
Research Report No. 2007:09

Optimization Algorithms with

Applications to Unicast QoS

Routing in Overlay Networks

Dragos Ilie

Department of Telecommunication Systems,

School of Engineering,

Blekinge Institute of Technology,

S–371 79 Karlskrona, Sweden



Copyright c© September 2007, Dragos Ilie. All rights reserved.

Blekinge Institute of Technology
Research Report No. 2007:09
ISSN 1103-1581
Published 2007
Printed by Kaserntryckeriet AB
Karlskrona 2007
Sweden

This publication was typeset using LATEX.



Abstract

The research report is focused on optimization algorithms with application to quality of
service (QoS) routing. A brief theoretical background is provided for mathematical tools in
relation to optimization theory.

The rest of the report provides a survey of different types of optimization algorithms:
several numerical methods, a heuristics and a metaheuristic. In particular, we discuss ba-
sic descent methods, gradient-based methods, particle swarm optimization (PSO) and a
constrained-path selection algorithm called Self-Adaptive Multiple Constraints Routing Algo-
rithm (SAMCRA).





Contents

1 Introduction 1

1.1 Quality of Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Overlay Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Overlay Routing Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 QoS Routing Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Theoretical Foundation 9

2.1 Mathematical Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Optimization Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3 Graph Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.4 Routing Optimization Problems . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.5 Algorithms and Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Descent Methods 33

3.1 Steepest Descent Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2 Newton’s Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4 Conjugate Gradient Method 37

5 Simplex Method 41

6 Gradient Projection Method 47

7 Particle Swarm Optimization 49

8 SAMCRA 53

9 Final Remarks 59

A Acronyms 61

iii





List of Algorithms

1 General descent method (GDM) . . . . . . . . . . . . . . . . . . . . . . . . . 33
2 Steepest descent method (SDM) . . . . . . . . . . . . . . . . . . . . . . . . . 34
3 Newton’s method (NM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4 Conjugate gradient method (CGM) . . . . . . . . . . . . . . . . . . . . . . . . 38
5 Conjugate gradient method with quadratic approximation (Q-CGM) . . . . . 38
6 Fletcher-Reeves conjugate gradient method (FR-CGM) . . . . . . . . . . . . 39
7 Polak-Ribiere conjugate gradient method (PR-CGM) . . . . . . . . . . . . . . 39
8 Two-phase simplex method (2-SM) . . . . . . . . . . . . . . . . . . . . . . . . 44
9 Simplex method (SM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
10 Gradient projection method (GPM) . . . . . . . . . . . . . . . . . . . . . . . 48
11 Global best particle swarm optimization (GB-PSO) . . . . . . . . . . . . . . . 51
12 Local best particle swarm optimization (LB-PSO) . . . . . . . . . . . . . . . 52
13 Self-Adaptive Multiple Constraints Routing Algorithm (SAMCRA) . . . . . . 54
14 INITIALIZE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
15 FEASIBILITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
16 UPDATEQUEUE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

v





Chapter 1

Introduction

The path towards establishing the Internet as a platform for multimedia content distribution
has shown to be a source of great challenges for the Internet research community. The
transition from Internet Protocol (IP)’s best-effort service to a service that incorporates the
notion of QoS is probably one of the biggest challenge to solve before the Internet can become
a reliable platform for multimedia services.

Multimedia services have requirements on the underlaying network that go beyond what
shortest-path routing can offer. In particular, live or interactive multimedia communica-
tions have stringent constraints on the path between sender and receiver. Examples of such
constraints are bottleneck bandwidth, packet delay, packet delay variation and packet loss
rate.

The goal of the research report is to survey several algorithms that can be used for selecting
a path or sets of paths subject to multiple constraints. We focus on algorithms that can be
used online, in the sense that they have the ability to react almost in real-time to relevant
events in the network. Furthermore, we are also planning to implement these algorithms in an
overlay network. This places additional requirements on the performance of the algorithms.

The report is organized as follows. The remainder of this chapter discusses the notion of
QoS, existing QoS architectures for IP networks and the main characteristics of QoS routing.
Additionally, we provide an overview of the Overlay Routing Protocol (ORP), which is a
framework for unicast QoS routing under development at Blekinge Institute of Technology
(BTH) in Karlskrona, Sweden.

Chapter 2 outlines the theoretical background required for the remainder of the report.
The chapter begins with definitions and notations for matrix algebra, graph theory and op-
timization theory. We conclude the chapter with a discussion about algorithms and compu-
tation complexity.

In Chapter 3 we describe basic descent methods such as steepest descent method and
Netwon’s method, which are fundamental algorithms in optimization theory.

The remainder of the report allocates one chapter for each optimization method consid-
ered: conjugate gradient, simplex method, gradient projection, PSO and SAMCRA.

1.1 Quality of Service

QoS is one of the most debated topics in the areas of computer network engineering and
research. It is generally understood that a network that provides QoS has the ability to

1



CHAPTER 1. INTRODUCTION

allocate resources for the purpose of implementing services better than best-effort. The major
source of debate is on how to provide QoS in IP-based networks [Wan00, PD00].

At one extreme of the debate it is argued that no new mechanisms are required to provide
QoS in the Internet, and simply increasing the amount of available bandwidth will suffice.

The people at the other extreme of the debate point out that it is doubtful that bandwidth
over-provisioning alone takes care of QoS issues such as packet loss and delay. History has
shown that whenever bandwidth has been added to the networks, new “killer” applications
were developed to use most of it. Furthermore, over-provisioning may not be an economically
viable solution for developing countries and in the long run it may prove to be very expensive
even for developed countries.

The first proposed QoS architectures to be used on top of IP is called Integrated Services
(IntServ) [BCS94]. IntServ senders allocate resources along a path using the Resource Reser-
vation Protocol (RSVP) [ZDE+93, Wro97]. IntServ performs per-flow resource management.
This has led to skepticism towards IntServ’s ability to scale, since core routers in the In-
ternet must handle several hundred thousands flows simultaneously [TMW97]. A newer re-
port [FML+03] corroborates this number. However, the authors of the report argue that
per-flow management is feasible in these conditions due to advances in network processors,
which allow over a million concurrent flows to be handled simultaneously.

A new architecture called Differentiated Services (DiffServ) [BBC+98] was developed, due
to concerns about IntServ’s scalability. DiffServ attempts to solve the scalability problem
by dividing the traffic into separate forwarding classes. Each forwarding class is allocated
resources proportional to the service level expected by the customer (e. g. , bronze, silver,
gold and platinum). Packets are classified and mapped to a specific forwarding class at
the edge of the network. Inside the core, the routers handle the packets according to their
forwarding class. Since routers do not have to store state information for every flow, but
only have to peek at certain locations in the packet header, it is expected that DiffServ scales
much better than IntServ. A major problem with the DiffServ architecture is that a specific
service level may get different treatments among service providers. For example, the gold
service level of one provider may be equivalent to the silver level of another provider.

Neither architecture has been widely deployed to date due to reasons amply discussed
in [Arm03, Bel03, BDH+03]. Some important issues include the lack of a viable economical
solution for network operators, poor backwards compatibility with existing technology and
difficulties in the interaction between different network operators.

From a hierarchical point of view, Internet consists of several autonoumous systems (ASs).
Each AS consists of a number of interconnected networks administered by the same authority.
Within an AS routing is performed using intra-domain routing protocols such as Routing
Information Protocol (RIP) and Open Shortest Path First (OSPF). Interconnected ASs
exchange routing information using Border Gateway Protocol (BGP). An AS connects to
other ASs through peering agreements. A peering agreement is typically a business contract
stipulating the cost of routing traffic across an AS along with other policies to be maintained.
When there are several routes to a destination the peering agreements force an AS to prefer
certain routes over others. For example, given two paths to a destination where the first
one is shorter (in terms of hops) and the second one is cheaper, the AS will tend to select
the cheaper path. This is called policy routing and is one of the reasons for suboptimal
routing [Hui00, KR01]. With the commercialization of the Internet it is unlikely that problems
related to policy routing will disappear in the near future.

2



1.2. OVERLAY NETWORKS

1.2 Overlay Networks

Since neither QoS architecture has seen a wide deployment in the Internet, there have been
several attempts to provide some form of QoS using overlay networks. An overlay network
utilizes the services of an existing network in an attempt to implement new or better services.
An example of an overlay network is shown in Figure 1.1. The physical interconnections of
three ASs are depicted at the bottom of the figure. The grey circles denote nodes that use
the physical interconnections to construct virtual paths used by the overlay network at the
top of the figure.

