distributions are
provided in Table 6.14 and Table 6.15

Message interdeparture times have an interesting distribution. As it can be observed
in Table 6.12, approximately 73.9% of the probability mass is clustered around the
values 0.0001–0.0005. The remaining 26.1% of the probability mass can be modeled
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Type Max Min Mean Median Stddev Samples
CLI HSK 28.4591 0.0001 1.7246 1.1256 1.8644 551148
SER HSK 5185.0490 0.0001 19.6294 0.2090 92.1849 48432
FIN HSK 1118.9920 0.0001 5.3165 2.1942 19.4800 178783

PING 13.5871 0.0001 0.2762 0.1931 0.2726 3457169
PONG 2.2624 0.0001 0.1404 0.0979 0.1383 9086918

QUERY 1.4514 0.0001 0.0343 0.0240 0.0340 59010007
QUERY HIT 19.2778 0.0001 0.1842 0.0976 0.2661 6932327

QRP 50.0632 0.0001 2.0475 1.0534 2.8707 478451
HSEP 1780.4420 0.0003 6.1560 4.3834 8.4758 154742
PUSH 40.1396 0.0001 0.0677 0.0405 0.1157 24934450
BYE 1119.5930 0.0001 5.9160 2.3591 22.3494 160695

VENDOR 30.8037 0.0001 0.4346 0.2207 0.5993 9669915
UNKNOWN 51576.8600 3.0680 2075.3190 6.9379 9298.3600 35

ALL 9.8299 0.0001 0.02436 0.0169 0.0243 114663084

Table 6.9: Message interarrival time statistics (sec)

Type Max Min Mean Median Stddev Samples
CLI HSK 5189.2340 0.0002 17.9655 0.1273 88.8506 52902
SER HSK 28.4595 0.0003 1.7298 1.1287 1.8712 549456
FIN HSK 5185.5150 0.0006 28.4784 0.3305 110.2372 33373

PING 20.5910 0.0001 1.3773 0.5077 2.1342 694550
PONG 2.7215 0.0001 0.1573 0.1012 0.1682 34639367

QUERY 12.1151 0.0001 0.0295 0.0003 0.0541 70066326
QUERY HIT 19.2818 0.0001 0.2188 0.1285 0.2885 6309719

QRP 603.3599 0.0001 2.6350 0.0004 19.8572 680103
HSEP 358.3067 0.0001 2.5020 1.4089 5.8293 384084
PUSH 76.5303 0.0001 0.0429 0.0003 0.1713 38105019
BYE 3849.4550 0.0001 134.8121 77.2090 187.7784 7033

VENDOR 64.6689 0.0001 1.8253 1.1124 2.4838 525269
UNKNOWN N/A N/A N/A N/A N/A 1

ALL 1.5450 0.0001 0.0178 0.0003 0.0353 152047214

Table 6.10: Message interdeparture time statistics (sec)

DIR Message Model E%

IN ALL EXPX (x;40.96) 0.16%
OUT ALL 0.261EXPX (x;20.23) (see Table 6.12 for the body) 3.8%

Table 6.11: Models for message interarrival and interdeparture times (sec)
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Interdeparture times 0.0001 0.0002 0.0003 0.0004 0.0005
Probability 0.024 0.515 0.155 0.033 0.012

Table 6.12: Probability mass points for message interdeparture times (sec)

Type Max Min Mean Median Stddev Samples
CLI HSK 696 22 336.91 328 65.69 604072
SER HSK 2835 23 386.83 369 145.69 597896
FIN HSK 505 23 107.92 76 88.55 212162

PING 34 23 25.48 23 3.88 4151799
PONG 464 37 74.96 61 38.68 43727188

QUERY 376 26 70.17 55 46.40 129078986
QUERY HIT 39161 58 590.28 358 1223.58 13242329

QRP 4124 29 608.60 540 596.70 1158596
HSEP 191 47 70.39 71 28.15 538834
PUSH 49 49 49.00 49 0.00 63040718
BYE 148 35 40.02 37 15.84 167726

