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Abstract

This paper reports on transfer rate models for the
Gnutella signaling protocol. New results on message-level
and IP-level rates are presented. The models are based
on traffic captured at the Blekinge Institute of Technology
(BTH) campus in Sweden and offer several levels of gran-
ularity: message type, application layer and network layer.
The aim is to obtain parsimonous models suitable for anal-
ysis and simulation of P2P workload.

1. Introduction

The last few years has seen a large increase of Peer-to-
Peer (P2P) research in various forms. This activity has been
motivated by the dramatic increase of P2P traffic in the In-
ternet. According to recent research, P2P traffic represents
60% of all traffic in the Internet [1].

Though there is a large amount of research on P2P, little
of it presents detailed models of the actual signaling mes-
sages in the networks. There are several publications deal-
ing with system-level and IP-level characteristics [2,10,17],
but to the best of our knowledge, this paper represents the
first publication reporting on message-specific models for
Gnutella.

This paper presents detailed Gnutella traffic characteris-
tics. The aim has been to keep the model complexity at a
level suitable for analysis and simulation. Consequently, the
mixture models used in this paper employ no more than two

components in order to prevent an increase in the number of
parameters.

The rest of the paper is as follows. Section 2 briefly dis-
cusses the Gnutella protocol messages, followed by a de-
scription of the modeling methodology employed in obtain-
ing the models presented in sections 5–7. Section 4 gives
a short overview of the measurements performed for this
work. Section 7 concludes the paper.

2. The Gnutella Protocol

Gnutella is a decentralized P2P system [5, 13]. Partici-
pants can share any type of resources, although the currently
available specification covers only file resources. The pro-
tocol is easily extensible, which has lead to the adoption of a
variety of proprietary and non-proprietary extensions (e.g.,
ultrapeers [19] and the Query Routing Protocol [16]).

Gnutella signaling activities are concerned with discov-
ering the network topology (with the help of PING and
PONGmessages) and locating resources of interest (with the
help of QUERY and QUERY HIT messages).

All nodes in the Gnutella overlay regularly send PING
messages to their neighbours, which forward the messages
to their neighbours, essentially flooding the overlay. The
extent of the flooding is limited by a TTL variable in the
message header. Hosts that receive a PING message re-
ply with one or more PONG messages which are sent in the
reverse direction on the route taken by the corresponding
PING message, eventually reaching the initial sender. Each
PONG message contains the IP address and port where a
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peer, different from the one sending the PONG message, can
be reached.

Peers search for resources using QUERY messages,
which flood the network in a manner similar to how PING
messages do. Hosts that share resources requested by the
query respond with one or more QUERY HIT messages,
depending on how many resources match and how large
the corresponding information to be transmitted becomes.
QUERY HIT messages are routed in a similar way as PONG
messages.

3. Modeling Methodology

This work focuses on analytical models for Gnutella sig-
naling traffic. Our goal is to use the models developed
here in future work that requires simulation of realistic node
workloads caused by Gnutella signaling traffic. Due to the
complexity of the Gnutella protocol single Probability Den-
sity Functions (PDFs) cannot accurately describe all ran-
dom variables of interest; at least two probability distribu-
tions must be mixed. Typically, one distribution accounts
for the main body of the empirical distribution and a differ-
ent one describes the behaviour in the tail. The crux of the
problem becomes to find a way to combine the two distri-
butions in a meaningful way.

The method used here is based on finite mixture distri-
butions as described in [20]. A mixture distribution FX(x)
with two components has the following density and distri-
bution function, respectively:

fX(x) = πg1(x) + (1 − π)g2(x) (1)

FX(x) = πG1(x) + (1 − π)G2(x) (2)

where g1(x) and g2(x) are PDFs, G1(x) and G2(x) are Cu-
mulative Distribution Functions (CDFs) and π is a constant
called mixing weight. The mixing weight π is selected such
that 0 < π < 1 and decides how much each component is
allowed to influence the distribution FX(x).