 

AS 1 
AS 3 

AS 2 

Physical Network 

Overlay Network 

Figure 1.1: Overlay network

The nodes participating in the overlay network perform active measurements to discover
the QoS metrics associated with the virtual paths. Assume that an overlay node in AS1 wishes
to communicate with another overlay node in AS2. Assume further that AS1 always routes
packets to AS2 by using the direct link between them, due to some policy or performance
metric. The overlay node in AS1 may discover through active measurements that a path
which crosses AS3 can actually provide better QoS, say smaller delay, than the direct link. In
that specific case the AS1 node forwards its traffic to the AS3 node, which in turn forwards
the traffic to the destination node (or to the next node on the path if multiple hops are
necessary). This is the basic idea behind QoS routing in overlays. There are currently several
implementations of this idea, such as [And01, LM04]).

These ideas can be further extended to multicast routing. There are other ways to improve
the QoS in overlay networks without employing routing [SSBK04]. However, these topics are
not within the scope of this report. Our main interest is in optimization algorithms for unicast
QoS routing in overlay networks.

1.3 Overlay Routing Protocol

The project Routing in Overlay Networks (ROVER) pursued by BTH aims at developing a
platform to facilitate development, testing, evaluation and performance analysis of different
solutions for overlay routing, while requiring minimal changes to the applications making use
of the platform [IP07]. The goal is to do this by implementing a middleware system, exposing

3



CHAPTER 1. INTRODUCTION

two set of APIs – one for application writers, and another for interfacing various overlay
solutions.

The ROVER architecture is shown in Figure 1.2. The top layer represents various pro-
tocols and applications using the ROVER application programming interface (API). The
middle layer is the ROVER middleware with associated API. Finally, the bottom layer repre-
sents various transport protocols that can be used by the ROVER middleware. Only the left
box, denoted ORP, in the top layer in the figure, is within the scope of this report. Overlay
Routing Protocol (ORP) is a framework that allows us to study various types of problems
and solutions related to unicast QoS routing.

ROVER Middleware

Gnutella Kademlia

TCPIP TCPIP

TCPIP

Multicast/QoS
ORP 

Unicast/QoS

Figure 1.2: ROVER

ORP is part of a larger goal to research and develop a QoS layer on top of the transport
layer. The main idea is to combine ORP together with additional QoS mechanisms, such as
resource reservation and admission control, into a QoS layer. User applications that use the
QoS layer can obtain soft QoS guarantees. These applications run on end-hosts without any
specific privileges such as the ability to control the internals of TCP/IP stack, the operating
system, or other applications that do not use the QoS layer. Nodes in the ORP overlay use
the User Datagram Protocol (UDP) to transport application data, similar to the solution
reported in [And01]. In terms of the OSI protocol stack, the QoS layer is a sub-layer of the
application layer. Applications may choose to use it or to bypass it.

The QoS layer implements per-flow QoS resource management. In contrast to IP routing,
we envision that it is mostly end-nodes in access networks that take part in the routing
protocol. IP routers are not required to take part or be aware of the QoS routing protocol
running on the end-nodes. In other words, we propose a QoS layer on top of the best-effort
service provided by IP. Since a best-effort service leaves room for uncertainties regarding the
resource allocation, we target only for soft QoS guarantees.

ORP requires that nodes interested in performing QoS routing form an application-layer
overlay. The overlay may be structured (i. e. , a DHT) or unstructured. The only requirements
for it are the ability to forward messages and to address individual nodes through some form
of universally unique identifier (UUID) .

The type of services considered for the QoS layer are currently restricted to those that
require interactive and non-interactive live unicast multimedia streams. In the future, we will
consider other service types as well (e. g. , multicast).

By a multimedia stream, we mean a stream containing audio, video, text (e. g. , subtitles

4



1.3. OVERLAY ROUTING PROTOCOL

or Text-TV), control data (e. g. , synchronization data), or a combination thereof. If an
application chooses to use several media streams (e. g. , one stream per media type), the QoS
routing protocol treats them independently of each other and assumes that the application
is capable on its own of performing synchronization or any other type of stream merging
processing.

The multimedia streams within the scope of ORP are of unicast type, i. e. , point-to-point
(one-to-one). Multicast streams (one-to-many) are subject for later research. Furthermore,
the streams we consider are live, which means that the receiver is not willing to wait until
the whole stream data is received, but would rather start watching and listening to it as soon
as enough data is available for rendering.

By interactive multimedia streams, we mean streams generated by user interaction as in
a video conference or a voice over IP (VoIP) call. Conversely, non-interactive multimedia
streams do not involve any interaction between users as is the case of Internet TV or music
streaming.

Applications on top of the QoS layer request overlay paths to certain destinations, along
with specific constraints attached to each path (e. g. , minimum bandwidth required, maxi-
mum delay and delay jitter tolerated). We expect the source nodes to compute the feasible
path for each flow that originates from them. The path information is later communicated
to the nodes on the corresponding path as part of the ORP operation. Essentially, all source
nodes compete among each other for overlay resources.

We assume that each node is capable of estimating its available host resources (e. g. ,
RAM, storage) as well as link properties (e. g. , residual bandwidth, round-trip time (RTT))
to its one-hop neighbors in the overlay. Nodes are expected to exchange this information by
using some form of link-state routing protocol implemented by ORP.

Furthermore, we assume that the QoS layer cannot interfere with the general resource
usage (either in terms of host or network resources) other than those used by the QoS layer
itself. In other words, the QoS routing protocol cannot perform resource reservation other
than on residual resources (i. e. , resources not used by other applications running simulta-
neously on the node). Obviously, if all applications on a node run on top of the QoS layer,
then true resource reservation can be performed for the host resources. Network resources
will however always be fluctuating due to traffic streams outside the control of the QoS layer.

Some resource fluctuations may drive the node into resource starvation. During resource
starvation the node is unable to honor some or all of the QoS guarantees. This type of events
may lead to degradation in the quality of rendered media (e. g. , MPEG frames that are lost,
garbled, or arrive too late).

Applications on top of the QoS layer may be able to tolerate quality degradation for
very brief periods of time or even recover from brief degradation by using forward error
correction (FEC) codes or retransmissions.

However, prolonged quality degradation may eventually lead to user dissatisfaction with
the quality of the service. Each node must therefore carefully monitor the link properties to
each of its immediate neighbors. If resource starvation is detected (or anticipated) then a new
feasible path should be found and traffic re-routed on it. This mechanism must be robust
enough to avoid route flapping.

We are currently designing two protocols that fit into the ORP framework: Route Dis-
covery Protocol (RDP) and Route Management Protocol (RMP) [IP07]. RDP uses a form of
selective forwarding in order to discover paths to a destination, subject to multiple QoS con-
straints. We have currently a prototype implementation that shows promising results [DV07].

5



CHAPTER 1. INTRODUCTION

RMP is a link-state protocol that complements RDP by addressing churn (i. e. , node joining
and leaving the overlay). Since RMP is still in the design phase we refrain from going into
the details of the protocol.

However, there are also arguments against providing QoS in overlay networks. In par-
ticular in [CHM+03] it is argued that no quantitative QoS (i. e. , other than short-term and
within a local region) can be provided by overlay networks unless the underlaying layers of
the network stack implement some notion of QoS. We agree in that providing QoS through
overlay networks presents a set of tough challenges. However, in the current situation where
demand for QoS is growing (e. g. , in terms of multimedia services) and service providers find
little incentive to provide anything beyond best-effort service the overlay networks are the
only viable short-term solution for end-users.

1.4 QoS Routing Algorithms

The QoS routing process deals with two main problems: topology information dissemination
and route computation according to specific QoS constraints. The first problem is dealt with
by running a routing protocol and the second problem requires a routing algorithm that acts
on the topology data. Only the second problem is within the scope of this report.

Route computation can be described as an optimization problem. The formal definition of
optimization problems is given in Chapter 2. Here we only mention the classes of optimization
problems relevant for the ORP framework.

IP routing algorithms within an AS are used to compute routes along the shortest path to
destinations. From a traffic engineering point of view it is desirable to spread out the traffic
flows such as to minimize the cost of routing. The actual cost function can be either some
monetary cost or it can be related to link load, average delay or any other metric of interest.
Given the capacities of all links in the network, the demands between each source-destination
pairs and the cost function, one can calculate the proportion of traffic that should be routed
on each link. This is called optimal routing [BG91]. Typically, the route computations are
carried out at a central location and the results are then distributed to the routers, in form
of routing table updates.

This approach, in its current form, cannot be used with ORP for a number of reasons:

i) we expect the topology to be changing rather often due to node dynamics (churn).

ii) since each node can request resources due to own needs it is impractical to attempt to
know at all times the demand between each source-destination pair.

iii) we prefer that the route computation is distributed for scalability purposes and in order
to avoid a single point of failure.