VENDOR 177 31 36.45 33 19.51 10195389
UNKNOWN 43 23 23.53 23 3.24 38

ALL 39161 22 93.45 49 303.26 266715733

Table 6.13: Message size statistics (bytes)

by a exponential distribution (λ = 20.23) with 3.8% error.
Table 6.13 shows the message size statistics for each Gnutella message type. In

contrast to the other tables, messages are not classified by direction (incoming or out-
going). The rationale is that message size is independent of message direction. It can be
observed that, on average, QUERY HIT and QRP messages have the largest size. They
are tightly followed by handshake messages, where the capability headers account for
most of the data. It is interesting to notice that the maximum size of QUERY HIT
messages is 39 KB, which is an order of magnitude larger than the 4 KB specified by
[KM02].

The model for the message bulk size is presented in Table 6.14 and Table 6.15.
Bulks of size 1–15 use 99.7% of the probability mass. The remaining 0.3% of the
probability mass is modeled with a Pareto distribution.

DIR Message Model E%

IN/OUT ALL 0.81LNX (x;3.94,0.23)+0.19LNX (x;5.14,1.24) 4.3%
IN/OUT Bulk size 0.003PAX (x;0.42,15,9.6) 5.0%

Table 6.14: Message size (bytes) and bulk size distribution

74



6.3. MESSAGE CHARACTERISTICS

Bulk size 1 2 3 4 5
Probability 0.586 0.173 0.082 0.049 0.031
Bulk size 6 7 8 9 10
Probability 0.020 0.012 0.008 0.005 0.003
Bulk size 11 12 13 14 15
Probability 0.019 0.005 0.002 0.001 0.001

Table 6.15: Probability mass points for message bulk size
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Figure 6.6: Gnutella message size (bytes) and bulk distribution
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Type Max Min Mean Median Stddev Samples
CLI HSK 349.3015 0 0.0308 0 1.0412 604072
SER HSK 52.2645 0 0.0032 0 0.1350 597896
FIN HSK 68.6295 0 0.0057 0 0.2838 212162

PING 251.2914 0 0.0273 0 0.6309 4151799
PONG 2355.8650 0 0.0077 0 0.5881 43727188

QUERY 2355.8650 0 0.0035 0 1.3271 129078986
QUERY HIT 480.8159 0 0.0243 0 1.0260 13242329

QRP 753.1904 0 0.1883 0 1.6019 1158596
HSEP 74.0482 0 0.0017 0 0.2186 538834
PUSH 135.5155 0 0.0023 0 0.2017 63040718
BYE 148.7292 0 0.0386 0 0.5194 167726

VENDOR 391.3439 0 0.0117 0 0.2451 10195389
UNKNOWN 1.0418 0 0.2995 0 0.4294 38

ALL 2355.8650 0 0.0065 0 0.9968 266715733

Table 6.16: Message duration statistics (seconds)

The message duration statistic can be useful to infer waiting times at application
layer, when a message is divided across two or more TCP segments. The statistic is
defined as the time difference between the first and last TCP segments that were used to
transport the message. When a message uses only one TCP segment the time duration
for that specific message is zero.

From the median column in Table 6.16 it can be observed that at least 50% of the
messages require just one TCP segment. The PONG and QUERY HIT message rows
contain extreme values for the maximum duration, 2355.9 seconds (≈ 39 minutes).
These values are most likely the result of malfunctioning or experimental Gnutella
servents.

6.4 Transfer Rate Characteristics
This section reports on transfer rates in bytes/second and in messages/second for each
Gnutella message types. All statistics are computed over 950,568 samples. The number
of samples is equal to the time duration (≈ 11 days) in seconds for the available mea-
surement data. Models are reported only for aggregate message flows (i.e., type ALL
messages). As it can be observed in Table 6.19 both incoming and outgoing transfer
rates are heavy-tailed. In terms of specific message types, QUERY and QUERY HIT
messages dominate incoming and outgoing streams, both in terms of average message
rate as well as average byte rates. This is to be expected since the GNet is used primar-
ily for searching for files.
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DIR Max Min Mean Median Stddev
IN 6471 0 120.63 111 84