Sometime a mixture distribution (in particular one with
only two components) cannot describe the data accurately
enough. This may be improved by increasing the number of
components in the mixture distribution at the expense of an
increase in the number of parameters. For this work a differ-
ent approach was used. Typically, the major discrepancies
between the estimated distribution and the true one appear
either in the body or in the tail. If, for example, the discrep-
ancies appear in the tail, one can attempt to improve the
model accuracy by adjusting the values of the distribution
parameters. However, this is likely to decrease the accuracy
of the model in the body. Similarly, attempts to increase the
accuracy in the body may lead to (higher) discrepancies in
the tail. Thus, a trade-off is required: accuracy in the body
versus accuracy in the tail. A decision must be taken on

which part of the distribution (body or tail) is more impor-
tant to model accurately. In the case of transfer rates the
tail of the distribution models high rates of traffic (bursts)
that occur rarely. On the other hand, the body of the distri-
bution models the “average” size of transfer rates. Because
of our interest in simulating workload, the distribution tail
is deemed more important than the body. This is because
bursts of traffic have a greater impact on the workload than
the typical traffic.

In order to keep the mathematical formulas brief we use
the following conventions. CDFs are denoted by capital let-
ters and PDFs by lower case letters, as in Table 1. The pa-
rameters are as follows: µ and σ are the mean and standard
deviation, while α, β and κ are the shape, scale and location
parameters.

Table 1. Model notation
Normal nX(x;µ, σ) NX(x;µ, σ)
Log-normal lnX(x;α, β) LNX(x;α, β)
Pareto paX(x;α, κ, β) PAX(x;α, κ, β)

3.1. Distribution Fitting

It is assumed that a random sample, X1,X2, . . . , Xn of
the data has been collected. The first step is to construct
an empirical distribution, denoted by Fn, from the random
sample. Following [6], this can be done by first obtaining
the order statistics X(1) < X(2) < · · · < X(n) and then
applying the formula:

Fn(x) =




0 x < X(1)

i

n
X(i) < x < X(i+1)

1 X(n) ≤ x

(3)

The empirical distribution Fn(x) is plotted and a distribu-
tion family G1(·) (e.g., the Log-normal family) is identified
that matches the body of the data, preferably the tail as well.
The parameters of the distribution are estimated, yielding
a specific distribution function Ĝ1(x; θ̂1), where θ̂1 repre-
sents the estimated distribution parameters. The Ĝ1(x; θ̂1)
is visually compared to the true distribution to asses the fit
in the tail. If the fit is good, then a goodness-of-fit measure
E% is computed as explained in Section 3.2. Otherwise, it is
necessary to find the cutoff point xc and the corresponding
cutoff quantile, qc, where Ĝ1 diverges from the true distri-
bution. The probability mass between qc and 1 is used to
identify the distribution family, Ĝ2(·) that matches the tail.
The parameters of the new distribution must be estimated
as well, yielding θ̂2. Then, a finite mixture distribution is
assembled:

F̂ (x; θ̂) = πĜ1(x; θ̂1) + (1 − π)Ĝ2(x; θ̂2) (4)
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Since the single distributions, Ĝ1 and Ĝ2, are now com-
bined in a finite mixture, the parameters θ̂1 and θ̂2 must be
recomputed. Their original values may be used as a starting
point. An optimal value for π must be computed as well.
The parameter set θ̂ in F is the set containing the parame-
ters for both distributions and π, i.e., θ̂ = {θ̂1, θ̂2, π}.

3.2. Fitness Assessment

The quality of a fitted model should not be estimated
solely by visual means. Therefore more formal meth-
ods should be employed. Currently, various goodness-
of-fit tests exist, e.g., the χ2, Kolmogorov-Smirnov and
Anderson-Darling tests. The common denominator for
these is the test of the null hypothesis:

H0 : The Xi’s have distribution F̂ (x, θ̂) (5)

Unfortunately, all these tests suffer from the problem of er-
roneously rejecting the null hypothesis when the number of
samples is large [4, 14]. In order to circumvent these prob-
lems a goodness-of-fit measure, referred to as E%, based
on the Probability Integral Transform (PIT) [14] and [3], is
used. The method was introduced in [7] and works as fol-
lows:

Algorithm 1 Calculate Error Percentage

Fit a distribution F̂ to the data,
Transform the data with PIT: Û = F̂ (X)

E% ⇐ 100

∑n
t=1

∣∣∣Ut − Ût

∣∣∣
nEmax

return E%

If the distribution F̂ is a perfect fit, then the PIT trans-
forms the random sample to a Uniform distribution. That is,
given an arbitrary stochastic variable R with CDF FX(x),
then

FX(R) = P [X ≤ R] = Y (6)

where Y ∼ U [0, 1]. However, since perfect fittings
rarely occur in reality, the transformed distribution, Û ,
only approximates the Uniform distribution. The discrep-
ancies between U and Û are computed and their average
is normalized to the highest theoretical error, Emax =∫ 1

0
sup {U(x), 1 − U(x)} dx = 3

4 .