One way to alleviate these problems is to modify ORP to use hierarchical routing. Nodes
that are known to have long uptimes and enough available bandwidth are upgraded to su-
pernodes. This is similar to the concept of ultrapeer election in Gnutella [Ili06]. Regular
nodes are connected to one supernode and exchange link-state information (i. e. , routing
metrics) with it. Supernodes aggregate the link-state information and exchange it with other
supernodes. In networks using hierarchical routing node and resource dynamics are less
likely to have a global impact since they can be addressed in the domain of the supernode.

6



1.4. QOS ROUTING ALGORITHMS

However, QoS routing in hierarchical networks requires some algorithm for topology aggre-
gation [Lee95, LNC04, TLUN07]. Topology aggregation in turn leads to inaccurate QoS
information [GO97].

The alternative is to have ORP employ a form of selfish routing, where the nodes manage
resources according to their needs without considering the benefit of the network as a whole
[RT02]. As it turns out, selfish networks are able to perform quite well [PM04, CFSK04] from
the point of view of individual nodes. In practice, this means that each node requests a path
when it needs one, without considering the global state of the network. The nodes on the path
perform admission control and resource reservation according to their own incentives. The
problem with this approach is that it requires control mechanisms to prevent greedy nodes
from starving well-behaving nodes.

There is also the possibility of a middle ground between optimal routing and selfish routing.
ORP nodes can be programmed to establish several paths across the overlay. On each path,
bandwidth is reserved in excess of the node’s needs. The excess bandwidth is used to serve
requests from other nodes that want to route their packets through the current node. The
result is that each overlay node manages a subset of the overlay (in terms of nodes and
bandwidth) and is responsible for the admission control and resource allocation (i. e. , reserved
bandwidth) within the overlay subset. Theoretically, each node performs optimal routing in
its subset.

To this end we see that the routing algorithm on each node acts either on a path at a time
or on several paths simultaneously. This distinction becomes important in the remainder of
this report since some of the optimization algorithms considered can only be used in one or
the other of these scenarios.

7



CHAPTER 1. INTRODUCTION

8



Chapter 2

Theoretical Foundation

In this chapter we review the theoretical foundation required to investigate the route selection
algorithms presented in the subsequent chapters.

The general optimization problem has the form [Lue04, BV04]:

minimize f (x)
subject to g (x) ≤ b

h (x) = c

x ∈ Ω

The real-valued function f , called objective function, denotes some function for which we need
to find the minimum value over all x in the set Ω. In minimization problems the objective
function is also called cost function. The n-dimensional vector x = (x1, . . . , xn) is called the
optimization variable. The optimization variable can take on values from the set Ω, which is
a subset of n-dimensional space.

In constrained optimization, the optimization variable is limited to a subset of values
in Ω by introducing inequality constraint functions g (x) = (g1(x), . . . , gm(x)) and equality
constraint functions h (x) = (h1(x, . . . , hr(x)) where m ≤ n and r ≤ n. The constants
b = (b1, . . . , bm) and c = (c1, . . . , cr) are called bounds or limits for the constraint functions.
In general, the word “constraints” is used to denote the constraint functions and bounds
together.

For example, in a network dimensioning problem g (x) can be used to specify capacity
constraints and h (x) to specify demand constraints [PM04]. In the specific case considered
there, the capacity constraints denote the maximum capacity of the links and the demand
constraints are the traffic volumes that need to be transfered between end-points. The objec-
tive function f (x) is thus the sum of all reserved capacities across the network and the goal
is to minimize this sum.

The constraint functions and the set Ω define the feasible set (also called constraint set),
which is the set of x-values considered in the optimization problem. Sometimes it is also
called the feasible space or the feasible region. A x-value being part of the feasible set is a
called a feasible point. If the feasible set contains at least one feasible point the problem is
feasible or else it is said to be unfeasible.

The output of the f (x) at a feasible point is called feasible value. The x-value where f (x)
attains its minimum value is called the optimal point or optimal solution and is denoted by
x∗. The value of f (x) at the point x = x∗ is called optimal value and is denoted by f∗(x).

9



CHAPTER 2. THEORETICAL FOUNDATION

In the case of unconstrained optimization there are no constraint functions and the feasible
set consists of all elements of the set Ω. It is also possible to have a problem with constraint
functions but without an explicit objective function. Such a problem has the form [BV04]

find x

subject to g (x) ≤ b

h (x) = c

x ∈ Ω

and is called a feasibility problem. The goal is to find x-values that satisfy the constraints.

For example, in case of routing, the feasibility problem may be used to describe a con-
strained path selection problem. We assume in this example that the variable x denotes a
sequence of links x1, . . . , xn building up the path between a source node and a destination
node. Each link xi is associated with a delay di and a delay jitter ji. We use the shorthand
notation d ↔ x and j ↔ x to denote delay and delay jitter associated with a path. There
could be several paths between the two nodes. Therefore we use the symbol P to denote
the union of the paths x between source and destination. We use the inequality constraint
functions g1 (x) and g2 (x) to constrain the path selection to those with a delay less than
b1 = 100 ms and delay jitter less than b2 = 10 ms. We are not using any equality constraint
function in this case. To express the path selection problem as a feasibility problem we write

find x

subject to
∑n

i=1 di ≤ 100 for d↔ x
∑n

i=1 ji ≤ 10 for j ↔ x

x ∈ P.

So far we have assumed that the objective function is single-valued. In a similar way,
it is possible to have a vector-valued objective function f (x) = (f1 (x) , . . . fn (x)), where
x = (x1, . . . , xm). We have in this case what is a called a multi-objective optimization problem.
This type of problems is outside the scope of the current report. Multi-objective optimization
in computer networks is amply discussed in [DF07].

Similarly, the optimization variable can be either vector-valued x (which is the typical case
for us) but can be single-valued as well. Furthermore, the components of x, (x1, x2, . . . , xn),
may take on continuous values, can be restricted to integer values (so called integer problems)
or a mixture where some xi components take on continuous values and the others are restricted
to integer values (so called mixed-integer problems). Solutions to integer and mixed-integer
problems are generally more computationally demanding than solutions to problems with
continuous variables. Our discussion focuses on problems with continuous variables and when
necessary we explicitly mention what elements of the discussion apply or do not apply to
integer or mixed-integer problems.

2.1 Mathematical Background

The aim in this section is to provide a minimal mathematical background that is required for
discussing optimization theory and related algorithms. Due to space reasons we do not provide
any proofs, but rather point to relevant references. The main interest lies in establishing
definitions and notation.

10



2.1. MATHEMATICAL BACKGROUND

2.1.1 Sets

Much of the modern mathematical theory is based on the concept of set, which is defined as
a collection of elements. We denote a set by a capital letter and specify its elements inside
curly brackets, with elements separated by comma (e. g. , A = {0, 1, 2, 3}). We can also write
B = {x : 0 ≤ x < 4} to specify a range. The expression for B should be read as “the set B
contains all elements x such that x is greater or equal to 0 and less than 4”. Note that in
the example given here A and B have the exact same elements only if the set elements are
known to be integers. To show that a specific element x belongs to a set we write for example
x ∈ A. If that is not the case we write x /∈ A. The set containing no elements is called the
empty set and is denoted by ∅.

The basic operation applicable on sets are union A ∪ B, intersection A ∩ B and com-
plementation AC . We assume they are familiar to the reader and refrain from additional
explanations.

Some of the important sets used here are the set of natural numbers N, the set of all
integers Z and the set of real numbers R.

Given two sets A and B if every element of the set A is also an element of the set B we
call A a subset of B and write A ⊆ B. If the set B has additional elements that do not exist
in A, then A is a called a proper subset of B and we write A ⊂ B. If A ⊆ B and also B ⊆ A
this relation is denoted by A = B. This is also true for proper subsets.

It turns out that it is very useful if the elements of a set can be ordered. Such a set is
called an ordered set.

Definition 2.1. An order on a set A, denoted by <, satisfies the following conditions [Rud76].
Given three elements x, y, z ∈ A, then

i) either x < y, or x > y, or x = y (i. e. , only one statement can be true)

ii) x < y and y < z implies x < z

Ordered sets can have bounds.

Definition 2.2 (Bounds). Given an ordered set A and and a set B ⊂ A, the set B is said to
be bounded (from) above if there exists an element y ∈ A such that x ≤ y for all x ∈ B. We
call y an upper bound of B. An upper bound y0 of the set B is called the least upper bound
or supremum if y0 is less than or equal to any other upper bound of B. Lower bounds are
defined in the same way [Rud76, Shi96]. The greatest lower bound is also called infimum.