OUT 4164 0 159.96 153 61

Table 6.17: Gnutella (ALL) message rate (msg/sec) statistics

DIR Max Min Mean Median Stddev
IN 1745341 0 12883 10113 24287

OUT 370825 0 13338 12062 7624

Table 6.18: Gnutella (ALL) byte rate (bytes/sec) statistics

DIR Model E%

IN 0.76LNX (x;9.26,0.37)+0.23PAX (x;1.06,0,4003) 5.2%
OUT 0.81LNX (x;9.43,0.39)+0.19PAX (x;0.63,0,3704) 5.3%

Table 6.19: Gnutella (ALL) byte rate (bytes/sec) modeling results
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Figure 6.7: Gnutella (ALL) byte rates (bytes/sec) models
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Type DIR Max Min Mean Median Stddev
CLI HSK IN 12 0 0.58 0 0.79
CLI HSK OUT 30 0 0.06 0 0.56
SER HSK IN 20 0 0.05 0 0.48
SER HSK OUT 12 0 0.58 0 0.79
FIN HSK IN 9 0 0.19 0 0.46
FIN HSK OUT 18 0 0.04 0 0.34

PING IN 72 0 3.64 3 1.94
PING OUT 17 0 0.73 0 1.56
PONG IN 130 0 9.56 9 4.33
PONG OUT 433 0 36.44 36 19.12

QUERY IN 347 0 62.08 60 19.64
QUERY OUT 875 0 73.71 69 34.08

QUERY HIT IN 531 0 7.29 5 9.82
QUERY HIT OUT 272 0 6.64 5 7.39

QRP IN 45 0 0.50 0 0.98
QRP OUT 283 0 0.72 0 7.18
HSEP IN 20 0 0.16 0 0.41
HSEP OUT 23 0 0.40 0 0.68
PUSH IN 1068 0 26.23 23 19.34
PUSH OUT 4091 0 40.09 32 37.32
BYE IN 40 0 0.17 0 0.43
BYE OUT 118 0 0.01 0 0.15

VENDOR IN 6385 0 10.17 1 76.17
VENDOR OUT 24 0 0.55 0 0.80

UNKNOWN IN 1 0 0.00 0 0.01
UNKNOWN OUT 1 0 0.00 0 0.00

Table 6.20: Message rate (msg/sec) statistics
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Type DIR Max Min Mean Median Stddev
CLI HSK IN 4126 0 187 0 258
CLI HSK OUT 14519 0 27 0 273
SER HSK IN 12507 0 31 0 289
SER HSK OUT 4001 0 212 0 306
FIN HSK IN 982 0 15 0 42
FIN HSK OUT 4474 0 9 0 94

PING IN 1665 0 92 92 50
PING OUT 503 0 19 0 45
PONG IN 17043 0 1213 1173 541
PONG OUT 26050 0 2235 2162 1179

QUERY IN 24101 0 4441 4317 1426
QUERY OUT 46424 0 5088 4702 2511

QUERY HIT IN 1736791 0 4868 1912 23917
QUERY HIT OUT 360235 0 3355 1837 5229

QRP IN 47340 0 389 0 1408
QRP OUT 152820 0 353 0 3660

HSEP IN 940 0 8 0 21
HSEP OUT 2185 0 32 0 58
PUSH IN 52332 0 1285 1127 948
PUSH OUT 200459 0 1964 1568 1829
BYE IN 1720 0 6 0 16
BYE OUT 4956 0 1 0 11

VENDOR IN 210702 0 347 33 2514
VENDOR OUT 2197 0 44 0 81

UNKNOWN IN 23 0 0 0 0.1
UNKNOWN OUT 43 0 0 0 0.1

Table 6.21: Message byte rate (bytes/sec) statistics
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6.5 Traffic Characteristics at IP Layer
Table 6.22 provides the summary statistics for the IP byte rates. It is interesting to note
that the mean and median IP byte rates are very similar to the corresponding statis-
tics for Gnutella byte rates shown in Table 6.18. These values alone indicate that the
compression of Gnutella messages does not yield large gains. However, if one takes
into consideration the maximum and standard deviation values it can be observed that
the compression removes much of the burstiness from the application layer, leading
to smoother traffic patterns. This effect is visible if one compares Figure 6.9 to Fig-
ure 6.10, especially in the plots for incoming traffic.