4. Measurements

The P2P research group at BTH has implemented a ded-
icated measurement infrastructure to measure application
layer messages at the link layer [11].

The measurement network infrastructure consists of two
measurement nodes; one for Gnutella and one for BitTor-
rent (Fig. 1). Both nodes are connected to a 10/100 Mbit
switch, which in turn is connected to the Internet via the
BTH access router.

Switch 10/100 Mbit

BIT router

BitTorrent

Internet

Gnutella
nodenode

Figure 1. Measurement infrastructure

The infrastructure used for the measurements reported
here is based on the one reported in [11] with the addition
of several enhancements, most notably ability to decode
HSEP messages [18] and improved performance in appli-
cation flow reassembly.

The measurements for the models reported in the paper
were performed during July 1–12, 2005 at the BTH P2P
research lab. The observed traffic was flowing across one
of the peer nodes at BTH running as a Gnutella ultrapeer
node. Measurements were collected using tcpdump [12],
and no other network applications were running during the
measurement.

The trace was collected using the approach described
in [8]. The total amount of PCAP data is approximately
33 GB. The PCAP data generated approximately 45 GB log
files. The recorded traffic contains 234 million IP data-
grams. The log files show 604 thousand Gnutella ses-
sions that were used to exchange 267 million Gnutella mes-
sages. A total of 423 thousand sessions (70%) were un-
able to perform a successful Gnutella handshake. The main
reasons for the unsuccessful handshakes were connection
queue full1 and refusal to accept uncompressed connec-
tions2. The remaining sessions consisted of 181 thousand
sessions where both peers used compression, 22 where one
of the peers used compression and 10 uncompressed ses-
sions.

1Code 409: “Vendor would exceed 60% of our slots”.
2Gnutella compresses the application data sent on a connection using

the deflate algorithm [9, 15].
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5. Message Type Transfer Rates

In this section we present the transfer byte rate model-
ing results for four Gnutella messages types: PING, PONG,
QUERY and QUERY HIT. Models for both incoming and
outgoing message rates are reported. All Complementary
Cumulative Distribution Function (CCDF) plots use log10

x− and y-axis.

5.1. PING–PONG Messages

Table 2 provides summary statistics of the of PING and
PONG byte rates.

Table 2. PING–PONG Byte rate statistics
Type Dir Max Min Mean Median Stddev

PING IN 1665 0 92 92 50
PING OUT 503 0 19 0 45
PONG IN 17043 0 1213 1173 541
PONG OUT 26050 0 2235 2162 1179

In Table 3, the modeling results for PING and PONG
byte rates are presented. While both PONG directions and
the incoming PING rates are modeled by a single Log-
normal distribution, the outgoing PING message distribu-
tion is more complicated. Our investigations show that it
cannot be described by neither a single distribution nor a
finite mixture. Most of the probability mass, 62.9%, is ac-
counted for by zero byte samples. This indicates that there
are periods of one second or longer when no PING mes-
sages are sent. An additional 24.3% of the probability mass
is centered on 23 bytes, which is the size of a single PING
message without extensions. Samples with values ranging
from 40 to 90 bytes use another 7.6% of the probability
mass. We have therefore decided to model only the upper
5% of the tail (the 95% quantile) with a Normal distribution,
resulting in a 4.6% error.

Table 3. PING–PONG modeling results
Message Model E%

In PING LNX(x; 4.5, 0.43) 5.8%
Out PING NX(x; 192, 71.5) 4.6%
In PONG LNX(x; 7.07, 0.37) 3.9%
Out PONG LNX(x; 7.64, 0.5) 3.8%

The errors reported in Table 3 may be considered to be
fairly large according to the criteria given in [7]. However,
recall that for the purposes of this paper, the distribution tail
is of higher importance than the body. Inspection of the
CCDFs in Fig. 2 clearly indicates that the majority of the
errors are in the distribution body, since the errors in the tail
are of little significance.
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Figure 2. PING/PONG message byte rates

5.2. QUERY–QUERY HIT Messages

The most salient feature of the summary statistics re-
ported in Table 4 is the similarity of the statistics for in-
coming and outgoing QUERY messages.