Definition 2.3 (Fields). A (number) field is a set F with addition and multiplication oper-
ations, which satisfies the following field axioms [Rud76, Shi96]: .

i) x + y ∈ F if and only if x, y ∈ F

ii) x + y = y + x for all x, y ∈ F

iii) (x + y) + z = x + (y + z) for all x, y ∈ F

iv) 0 + x = x for all x and 0 inF

v) x + (−x) = 0 for all x ∈ F

vi) xy ∈ F if and only if x, y ∈ F

11



CHAPTER 2. THEORETICAL FOUNDATION

vii) xy = yx for all x, y ∈ F

viii) (xy)z = x(yz) for all x, y ∈ F

ix) 1x = x for all x ∈ F and 1 6= 0

x) x (1/x) = 1 such that x, 1/x ∈ F and x 6= 0

xi) x(y + z) = xy + xz for all x, y, z ∈ F .

An ordered field is an ordered set F that in addition to the field axioms satisfies [Rud76]:

i) assuming x, y, z ∈ F and y < z then x + y < x + z

ii) assuming x, y ∈ F and x > 0, y > 0 then xy > 0.

It can be shown that given the concept of an ordered field and additional properties of
numbers, one arrives at the set of of all real numbers, the real field R [Rud76]. It is common
practice to add the symbols +∞ and −∞ to R such that −∞ < x < +∞ for all x ∈ R. This
way the original order in R is preserved. Henceforth we assume that R contains the infinity
symbols, unless stated otherwise.

2.1.2 Spaces

The field R allows us to generalize the concept of a set to a metric space. The main feature
of a metric space is the notion of distance between elements.

Definition 2.4 (Metric space). Given a set X and a distance metric ρ(x, y) ∈ R defined for all
x, y ∈ X, the pair 〈X, ρ〉 denotes a metric space with the following properties [KF75, Rud76]:

i) ρ(x, y) ≥ 0

ii) ρ(x, y) = 0 if and only if x = y

iii) ρ(x, y) = ρ(y, x)

iv) ρ(x, z) ≤ ρ(x, y) + ρ(y, z).

Definition 2.5 (R1). The set of all real numbers equiped with the distance metric ρ(x, y) =
|x− y| is a metric space denoted by R

1.

It is necessary to expand the definition of a metric space to several dimensions. In order to
do so we define the k-dimensional vector x to be the ordered set {x1, . . . , xk}, where xi ∈ R

for i = 1, . . . , k. We adopt the standard notation with parenthesis for vectors and write
x = (x1, . . . , xk). Also, given two k-dimensional vectors x, y and a number a ∈ R we define
the following vector operations [Rud76]:

i) ax = (ax1, . . . , ax2) (scalar multiplication)

ii) x + y = (x1 + y1, . . . , xk + yk) (vector addition)

iii) x · y = (x1y1 + x2y2+, . . . ,+xk−1yk−1 + xkyk) (inner product)

12



2.1. MATHEMATICAL BACKGROUND

iv) ‖x‖ =
√

x · x =
√

x2
1+, . . . ,+x2

k (Euclidean norm)

Operation i) and ii) enable vectors to satisfy the field axioms. For a positive integer k, the
set of all k-dimensional vectors satisfying the field axioms together with a suitable distance
metric, ρ, define a vector space R

k over the real field. The zero vector in a vector space
is defined as 0 = (0, . . . , 0). A vector in R

k is also called a point and its xi elements, for
i = 1, . . . , k, can be thought of as coordinates in the R

k space.
The inner product associates a number in R to every pair of vectors in R

k. The Euclidean
norm uses the inner product to implement a notion of length or size [Edw94]. The Euclidean
norm belongs to the class of p-norms

‖x‖p =

(

n
∑

i=1

|xi|
) 1

p

, (2.1)

where we have assumed that the vector x has n elements [GVL96]. Another important
member of this class is obtained when p→∞

‖x‖∞ = max
1≤i≤n

|xi|. (2.2)

We are mainly interested in the Euclidean norm, but the ∞-norm is useful for SAMCRA
(Chapter 8).

Definition 2.6 (Euclidean R
k space). The Euclidean R

k space is the set endowed with
distance metric ρ = ‖x− y‖ consisting of all k-dimensional vectors, with k being an integer
greater than zero, that satisfy the field axioms. We denote the Euclidean R

k space by E
k. E

k

is a linear space [KF75].

In the reminder of this report when we mention that certain definitions or properties
apply to the space R

n we imply that they also apply to the space E
n, unless stated otherwise.

On the other hand, if we mention the space E
n, then we do not imply the space R

n, unless
explicitly stated otherwise. Clearly, the main difference between the two spaces is related to
the Euclidean norm, which in some cases may prevent more general definitions.

It is sometimes useful to work with a subset of a space called subspace.

Definition 2.7 (Subspace). A set A of elements of a space Rn is called a subspace if and
only if

i) for all x, y ∈ A, x + y ∈ A

ii) for all c ∈ R and all x ∈ A, cx ∈ A.

In other words the set A is a subspace of R
n if it is closed under the operations of vector

addition and scalar multiplication.

2.1.3 Topology

The field of topology is concerned with the study of mathematical structures [Men90]. Its
focus is on topological spaces. Topological spaces are described mainly in terms of open sets,
a concept that is to be defined shortly. Our interest in topology is restricted to certain
definitions and results that appear in the context of optimization theory only.

13



CHAPTER 2. THEORETICAL FOUNDATION

Definition 2.8 (Open and closed intervals). We define an open interval (a, b) to be the set
of numbers x ∈ R such that a < x < b. Open intervals are also called segments [Rud76].
If the set of numbers x ∈ R satisfies a ≤ x ≤ b we call it a closed interval [a, b]. Half-open
intervals, such as (a, b] and [a, b), exist as well.

Definition 2.9 (Open and closed balls). Assume a metric space 〈X, ρ〉, a point a ∈ X and
any radius δ ∈ R such that δ > 0. An open ball of size δ is a set consisting of all elements
x ∈ X that satisfy ρ(a, x) < δ [Men90]. A closed ball of size δ is defined in similar way with
the exception that it must satisfy ρ(a, x) ≤ δ instead. If we allow X and a to be vectors, this
definition extends to n-dimensional metric spaces.

Definition 2.10 (Neighborhood). In a metric space 〈X, ρ〉, the set defined by the open ball
of radius δ center at a is a called the δ-neighborhood of a. If the radius is obvious from the
context, then the δ symbol is typically omitted [Men90].

The concept of a neighborhood is useful in describing properties associated with points in
a set.

Definition 2.11. Assume a metric space 〈X, ρ〉 with a subset A. A point a in this space is
called a [Rud76]

limit point of A if every neighborhood of a contains a point b 6= a such that b ∈ A.

isolated point of A if a ∈ A and a is not a limit point of A.

interior point of A if there exists a neighborhood of a, which is a subset of A.

The classification of points in a set helps us in defining different types of sets.

Definition 2.12. Assume a metric space 〈X, ρ〉 with a subset A. The set A is said to
be [Rud76]

closed if every limit point of A is as point of A.

open if every point of A is an interior point of A.

perfect if A is closed and if every point of A is a limit point of A.

bounded if there is a point b ∈ X such that ρ(a, b) < R for all points a ∈ A and R > 0.

dense in X if every point of X is a point of A, a limit point of A or both.

convex if A ⊂ R
n and every combination λx + (1 − λ)y yields a point also in A, for all

x, y ∈ A and 0 < λ < 1.

compact if it is both closed and bounded [Lue04].

The interior of a set A is the set consisting of all interior points of A. The closure of a
set A is the smallest set that can contain A (i. e. , the closed ball containing the points of the
set A). The boundary of a set A is the set containing the points of A’s closure, which are are
not interior points.

14



2.1. MATHEMATICAL BACKGROUND

2.1.4 Linear Algebra

Since we work with linear spaces we often perform linear combinations of a several vectors.
A linear combination of n vectors in R

k has the form c1x1 + c2x2 + · · ·+ cmxm + cnxn, where
c1, . . . , cn ∈ R are called the coefficients of the linear combination [Shi77, Edw94].

Definition 2.13 (Linear independence). The vectors x1, . . . ,xn are called linearly indepen-
dent if the the following expression based on their linear combination

c1x1 + c2x2 + · · ·+ cmxm + cnxn = 0 (2.3)

holds only if c1 = ... = cn = 0. Otherwise, if the expression holds for one or more nonzero
coefficients, the vectors are said to be linearly dependent. Linear dependence implies that one
of the vectors can be written as a linear combination of the others [Shi77].

The dimension of a space is given by the maximum number of independent vectors that
can exist in that space. For example, in a R

n space there can be n independent vectors,
whereas n + 1 or more vectors are linearly dependent. Thus the space R

n has dimension n
(which motivates the notation).