In Table 6.22 it can be observed that the incoming and outgoing IP byte rates are
quite similar. The statistical models shown in Table 6.23 are further evidence to that.
It should be observed that a heavy-tailed component is present in each model. The tail
of the incoming byte rate CEDF displayed in Figure 6.8 shows clear signs of decay by
power law. Indeed, the Pareto distribution provides a good fit for the upper 30% of the
CEDF, as shown in Figure 6.8(b).

DIR Max Min Mean Median Stddev
IN 249522 0 11536 10961 4075

OUT 176986 0 12668 12037 5722

Table 6.22: IP layer byte rate (bytes/sec) statistics

DIR Model E%

IN 0.89LNX (x;9.33,0.26)+0.11PAX (x;0.32,0,2774) 3.5%
IN (upper 30%) PAX (x;0.27,12812,2180) 2.2%

OUT 0.86LNX (x;9.45,0.27)+0.14PAX (x;0.87,0,1662) 2.3%

Table 6.23: Models for IP layer byte rates (bytes/sec)

The upper 52% of the IP datagram size distribution can be modeled by a Pareto
distribution defined in Table 6.24. The CCDF plot for it is shown in Figure 6.11.
Probabilities for the datagram sizes corresponding to the lower 48% of the distribution
are shown in Table 6.25. It can be observed that 46.7% of the probability mass is
accounted for by IP datagrams with size 40 bytes and 52 bytes, respectively. The 40-
bytes datagrams correspond to TCP segments with no data and no options.

The interarrival and interdeparture times statistics are displayed in Table 6.26. It is
interesting to note that interarrival times for IP datagrams follow an exponential dis-
tribution. This is similar to the case of interarrival times for valid and invalid sessions
as well as to the case of interarrival times for Gnutella messages (type ALL). Just as
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Figure 6.8: IP layer byte rates (bytes/sec)
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Figure 6.9: Gnutella transfer rates at IP layer (bytes/sec)
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Figure 6.10: Gnutella transfer rates at application layer (bytes/sec)
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DIR Model E%

IN/OUT 0.52PAX (x;0.53,60,50.55) 3.3%

Table 6.24: Model for IP datagram size (bytes)

Datagram size 0–39 40 41 42 43 44
Probability 0.000 0.209 0.000 0.001 0.000 0.000
Datagram size 45 46 47 48 49 50
Probability 0.000 0.000 0.008 0.006 0.000 0.000
Datagram size 51 52 53 54 55
Probability 0.000 0.258 0.003 0.001 0.000

Table 6.25: Probability mass points for IP datagram size (bytes)

in those cases, it is conjectured that superposition of point processes is responsible for
this phenomenon. The CCDF plots for interarrival and interdeparture times are shown
in Figure 6.12.

DIR Max Min Mean Median Stddev
IN 11.36 3e-6 8.85e-3 5.75e-3 9.72e-3

OUT 22.05 7e-6 8.24e-3 0.49e-3 14.22e-3

Table 6.26: IP datagram interarrival and interdeparture times statistics (sec)

DIR Message Model E%

IN IP datagrams EXPX (x;118.76) 0.8%
OUT IP datagrams 0.5LNX (x;−8.45,0.26)+0.5EXPX (x;61.29) 1.2%

Table 6.27: Interarrival and interdeparture times models for IP datagrams (sec)
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Figure 6.11: IP datagram size (bytes)
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Figure 6.12: IP datagram interarrival and interdeparture times (sec)
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Chapter 7

Conclusions and Future Work

Increasingly wide availability of low-priced computer hardware and software is en-
abling more and more advanced user services. In particular, multimedia distribution
services are emerging as the new killer applications. Non-interactive multimedia ser-
vices such as software, music and video distribution place high demands on the amount
of bandwidth required for data transport. Interactive multimedia services as for exam-
ple Internet telephony, video conferencing and live TV, have additional constraints in
terms of packet loss and delay jitter.