Table 4. QUERY–QUERY HIT byte rate statis-
tics

Type Dir Max Min Mean Median Stddev

QUERY IN 24101 0 4441 4317 1426
QUERY OUT 46424 0 5088 4702 2511

QUERY HIT IN 1736791 0 4868 1912 23917
QUERY HIT OUT 360235 0 3355 1837 5229

The appearance of a Pareto distribution in the incom-
ing QUERY HIT rates shown in Table 5 is likely due to
some misbehaving peers sending larger responses than is
allowed according to the specification. The maximum al-
lowed Gnutella message size is 4 kB [13], while our mea-
surement peer has received several messages larger than
30 kB. The measurement ultrapeer drops all such large mes-
sages from the connected nodes, which explains the less
heavy tail for the outgoing rates.

Table 5. QUERY–QUERY HIT modeling results

Message Model E%

In QUERY LNX(x; 8.37, 0.29) 0.4%
Out QUERY LNX(x; 8.46, 0.46) 1.7%
In QUERY HIT 0.95LNX(x; 7.46, 1.17)+

+0.05PAX(x; 0.91, 0, 7377) 2.0%
Out QUERY HIT LNX(x; 7.5, 1.1) 3.0%

The slope of the upper percentiles in Fig. 3(c) is a clear
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visual indicator of the Paretian influence, as compared to
the more sub-exponential (Log-normal) behavior observed
in the rest of Fig. 3.
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Figure 3. QUERY/QUERY HIT message byte
rates

6. Gnutella Byte Rate Distribution

This section presents models for the aggregate Gnutella
byte rates, i.e., the total byte rates for all incoming and out-
going messages. While the average and median outgoing
rates are slightly higher than the corresponding incoming
rates, the variance and maximum outgoing rate indicate a
less bursty traffic pattern.

Table 6. Gnutella byte rate statistics
Dir Max Min Mean Median Stddev

IN 1745341 0 12883 10113 24287
OUT 370825 0 13338 12062 7624

The reported byte rate models in Table 7 show more
heavy-tail behavior. This is indicated by the appearance of
a Pareto distribution in the models for both incoming and
outgoing rates as well as by the tails of the CCDFs shown
in Fig. 4.

Table 7. Gnutella byte rate modeling results
Message Model E%

In 0.76 LNX(x; 9.26, 0.37)+
+0.23 PAX(x; 1.06, 0, 4003) 5.2%

Out 0.81 LNX(x; 9.43, 0.39)+
+0.19 PAX(x; 0.63, 0, 3704) 5.3%

The aggregate Gnutella models in Table 7 are less well-
behaved, in the sense that they are more difficult to model

than the separate message models. This is further empha-
sized by the CCDFs shown in Fig. 4.
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Figure 4. Gnutella byte rates

7. Network Layer Transfer Rates

Table 8 provides the summary statistics for the IP byte
rates. It is interesting to note that the mean and median
IP byte rates are very similar to the corresponding Gnutella
byte rates.

Table 8. IP Byte rate statistics
Dir Max Min Mean Median Stddev

IN 249522 0 11536 10961 4075
OUT 176986 0 12668 12037 5722

The heavy-tail behavior present in the Gnutella rates are
still present in the IP byte rates reported in Table 9, albeit
less pronounced. We conjecture that this is due to the com-
pression of the Gnutella application messages (either sin-
gle or in bulk) resulting in less data being sent to the IP
layer. Accordingly, the maximum byte rates and variances
are smaller. This is particularly evident in the incoming IP
and Gnutella byte rates, where the maximum and variance
differ by an order of magnitude.

Table 9. IP byte rate modeling results
Message Model E%

In 0.89 LNX(x; 9.33, 0.26)+
+0.11 PAX(x; 0.32, 0, 2774) 3.5%

In (upper 30%) PAX(x; 0.27, 12812, 2180) 2.2%
Out 0.86 LNX(x; 9.45, 0.27)+

+0.14 PAX(x; 0.87, 0, 1662) 2.3%

Upon inspection of the CCDF for the incoming IP byte
rate, the model appeared not to be very accurate in the upper
10%. However, it was found that a single Pareto distribution
can accurately model 30% of the tail with no more than
2.2% error. The fitness quality is clearly visible in Fig. 5(a)
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Figure 5. IP byte rates

8. Conclusions

The paper has reported detailed models for several
Gnutella protocol message rates, including PING, PONG,
QUERY and QUERY HIT, in both up- and downstream di-
rections, for traffic collected at BTH. Additionally, mod-
els for the aggregate byte rates at the IP layer have been
presented. Results show that the Log-normal distributions
make up a large part of the distributions bodies, and that
the Pareto distribution appears in several distribution tails.
Most notably, the downstream IP byte rates show a very
distinct power-law behavior for the upper 50% of the prob-
ability mass.
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