Definition 2.14 (Basis). Given n linearly independent vectors xi in a space R
n, if any vector

y ∈ R
n can be uniquely determined through a linear combination

y = c1x1 + c2x2 + · · ·+ cmxm + cnxn (2.4)

then the vectors xi are said to be a basis of the space R
n. In this case the coefficients

c1, . . . , cn are said to be the components or coordinates of the vector y with respect to the
basis x1, . . . ,xn and we can write y = (c1, . . . , cn).

In defining the space E
n we have used vectors of the form x = (x1, . . . , xn) without

mentioning any basis. In a Euclidean space it is convenient to define vectors with respect to
a orthonormal basis. Such basis rests on the definition of an angle between vectors and that
of a normalized vector.

Definition 2.15. The angle θ between two vectors x and y in a space R
k with a Euclidean

norm is defined as
cos θ =

x · y
‖x‖ ‖y‖ (2.5)

The Cauchy-Schwarz inequality, presented below, ensures that 0 ≤ cos θ ≤ 1 or equiva-
lently 0 ≤ θ ≤ 180 degrees.

Definition 2.16 (Cauchy-Schwarz inequality). All vectors x and y defined on a space R
k

with Euclidean norm satisfy the Cauchy-Schwarz inequality [Rud76, Shi77]

‖x · y‖ ≤ ‖x‖ ‖y‖ . (2.6)

Definition 2.17 (Triangle inequality). It follows from the Cauchy-Schwarz inequality that
all vectors x and y defined on a space R

k with Euclidean norm satisfy also the triangle
inequality [Rud76]

‖x + y‖ ≤ ‖x‖+ ‖x‖ . (2.7)

15



CHAPTER 2. THEORETICAL FOUNDATION

Definition 2.18 (Normalized vector). A vector x can be normalized through division by its
norm:

e =
x

‖x‖ (2.8)

A normalized vector is a unit vector (i. e. , ‖e‖ = 1) [Shi77].

Two vectors are said to be orthogonal if their inner product is zero. By Definition 2.15
orthogonal vectors in a Euclidean space are separated by an angle of 90 degrees (hence the
name orthogonal). In addition to that, nonzero orthogonal vectors are independent.

Definition 2.19 (Orthonormal basis). If the n vectors used for the basis of a space R
n are

both normalized and mutually orthogonal, then the space is said to have an orthonormal
basis.

For the space R
n the orthonormal basis typically employed consists of the vectors

e1 = (1, 0, . . . , 0, 0)

e2 = (0, 1, . . . , 0, 0)

...

en−1 = (0, 0, . . . , 1, 0)

en = (0, 0, . . . , 0, 1).

This is called the canonical basis or standard basis and has the following property that sim-
plifies calculations:

ei · ej =

{

1 if i = j,

0 if i 6= j.
(2.9)

Since we can write any vector in Rn as a linear combination of the basis vectors, the inner
product of the vectors x = x1e1 + · · · + xnen and y = y1e1 + · · · + ynen is equal to x1y1 +
· · ·+ xnyn, which motivates the definition of inner product x · y used in Section 2.1.2.

Definition 2.20 (Linear operator). Given a space R
m and a space R

n, a linear operator A
is a rule (mapping) that assigns a vector in R

m to each vector in R
n such that the following

conditions are satisfied:

i) v = A(x + y) = Ax +Ay for all x, y ∈ R
n and so that v ∈ R

m,

ii) v = A(cx) = cAx for every c ∈ R and every x ∈ R
n so that v ∈ R

m.

Note that it is allowed that m = n, in which case the spaces R
m and R

n coincide [Shi77].

Assume that the vectors e1, . . . ,en constitute the canonical basis of the space R
n, the

vectors u1, . . . ,um are the canonical basis for the space R
m and that A is the linear operator

that provides a mapping between R
n and R

m. We are interested in the form of the mapping
of the canonical basis of R

n to the space R
m. We focus our attention on e1 first. In the space

R
m, the vector e1 is described as a linear combination of the vectors u1, . . . ,um, which are

the space basis. This linear combination is provided by the linear operator A

Ae1 = a11u1 + a21u2 + · · ·+ am1um = (a11, a21, . . . , am1) (2.10)

16



2.1. MATHEMATICAL BACKGROUND

where ai1 are the coordinates in the space R
m associated with the unit vector e1 [Edw94,

Shi77]. Similarly,

Ae2 = a12u1 + a22u2 + · · ·+ am2um = (a12, a22, . . . , am2)

... (2.11)

Aen = a1nu1 + a2nu2 + · · ·+ amnum = (a1n, a2n, . . . , amn)

for the the remaining vectors e1, . . . ,en. This motivates the use of matrix notation. We
define the m× n matrix A as the rectangle block with m rows and n columns

A =











a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . anm











(2.12)

where the columns contain the coefficient for the linear combinations Ae1 . . .Aen. We use
capital bold letter for matrices. In compact notation we write A = [aij ] when the size of
the matrix is implied from the context. The first index, i in [aij ], denotes the i-th row of
the matrix, while the second index, j, denotes the j-th column of the matrix A. Following
convention for matrix notation, vectors are by default n×1 matrices (so called column vectors).
We use the superscript T to denote the vector transpose operation (which turns a column
vector into a row vector and vice versa). For example e1 appears as

e =











1
0
...
0











=
[

1 0 . . . 0
]T

. (2.13)

We define also shorthand notation for selecting a specific column or row from a matrix. For
example,

A2 =
[

a21 a22 . . . a2n

]

and A2 =











a12

a22
...

am2











(2.14)

are the second row and second column respectively of the matrix A.

Definition 2.21 (Matrix operations). We define the following operations for the matrices A

and B and the scalar c [Edw94, Shi77]:

i) A + B =
[

aij + bij

]

if A and B have the same number of rows and columns (matrix
addition)

ii) cA =
[

caij

]

(scalar multiplication)

iii) AB = C =
[

cij

]

=
∑n

k=1 aikbkj if the number of columns in A is equal to the number
of rows in B (matrix multiplication)

iv) AT =
[

aij

]T
=
[

aji

]

(matrix transpose)

17



CHAPTER 2. THEORETICAL FOUNDATION

The matrix operations i)–iii) transform the set of all m×n matrices into a vector space. The
transpose operation transforms columns into rows and vice versa.

Matrix multiplication can be applied only if the number of columns in A equals the number
of rows in B. When A is a 1 × m matrix (row vector) and B is a m × 1 matrix (column
vector) the operation AB yields the inner product of the two vectors. This means that for
two vectors x = [x1 . . . xn] and y = [y1 . . . yn]

x · y = xT y = yT x (2.15)

The matrix operations are endowed with the following properties:

i) (AB)C = A(BC)

ii) (A + B)C = AC + BC

iii) A(B + C = AC + BC

iv) cA = Ac

v) c(AB) = (cA)B = A(cB)

It is important to note that in general the matrix multiplication is not commutative (i. e. ,
AB 6= BA.)

Definition 2.22 (Rank). A m×n matrix A with a maximum number c of linearly indepen-
dent columns is said to be of rank c. In that case we write rank (A) = c. In a matrix of rank
c the maximum number of linearly independent rows is also equal to c.

If rank (A) = min (m, n) then matrix A is said to be of full rank.

Definition 2.23 (Zero matrix 0). For convenience, we use the symbol 0 to denote the zero
matrix, which is the m× n matrix with all elements equal to zero.

Returning to the linear mapping in Eq. 2.12 it can be shown [Edw94, Shi77] that any
vector x in the space R

n can be mapped to a vector y in the space R
m by multiplication with

the matrix A

y = Ax, (2.16)

which can be verified by letting x = e1 =
[

1 0 . . . 0
]T

.
We turn the attention now towards square matrices with n rows and n columns. A square

matrix A is said to be symmetric if A = AT .

Definition 2.24 (Unit matrix I). We define the unit matrix I

I =















1 0 0 . . . 0
0 1 0 . . . 0
... 0

. . . . . . 0
0 . . . 0 1 0
0 0 . . . 0 1















(2.17)

as the n × n matrix with elements equal to 1 along the diagonal and elements equal to 0
otherwise, such that AI = IA = A. The matrix I is clearly symmetric.

18



2.1. MATHEMATICAL BACKGROUND

If AB = I then we call B the inverse of A and denote it by A−1 (alternatively it can be
said that A is the inverse of B, in which case A = B−1.

Determinants are a useful tool to calculate, among other things, the inverse of a square
matrix A.