The accumulation of computing resources at the edge of the network paved the
way for new ideas related to content search and distribution. Napster’s demise marked
a paradigm shift from services based on the client-server architecture to new P2P ser-
vices. Contrary to services based on the client-server architecture, P2P services are
distributed across all nodes in the overlay, rather than being restricted to a few server
nodes.

All these factors need to be taken into consideration in the design of future net-
works with support for traffic engineering and QoS. For existing networks, it becomes
imperative to understand how they are affected by the new services in order to achieve
efficient network management.

The work presented here is focused on characteristics and statistical models for
Gnutella network traffic. The emphasis for the characteristics has been on accuracy
and detail, while for the traffic models the emphasis has been on analytical tractability
and ease of simulation. To the author’s best knowledge this is the first work on Gnutella
that presents statistics down to message level.

Another important contributions of the thesis is the design and implementation of a
modular measurement infrastructure for P2P traffic. Using the measurement infrastruc-
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ture, Gnutella traffic from the BTH network was recorded as a link-layer packet trace.
Decoding and analysis of the packet trace yielded statistical characteristics and models
for sessions, flows and messages, which are the major contributions of this thesis.

Although the packet trace provided much insight in the patterns of Gnutella net-
work traffic, there are several other questions that warrant further investigation. Fore-
most, analysis of the degree of long-range dependence is necessary in order to de-
termine the amount of correlation that occurs in the traffic. This issue is relevant in
the light of results presented in [CR02, CCLS03], which indicate that certain types of
traffic aggregations tend towards a Poisson distribution when the number of sources
increases. A Gnutella ultrapeer can be viewed as an application layer router that aggre-
gates traffic flows from many peers. If the Poisson assumptions mentioned previously
hold, then the theory predicts that statistical multiplexing gains will occur. It would be
very interesting to measure the extent to which that happens, if any.

The models developed here are going to be used to generate synthetic traffic in a
simulator. The idea is to tweak some of the Gnutella messages to carry QoS informa-
tion about peer connections (e.g., throughput, RTT, packet loss). Thus, a QoS overlay
network will be built on top of Gnutella. Then, the overlay network can be used to per-
form QoS routing, which would enable high-quality interactive multimedia services.
The real challenge is to ensure that the QoS routing runs smoothly, with little overhead
compared to the payload data.
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Appendix A

Probability Distributions

This is a very short review of the PDFs and CDFs for distributions used in this thesis.
The review is based on information presented in [LK00, Gha05, JKB94].

A.1 Uniform Distribution, U[a,b]

FX (x;a,b) =















0 if x < a
x−a
b−a

if a ≤ x ≤ b

1 if b < x

(A.1)

fX (x;a,b) =







1
b−a

if a ≤ x ≤ b

0 otherwise
(A.2)

The special case, U [0,1] is equivalent to

FX (x;0,1) =











0 if x < a
x if 0 ≤ x ≤ 1
1 if 1 < x

(A.3)

fX (x;0,1) =

{

1 if 0 ≤ x ≤ 1
0 otherwise

(A.4)
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A.2 Poisson Distribution, PO[λ ]

FX (x;λ ) =











0 if x < 0

e−λ
[x]

∑
i=0

λ i

i!
otherwise

(A.5)

where [x] is the largest integer such that [x] ≤ x.

fX (x;λ ) =







e−λ λ x

x!
if x ∈ N

0 otherwise
(A.6)

A.3 Exponential Distribution, EXP[λ ]

FX (x;λ ) =

{

1− e−λx if 0 ≤ x
0 otherwise

(A.7)

fX (x;λ ) =

{

λe−λx if 0 ≤ x
0 otherwise

(A.8)

A.4 Normal Distribution, N[µ,σ 2]

fX (x; µ ,σ 2) =
1√

2πσ 2
exp

(−(x−µ)2

2σ 2

)

for all x ∈ R (A.9)

There is no closed form available for FX (x; µ ,σ 2). The values must be estimated
numerically.

A.5 Lognormal Distribution, LN[µ,σ 2]

fX (x; µ ,σ 2) =
1

x
√

2πσ 2
exp

(−(ln [x]−µ)2

2σ 2

)

for all x ∈ R (A.10)

There is no closed form available for FX (x; µ ,σ 2). The values must be estimated
numerically.
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A.6. CLASSICAL AND GENERALIZED PARETO DISTRIBUTIONS

A.6 Classical and Generalized Pareto Distributions
The classical Pareto distribution, used for example in [PF95], is defined as

FX (x;a,κ) = 1−
(κ

x

)a
(A.11)

where a is the shape parameter and κ the location parameter. This is called a Pareto
distribution of the first kind [JKB94]. The corresponding probability density function
is

fX (x;a,κ) = aκax−a−1 (A.12)

The symbol a is used instead of α to avoid confusion with the shape parameter in the
generalized Pareto distribution.

A generalized Pareto distribution [Col01] is defined as

FX (x;α ,κ,β ) = 1−
[

1+
α(x−κ)

β

]− 1
α

(A.13)

where α is the shape parameter, κ is the location parameter, and β is the scale param-
eter. The corresponding density function is

fX (x;α ,κ,β ) =
1
α

[

1+
α(x−κ)

β

]− 1
α −1

(A.14)

Clearly, for β = ακ and α = 1/a, the generalized Pareto distribution is equivalent to
the classical Pareto distribution.
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Appendix B

Random Variate Generation
from Finite Mixture
Distributions

Using the PIT method from Section 5.5 one can easily generate random variates pro-
vided the analytical expression for a F−1

X (x) can be obtained. If that is not possible,
numerical methods are available in many cases.

In the case of finite mixture distributions with two components,

FX (x) = πG1(x)+(1−π)G2(x), (B.1)

if G−1
1 (x) and G−1

2 (x) are more easily obtained than F−1
X (x), then [LK00] offers a dif-

ferent method to obtain random variates. The method requires the mixture combination
to be convex. According to [Rud87] “A set E in a vector space V is said to be convex
if it has the following geometric property: Whenever x ∈ E, y ∈ E, and 0 < t < 1, the
point

zt = (1− t)x+ ty (B.2)

also lies in E.”. A convex combination of k points xi i = 1, . . . ,k has the form shown
below [BV04]:

k

∑
i=1

θixi with
k

∑
i=1

θi = 1 (B.3)

Given the way in which the finite mixture distributions FX (x) are built in this thesis
(see Section 5.6) and the assumption that G1(x) and G2(x) are well-behaved distribu-
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DISTRIBUTIONS

tions, then we can assume that FX (x) is a convex combination (i.e., FX (x) is a convex
set).

To generate variates from the convex mixture a variable R1 ∼ U [0,1] is required
to select the component distribution: if R1 ≤ π select G1(x), otherwise select G2(x).
A secondary variable R̂2 ∼ U [0,1] will be used to get the variate from the selected
component distribution through the PIT method.
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Appendix C

Log File Format

The log files produced by the application flow reassembly engine described in Chap-
ter 4.3.3 describe one Gnutella message per line. Each line is divided into a number
of fields separated by a space character. The number of fields is message dependent.
However, the first nine fields, which are enumerated below, appear in each message.
An excerpt from a Gnutella log file is shown in Figure C.1.

1. Timestamp when the message was recorded at link layer

2. Source IP address and port number separated by colon. In the example below
they have been replaced by src:sport to protect user anonymity

3. Destination IP address and port number separated by colon. In the example
below they have been replaced by dst:dport to protect user anonymity

4. Message duration. This field is zero if the whole message arrived in one TCP
segment. Otherwise it is computed as the difference between the first and the
last TCP segment that carried the message

5. Gnutella message type

6. Global user identity. For handshake messages it is set to the string “GUID”

7. Message size in bytes, including Gnutella header

8. TTL value

9. Hops value
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Figure C.1: Excerpt from Gnutella log file
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Appendix D