Definition 2.25. The determinant of a n × n matrix A, denoted detA, is a real number
associated with the matrix A. The determinant of the n × n matrix A can be computed
recursively by Laplace expansion applied to rows

detA =
n
∑

j=1

(−1)i+jaij detAij , (2.18)

or to columns

detA =
n
∑

i=1

(−1)i+jaij detAij , (2.19)

where Aij denotes the (n − 1) × (n − 1) matrix obtained by removing the i-th row and the
j-th column of the matrix A [Edw94]. If detA = 0, the matrix A is called singular and its
inverse A−1 does not exist or is not uniquely determined. Otherwise, if det A 6= 0, matrix A

is said to be nonsingular or invertible [BT97].

The term det Aij in the Laplace expansion in Eq. 2.18 and Eq 2.19 is called the (i, j)-th
minor of the matrix A. The number cij = (−1)i+j det Aij (i. e. , the sign corrected minor) is

called (i, j)-th cofactor of A. The adjugate matrix of A is adjA =
[

cij

]T
[KW98].

Using the determinant and adjugate, the inverse of a square matrix A is

A−1 =
adjA

det A
(2.20)

provided that detA 6= 0.

A nonsingular n× n matrix A enjoys the following equivalent properties [BT97, KW98]:

i) A has an inverse A−1.

ii) detA 6= 0.

iii) the columns of A are linearly independent.

iv) AT is nonsingular as well.

v) Ax 6= 0 for all x ∈ R
n such that x 6= 0.

vi) Ax = y has a unique solution x 6= 0 for all y ∈ R
n.

Definition 2.26 (Eigenvectors and eigenvalues). Given an equation of the type

Ax = λx (2.21)

where A is a n × n linear operator and λ ∈ R, every x 6= 0 satisfying the equation is called
an eigenvector and the corresponding λ is called an eigenvalue [Shi77, Lue04].

19



CHAPTER 2. THEORETICAL FOUNDATION

The eigenvalues and the corresponding eigenvectors of the square matrix A can be ob-
tained from the characteristic equation

det
[

Ax− λI
]

= 0. (2.22)

Definition 2.27 (Positive (semi)definite). A symmetric matrix A is called positive definite
if and only if all eigenvalues of A are positive. If the eigenvalues are nonnegative (i. e. ,
some are positive and the rest are equal to zero) the matrix A is called positive semidefinite.
An alternative definition can be provided if one considers the quadratic form xT Ax. Then,
the matrix A is positive definite if xT Ax is positive for all nonzero vectors x. Similarly, if
the quadratic form is nonnegative for all nonzero vectors x, then A is said to be positive
semidefinite [Lue04].

The spectral radius of a matrix A is defined to be the maximum absolute value of its
eigenvalues [GVL96]

ρ(A) = max |λi|. (2.23)

Its value is important in deciding whether iterative algorithms on the matrix A converge to
a result or not.

2.1.5 Functions

Definition 2.28 (Function). Given two sets X and Y , a functionf is a rule (mapping) that
assigns a value f(x) ∈ Y for each element x ∈ X. The sets X and Y may coincide.

The sets X and Y in Definition 2.28 are called the domain of the function f and the range
of the function f , respectively [Rud76]. If f(X) ⊂ Y , then it is said that f maps A into B.
On the other hand, if f(X) = Y , then it is said that f maps X onto Y .

We indicate the mapping between f ’s domain and range using set notation f : X → Y .
Generally, we relax the notation and write y = f(x) with the implicit assumption that x ∈ X
and y, f(x) ∈ Y . The value x is called the (independent) variable or argument of function f ,
whereas f(x) is called the dependent variable of f [Shi96]. Functions are also called mappings
and transformations.

For a subset A ⊂ X, the set of all elements f(a) ∈ Y such that a ∈ A is called the image
of A under f . For a subset B ⊂ Y , the set of all elements x ∈ X such that f(x) ∈ B is called
the inverse image of B under f [Rud76, KF75].

If a function f maps X onto Y and each element y = f(x) ∈ Y corresponds to a unique
element x ∈ X, then f is called a one-to-one mapping (function) between X and Y . A
one-to-one function is endowed with a inverse function denoted by f−1 such that x = f−1(y)
for all x ∈ X and y ∈ Y .

The functions within our interest fall into one of the following categories depending on
the value space for their domain and space:

i) single-valued (real-valued) functions f(x) of one variable such that f : R→ R.

ii) single-valued (real-valued) function f (x) of a vector such that f : R
n → R and n > 1.

iii) vector-valued (multi-valued) function f (x) of one variable such that f : R → R
n and

n > 1.

20



2.1. MATHEMATICAL BACKGROUND

iv) vector-valued (multi-valued) function of a vector f (x) such that f : R
m → R

n and
m, n > 1, with possibly m = n.

We have already seen examples of functions such as the distance metric in Section 2.1.2
and the linear mappings in Section 2.1.4.

Definition 2.29 (Sequence). A sequence is a function f with domain in N (i. e. , f(n) is a
sequence if n ∈ N). It is customary to write fn instead of f(n) to indicate a sequence. If
f(n) = xn, then x1, x2, . . . are called the terms of the sequence (x1, x2, . . . and {xn}∞n=1 are
other different ways to denote a sequence). If the terms xn ∈ Y for all n, then fn is called a
sequence in Y [Rud76].

An element x in a metric space 〈X, ρ〉 is said to be the limit of a sequence fn = x1, x2, . . .
if, for every ǫ > 0, there is a number N ∈ N such that for all n ≥ N we have ρ(fn, x) < ǫ. If
the limit x exists, then the sequence fn is said to converge towards x. Otherwise, the sequence
is said to diverge [Rud76, Shi96]. The limiting operation described here is usually written

lim
n→∞

fn = x (2.24)

We can make a similar statement for an arbitrary function f (x) such that x ∈ R
n and

f (x) ∈ R
m (m and n may be equal). Given a function f (x) with domain D ⊂ R

n and a
limit point a ∈ D (defined as in Section 2.1.3), the point b ∈ Rm in the expression

lim
x→a

f (x) = b (2.25)

is called the limit of f at a if and only if, given any ǫ > 0, there exists a δ > 0 such that
‖x− a‖ < δ imply ‖f (x)− b‖ < ǫ. If b = f (a) in Eq. 2.25 then the function f (x) is said
to be continuous at a [Edw94].

Definition 2.30 (Continuity). A function f : D → R
m with D ⊂ R

n is said to be continuous
if it is continuous at every point x ∈ D.

We will frequently be interested in the derivative of a continuous function f (x). We recall
the definition of derivative of a function f : R→ R:

f ′(x) = lim
h→0

f(x + h)− f(x)

h
(2.26)

If f ′(x) exists, then the following equation [Rud76] holds:

f(x + h)− f(x) = f ′(x)h + r(h), (2.27)

where r(h) can be interpreted as a small remainder or “error” due to linearization that
vanishes as h→ 0:

lim
h→0

r(h)

h
= 0. (2.28)

The product f ′(x)h is nothing else but a linear approximation of the the change in f between
the points x and x+h. If we ignore r(h) (since it vanishes), we can regard f ′(x) as the linear
operator A that takes h to f ′(x)h as shown below [Rud76, Edw94]:

Ah = f ′(x)h. (2.29)

21



CHAPTER 2. THEORETICAL FOUNDATION

These ideas can be extended to functions f : R
n → R

m so that we obtain the following
equations containing vectors equivalent to Eq. 2.26–2.29:

f ′ (x) = lim
h→0

f (x + h)− f (x)

h
, (2.30)

f (x + h)− f (x) = f ′ (x)h + r (h) , (2.31)

lim
h→0

r (h)

h
= 0, (2.32)

Ah = f ′ (x)h. (2.33)

The derivatives in Eq. 2.26 and Eq. 2.30 are called total derivatives. The reason for introducing
the linear operators is to enable us to switch over to matrix notation. Before doing that we
need to define the meaning of directional derivatives and partial derivatives.

In the case of directional derivatives we are interested in the rate of change of a function
from a point x in the direction d of a straight line x + hd.

Definition 2.31 (Directional derivative). The directional derivative of a function f : R
n →

R
m in the point x with respect to d is [Edw94]

Ddf (x) = lim
h→0

f (x + hd)− f (x)

h
(2.34)

The main interest is in the situation where the direction vector d coincides with one of the
vectors e1, e2, . . . ,en of the canonical basis of R

n. In that case we can express the directional
derivative in terms of partial derivatives. In what follows, we consider derivatives of functions
with the domain R

n for some positive integer n. However, the derivative definitions apply
equally well to functions defined on an open set E ⊂ R

n.