Acronyms

AOL America Online

API Application Programming Interface

BTH Blekinge Institute of Technology

CAN Content-Addressable Network

CCDF Complementary CDF

CD Compact Disc

CDF Cumulative Distribution Function

CEDF Complementary EDF

CGI Common Gateway Interface

CIDR Classless Inter-Domain Routing

DHT Distributed Hash Table

DiffServ Differentiated Services

DNS Domain Name System

EDA Exploratory Data Analysis

EDF Empirical Distribution Function

FTP File Transfer Protocol

F2F Firewall-to-Firewall

GGEP Gnutella Generic Extension Protocol

GNet Gnutella Network

GUID Globally Unique ID

GWC Gnutella Web Cache

HSEP Horizon Size Estimation Protocol

HTTP HyperText Transfer Protocol

HUGE Hash/URN Gnutella Extensions

IANA Internet Assigned Numbers Authority

IntServ Integrated Services

IP Internet Protocol

IRC Internet Relay Chat

ISP Internet Service Provider

LAN Local Area Network

LN Leaf Node
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APPENDIX D. ACRONYMS

LRD Long-Range Dependent

MD5 Message-Digest algorithm 5

ML Maximum Likelihood

MPLS Multiprotocol Label Switching

NAT Network Address Translator

NFS Network File System

OS Operating System

OSI Open Systems Interconnection

P2P Peer-to-Peer

PARQ Passive/Active Remote Queueing

PC Personal Computer

PDF Probability Density Function

PFS Partial File Sharing

PIT Probability Integral Transform

QoS Quality of Service

QRP Query Routing Protocol

RUDP Reliable UDP File Transfer

RTT Round Trip Time

SHA-1 Secure Hash Algorithm One

SMTP Simple Message Transfer Protocol

SRD Short-Range Dependent

TCP Transport Control Protocol

THEX Tree Hash EXchange format

TTL Time to Live

UDP User Datagram Protocol

UHC UDP Host Cache

UP Ultrapeer

URL Universal Resource Locator

URN Uniform Resource Names

VLSI Very Large-Scale Integration

VPN Virtual Private Network
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editor, Advances in the Internet Technology: Concepts and Systems, pages
Proceedings of IPSI–2004, Stockholm, Sweden, September 2004.

[IEPN04b] Dragos Ilie, David Erman, Adrian Popescu, and Arne A. Nilsson. Traffic
measurements of p2p systems. In Proceedings of the 2nd Swedish Na-
tional Computer Networking Workshop (SNCNW’04), pages 25–29, Karl-
stad, Sweden, November 2004.

[Ins06] Fraunhofer Institute. Audio & multimedia MPEG layer-3, January 2006.
http://www.iis.fraunhofer.de/amm/techinf/layer3/index.html.

[IWS05] IWS. Internet world stats, December 2005.
http://www.internetworldstats.com.

[JKB94] Norman L. Johnson, Samuel Kotz, and N. Balakrishnan. Continuous Uni-
variate Distributions, Vol. 1. Wiley Series in Probability and Mathemati-
cal Statistics. John Wiley & Sons, Inc., 2nd edition, 1994. ISBN: 0-471-
58495-9.

[JLM05] Van Jacobsen, C. Leres, and S. McCanne. Tcpdump.
http://www.tcpdump.org, August 2005.

[KBB+03] Thomas Karagiannis, Andre Broido, Nevil Brownlee, K. Claffy, and
Michalis Faloutsos. File-sharing in the internet: A characterization of
p2p traffic in the backbone. Technical report, University of California,
Riverside, November 2003.

[KBB+04] Thomas Karagiannis, Andre Broido, Nevil Brownlee, KC Claffy, and
Michalis Faloutsos. Is p2p dying or just hiding? In IEEE Globecom
2004 - Global Internet and Next Generation Networks, Dallas, TX, USA,
December 2004.

[KBFC04] Thomas Karagiannis, Andre Broido, Michalis Faloutsos, and KC Claffy.
Transport layer identification of p2p traffic. In Internet Measurement Con-
ference (IMC), Taormina, Sicily, Italy, October 2004.

104



BIBLIOGRAPHY

[KK77] Leonard Kleinrock and Farouk Kamoun. Hierarchical routing for large
networks, performance evaluation and optimization. In Computer Net-
works, volume 1, pages 155–174, January 1977.

[Kle75] Leonard Kleinrock. Queueing Systems Volume 1: Theory. John Wiley &
Sons, Inc., 1975. ISBN: 0-471-49110-1.

[KM02] Tor Klingberg and Raphael Manfredi. Gnutella 0.6. The Gnutella Devel-
oper Forum (GDF), 200206-draft edition, June 2002.
http://groups.yahoo.com/group/the gdf/files/Development/.

[KR01] Balachander Krishnamurthy and Jennifer Rexford. Web Protocols and
Practice. Addison Wesley, 2001. ISBN: 0-201-71088-9.

[Lei03] D. J. Leith. Linux implementation issues in high-speed networks. Tech-
nical report, Hamilton Institute, Ireland, 2003.

[LK00] Averill M. Law and W. David Kelton. Simulation Modeling and Analysis.
McGraw-Hill, 3rd edition, 2000. ISBN: 0-07-059292-6.

[LM86] Richard J. Larsen and Morris L. Marx. An Introduction to Mathematical
Statistics and Its Applications. Prentice-Hall, Inc., Englewood Cliffs, NJ
07632, USA, 2nd edition, 1986. ISBN: 0-13-487174-X.

[LM97] T. V. Lakshman and Upamanyu Madhow. The performance of tcp/ip
for networks with high bandwidth-delay products and random loss.
IEEE/ACM Transactions on Networking, 5(3):336–350, June 1997.

[LM04] Zhi Li and Prashant Mohapatra. Qron: Qos-aware routing in overlay net-
works. IEEE Journal on Selected Areas in Communications, 22(1):29–40,
January 2004.

[LMMR06] Christoph Lampert, Pascal Massimino, Michael Militzer, and Peter Ross.
XviD, December 2006.
http://www.xvid.org.

[LMS05] P. Leach, M. Mealling, and R. Salz. A Universally Unique IDentifier
(UUID) URN Namespace, July 2005. RFC 4122.

[LRWE98] Jeffrey C. Lagarias, James A. Reeds, Margaret H. Wright, and Wright Paul
E. Convergence properties of the Nelder-Mead simplex algorithm in low
dimensions. SIAM Journal on Optimization, 9(1):112–147, 1998.

105



BIBLIOGRAPHY

[LTWW94] Will E. Leeland, Murad S. Taqqu, Walter Willinger, and Daniel V. Wil-
son. On the self-similar nature of ethernet traffic (extended version).
IEEE/ACM Transactions on Networking, 2(1):1–15, February 1994.

[Man03a] Raphael Manfredi. Gnutella Traffic Compression. The Gnutella Devel-
oper Forum (GDF), January 2003.
http://groups.yahoo.com/group/the gdf/files/Development.

[Man03b] Raphael Manfredi. Passive/Active Remote Queueing (PARQ), Version
1.0.a. The Gnutella Developer Forum (GDF), May 2003.
http://groups.yahoo.com/group/the gdf/files/Proposals/Working Propo-
sals/QUEUE/.

[Man06] Raphael Manfredi. gtk-gnutella, March 2006.
http://gtk-gnutella.sourceforge.net.

[MB03] John Maindonald and John Braun. Data Analysis and Graphics using R:
An Example-based Approach. Cambridge Series in Statistical and Prob-
abilistic Mathematics. Cambridge University Press, 2003. ISBN: 0-521-
81336-0.

[MF04] John H. Mathews and Kurtis K. Funk. Numerical Methods using Matlab,
chapter 8: Numerical Optimization, pages 430–436. Prentice-Hall, Inc.,
4th edition, 2004. ISBN: 0-13-065248-2.

[MGB74] Alexander M. Mood, Franklin A. Graybill, and Duane C. Boes. Introduc-
tion to the Theory of Statistics. McGraw-Hill, 3rd edition, 1974. ISBN:
0-07-085465-3.

[MKL+03] Dejan S. Milojicic, Van Kalogeraki, Rajan Lukose, Kiran Nagaraja, Jim
Pruyne, Bruno Richard, Sami Rollins, and Zhichen Xu. Peer-to-peer com-
puting. Technical Report HPL-2002-57, HP Laboratories Palo Alto, July
2003.
http://www.hpl.hp.com/techreports/2002/HPL-2002-57R1.pdf.

[MM03] Petar Maymounkov and David Maziéres. Rateless codes and big down-
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