Definition 2.32 (Partial derivative). A function f : R
n → R

m can be described in terms of
the real-valued component functions fi : R

n → R, such that f (x) = (f1(x), f2(x), . . . , fn(x)).
The partial derivative of fi(x) in the point x with respect to the standard basis vector ej

is [Rud76, Edw94]

Dej
fi(x) =

∂fi

∂xj
(x) (2.35)

Using Definition 2.31 and Definition 2.32 and writing the terms as linear combinations of
the vectors making up the canonical basis it can be shown that [Rud76, Edw94]

f ′ (x) ej =
∂f1

∂ej
(x)u1 +

∂f2

∂ej
(x)u2 + · · ·+ ∂fm

∂ej
(x)um (2.36)

where the vector ej is the j-th vector of the canonical base of R
n and the vectors ui are

the components of the canonical basis of R
m. We can observe that f ′ (x) acts as the linear

operator A that maps the unit vector ej from the space R
n to the space R

m. These equations
are similar to Eq. 2.10 and Eq. 2.11 in Section 2.1.4. Following the development in that
section we introduce matrix notation.

22



2.1. MATHEMATICAL BACKGROUND

Definition 2.33 (Jacobian matrix). For a function f : R
n → R

m with components denoted
by f1(x), f2(x), . . . , fn(x), the matrix ∇f (x) with m rows and n columns

J (x) =













∂f1

∂x1
(x) . . .

∂f1

∂xn
(x)

...
. . .

...
∂fm

∂x1
(x) . . .

∂fm

∂xn
(x)













(2.37)

is called the Jacobian matrix or derivative matrix of f [Edw94, Lue04].

Definition 2.34 (Gradient). For a function f : R
n → R the derivative matrix is reduced to

a row vector with n elements

∇f (x)T =

[

∂f

∂x1
(x) . . .

∂f

∂xn
(x)

]

(2.38)

The column vector containing the same elements

∇f (x) =













∂f

∂x1
(x)

...
∂f

∂xn
(x)













(2.39)

is called the gradient of f [Edw94, Lue04].

The Jacobian matrix can be expressed in terms of the gradient of each function fi.

J (x) =
[

∇f1 (x) ∇f2 (x) . . . ∇fm (x)
]T

(2.40)

It should be dully noted that the definition of the gradient as a column vector or as a row
vector differs among authors. For example in [Lue04, AMO93] the gradient is a row vector,
whereas in [BT97, BG91, BV04] the gradient is defined as a column vector. We adopt the
convention that by default the gradient is a column vector, since this is how we defined vectors
in matrix notation.

Using the gradient or derivative matrix we can express the directional derivative in Eq. 2.34
by a inner product operation:

Ddf (x) = ∇f (x) · d = ∇f (x)T d (2.41)

The interpretation of the gradient is that it “points” into the direction of the maximum
change of f (x). Gradient-based optimization algorithms exploit this information to find the
point x where the function attains its maximum or minimum.

Definition 2.35 (Hessian). For a function f : R
n → R with continuous partial derivatives

∂f/∂xj for j = 1, . . . , n, the square matrix ∇2f (x)

∇2f (x) =























∂f

∂x1∂x1
(x)

∂f

∂x1∂x2
(x) . . .

∂f

∂x1∂xn
(x)

∂f

∂x2∂x1
(x)

∂f

∂x2∂x2
(x) . . .

∂f

∂x2∂xn
(x)

...
. . .

...
∂f

∂xn∂x1
(x)

∂f

∂xn∂x2
(x) . . .

∂f

∂xn∂xn
(x)























(2.42)

23



CHAPTER 2. THEORETICAL FOUNDATION

is called the Hessian of f [Lue04].

Definition 2.36 (Critical point). If there is a point x where ∇f (x) = 0, then the point x

is called a critical point.

In this report we focus on objective functions based on real-valued vector functions f :
R

n → R. Several of the optimization methods considered in our study assume that the
objective function can be approximated near a point a with a first order Taylor’s series

T1 (x) = f (a) +∇f (a)T (x− a) (2.43)

or with a second order Taylor’s series of the form

T2 (x) = f (a) +∇f (a)T (x− a) +
1

2
(x− a)T ∇2f (a) (x− a) (2.44)

Alternatively, if we let d = x−a to denote a direction, Eq. 2.43 and Eq. 2.44 can be written
as

T1 (a + d) = f (a) +∇f (a)T d (2.45)

and

T2 (a + d) = f (a) +∇f (a)T d +
1

2
dT ∇2f (a)d. (2.46)

2.2 Optimization Theory

A natural point of departure in the study of optimization theory is the question about the
conditions under which a function f (x) has a minimum or maximum value. According to
the Weierstrass theorem [Shi96, Lue04], every continuous real-valued function f (x) defined
on a compact set Ω has a maximum value f∗(xmax) and a minimum value f∗(xmin) for the
optimal points xmax, xmin ∈ Ω.

Unfortunately, finding the optimal points in the entire function domain Ω can be ex-
tremely difficult unless certain convexity properties apply to the problem in question. This
has prompted the development of methods to find the optimal solution x∗ in a small neigh-
borhood of x∗. Therefore, one has to differentiate between global optima and local op-
tima [Lue04, PS98, Eng06]. In what follows we assume minimization problems with objective
function f : Ω→ R, where Ω ⊂ E

n.

Definition 2.37 (Global optimum). A point x∗ ∈ Ω is called a global optimum (global
minimum) point of the objective function f (x) if

f (x∗) ≤ f (x) ,∀x ∈ Ω. (2.47)

If the inequality is strict
f (x∗) < f (x) ,∀x ∈ Ω (2.48)

then the point x∗ is called a strict global minimum.

Definition 2.38 (Local optimum). A point x∗ ∈ Ω is called a local optimum (local minimum)
point of the objective function f (x) in δ-neighborhood Nδ = {x : x ∈ Ω, ‖x− x∗‖ < δ} if

f (x∗) ≤ f (x) ,∀x ∈ Nδ. (2.49)

If the inequality is strict
f (x∗) < f (x) ,∀x ∈ Nδ. (2.50)

then the point x∗ is called a strict local minimum.

24



2.2. OPTIMIZATION THEORY

Optimum conditions for maximization problems are defined the same way using the op-
posite inequality signs (i. e. , f (x∗) ≥ f (x) and f (x∗) > f (x)).

Definition 2.39 (Convex function). A function f (x) is said to be convex if [BV04, Lue04]

i) the domain Ω of f (x) is a convex set (see Section 2.1.3)

ii) for all x1, x2 ∈ Ω and 0 < λ < 1 the function satisfies Jensen’s inequality

f (λx1 + (1− λ)x2) ≤ λf (x1) + (1− λ)f (x2) (2.51)

The function f (x) is called strictly convex if the condition ii) is changed to

f (λx1 + (1− λ)x2) < λf (x1) + (1− λ)f (x2) (2.52)

for all 0 < λ < 1 and x1, x2 ∈ Ω such that x1 6= x2.

For a convex function local minima are also global minima. This is a very powerful
property, which was paramount for the development of efficient methods to find the global
minima of convex functions. Unfortunately, there is no similar property that allows finding
the global maxima of convex functions.

Definition 2.40 (Concave function). A function g = −f defined on a convex set Ω is called
concave if the function f is convex.

For a concave function g defined as above, finding the global maxima is equivalent to
finding the global minima of the function f .

Definition 2.41 (Convex optimization problem). The problem of finding the global minima
of a convex function defined on a convex set is called a convex optimization problem. A convex
optimization problem has a convex objective function and convex constraints.

Definition 2.42 (Linear optimization problem). An optimization problem with linear ob-
jective function and linear constraints is called a linear optimization problem. A linear op-
timization problem is always a convex problem, but the converse is not true. In addition a
linear problems is also a concave problem [PS98].

Definition 2.43 (Nonlinear optimization problem). If an optimization problem is not convex
or linear it is then called a nonlinear optimization problem.

The conditions that govern if a point x is a local minimum are very important for the
development and analysis of efficient optimization algorithms. They are divided into first
order and second order conditions. First order conditions apply when the objective function
has first-order derivatives that are all continuous, which we denote by f ∈ C1. Similarly, the
second order conditions apply when the objective function has both first and second-order
continuous partial derivatives, which is denoted by f ∈ C2 [Lue04, BV04].

Definition 2.44 (First-order conditions for unconstrained functions). Consider an uncon-
strained optimization problem with an objective function f ∈ C1 defined on a set Ω. The
interior point x∗ ∈ Ω is a local minimum if the gradient vector is equal to zero:

∇f (x∗) = 0 (2.53)

25



CHAPTER 2. THEORETICAL FOUNDATION

Definition 2.45 (Second-order conditions for unconstrained functions). Consider an uncon-
strained optimization problem with an objective function f ∈ C2 defined on a set Ω. The
interior point x∗ ∈ Ω is a local minimum if the gradient vector is equal to zero and the
Hessian matrix is positive definite (see Section 2.1.4):

∇f (x∗) = 0 (2.54)

∇2f (x∗) is positive definite (2.55)

For constrained optimization problems the local minima can occur on the boundary of
the set Ω. For these cases it is appropriate to apply the Karush-Kuhn-Tucker (KKT) opti-
mality conditions [Lue04, BV04, PM04]. The KKT-conditions rely on the definition of active
constraints and regular points [Lue04].

Definition 2.46 (Active constraints). For a constrained optimization problem

minimize f (x)
subject to g (x) ≤ 0

h (x) = 0

x ∈ Ω

the inequality constraint gi(x) is said to be active at the point x if gi(x) = 0. Otherwise the
constraint gi(x) is said to be inactive.

Definition 2.47 (Regular point). For a constrained optimization problem

minimize f (x)
subject to g (x) ≤ 0

h (x) = 0

x ∈ Ω

let I be the set of indices i such that gi(x) = 0. The point x is said to be a regular point if
the gradient vectors ∇h1(x), . . . ,∇hm(x) and ∇gi(x),∀i ∈ I are linearly independent.

Definition 2.48 (KKT conditions for constrained problems). Given a constrained optimiza-
tion problem of the type

minimize f (x)
subject to g (x) ≤ 0

h (x) = 0

x ∈ Ω

with f, g, h ∈ C1, assume that the regular point x∗ is a local minimum optimum. This implies
that there must exist vectors λ ∈ E

m and µ ∈ E
k with µ ≥ 0 such that

µT g (x∗) = 0 (2.56)

∇f (x∗) + λT∇h (x∗) + µT g (x∗) = 0. (2.57)

The components λ1, . . . , λk of the vector λ are called Lagrange multipliers [Lue04, PM04].

Definition 2.49 (The dual problem). For a constrained optimization problem (called the
primal problem)

26



2.3. GRAPH THEORY

minimize f (x)
subject to g (x) ≤ 0

h (x) = 0

x ∈ Ω

where f is a convex function defined on a convex set, define the Lagrangian L (x, λ, µ)

L (x, λ, µ) = f (x) + λT h (x) + µT g (x) (2.58)

with λ ≥ 0. Using the Lagrangian, we define the dual problem

maximize L (x, λ, µ) over λ, µ
subject to λ ≥ 0

The solution x to the min-max optimization problem

min
x

max
λ,µ
L (x, λ, µ) (2.59)

is a solution to the the primal problem as well [Eng06].

The dual problem presented above can be used to convert a constrained problem to a
unconstrained problem.

2.3 Graph Theory

The routing problems discussed are typically cast in the language of graph theory. The
purpose of this section is to introduce the basic notions of graph theory and set them in
connection to their corresponding parts in the theory of routing in computer networks.

Definition 2.50 (Graph). An undirected graph G = (V, E) consists of a nonempty set V
of vertices (also called nodes) and a collection E of pairs of distinct vertices from V . The
elements of V are called edges, links or arcs. In an undirected graph the edge (i, j) between
node i and node j is indistinguishable for the edge (j, i). In the case of a directed graph (also
called digraph) the edges (i, j) and (j, i) are distinct [BT97, BG91, PS98]. For the directed
edge (i, j) we say that the edge is outgoing from the perspective of node i and incoming for
node j.

The graph of a computer network uses vertices to represent hosts (nodes) and edges
to denote communication links (one hop) connecting two hosts. Since properties of network
traffic often depend on the direction in which the traffic goes we focus exclusively on digraphs.

If (i, j) is an edge in G(V, E) then we say that edge (i, j) is incident to node i and j.
Additionally, we say that i and j are adjacent nodes (or neighbors).

The number of outgoing edges (i, j) is called the outdegree of node i. Similarly, the indegree
of node j is defined as the number of incoming edges at j from various nodes i.

Definition 2.51 (Path). A directed path P (n1, nk) in a directed graph G(V, E) is a sequence
of nodes n1, n2, . . . , nk with k ≥ 2. This definition is equivalent to saying that the path P is
a sequence of (k− 1) links l1, . . . , lk−1. The number of links in a path P defines the length of
the path, which is (k − 1) in this case.

27



CHAPTER 2. THEORETICAL FOUNDATION

In a path P (n1, nk), the node n1 is called the source or origin node and nk is called the
destination node. For a node ni in P all nodes {nj : j < i} (if any) are called upstream nodes
and all nodes {nj : j > i} are called downstream nodes.

A graph G(V, E) is said to be connected if, for each pair of nodes (i, j) : i, j ∈ V, i 6= j,
there is a path P (i, j). If in addition to that, there is also a path P (j → i) (i. e. ,, there is a
path from i to j and another from j to i) the graph is said to be strongly connected.

Definition 2.52 (Weighted graph). In a weighted graph G(V, E) all edges have an associated
number w ∈ R called the weight that represents a metric of interest (e. g. , cost, bandwidth,
delay). Clearly, if we consider n metrics simultaneously then the weight is a vector w =
[w1, . . . wn]. A weighted graph can be represented by a symmetric matrix A =

[

wij

]

where
wij is set to a suitable value (e. g. , 0 or ∞) if there is no edge (i, j) in E.

In routing optimization the weights of the graph generally fall into one of the following
categories:

additive: delay, jitter, cost

multiplicative: packet loss

min-max: bandwidth

Multiplicative weights can be turned into additive weights by taking the logarithm of their
product [VMK04]. Therefore, we focus in the remainder of the report on additive and min-
max weights only.

2.4 Routing Optimization Problems

The typical computer network scenario that leads to a optimization problem is the following.
It is assumed that information about network topology is available in the form of a weighted
digraph G(V, E). The link weight in the graph represents a set of metrics of interest, such
as bandwidth, delay, jitter, packet loss and cost. Furthermore, information about the flow
demands is available as well. A flow demand is a set of path constraints between a pair of
nodes (A and B) in the graph. In its simplest form, the flow demand contains only the
bandwidth required to transfer data from A to B. We assume that flow demands depend on
the direction of the path. The path from B to A is free to use a different flow demand, if
any. The most complex flow demands can contain up to the number of elements of the link
weight used in the digraph.

There can be more than one path connecting A and B and each path consists of one or
more links. The goal is to spread the network traffic between each pair of nodes A and B
in such a way as to accommodate the flow demand, if possible. This is called the feasibility
problem for bifurcated flows.

Sometimes it is required that the entire traffic flow between two nodes follows a single path,
instead of being spread across several. We call this a feasibility problem for non-bifurcated
flows.

If, in addition to the flow demands, it is desired that the traffic delay across the entire
network be minimized as well, then the feasibility problem becomes an optimization problem.

It is not in our intention to survey the different types of optimization problems that can
be applied to computer networks. The interested reader can find this type of information

28



2.4. ROUTING OPTIMIZATION PROBLEMS

in [AMO93, PM04, DF07]. Our approach is to consider two optimization problems and
two feasible problems that can fit into the ORP framework discussed in Chapter 1.3 and
Chapter 1.4. We consider the optimal routing problem [BG91] and the multi-constrained
optimal path (MCOP) selection problem [VMK04] as optimal problems. By removing the
objective function each of the problems is cast into a feasibility framework.

In the optimal routing problem we have a set of flow demands consisting of bandwidth
constraints and a convex cost function to minimize. Following Chapter 5 in [BG91] we denote
by Fij the flow on the link between i and j. We define the cost function by

∑

(i,j)

Dij (Fij) (2.60)

where Dij is a convex cost function in Fij . For example, denoting by Cij the available
bandwidth of the link (i, j) and by dij the sum of processing and propagation delay, then

Dij (Fij) =
Fij

Cij + Fij
+ dijFij (2.61)

The set W contains pair of distinct nodes w = (i, j) for which there is a flow demand rw.
Further, we denote by Pw the set of all paths connecting a pair of nodes w and by xp the flow
allocated to path p. With this notation we can write

Fij =
∑

∀p: (i,j)∈p

xp (2.62)

where the sum is taken over all paths p containing link (i, j). The complete optimal routing
problem is shown in Table 2.1.

minimize
∑

(i,j)

Dij





∑

∀p: (i,j)∈p

xp





subject to
∑

p∈Pw

xp = rw, for all w ∈W

xp ≥ 0, for all p ∈ Pw and w ∈W

Table 2.1: Optimal routing problem

If we are only interested in ensuring that all flow demands are satisfied, then we have a
feasible routing problem as shown in Table 2.2. The last inequality constraint ensures that
all paths passing along the link (i, j) do not consume more bandwidth than available.

In the case of a multi-constrained path (MCP) problem we attempt to find a constrained
path at a time. This is a feasibility problem. Each link in G(V, E) has a number of additive
QoS metrics (e. g. , delay and delay jitter) as well as min-max QoS metrics (e. g. , bandwidth).
The constraints on min-max metrics can be dealt with by pruning the links of the graph that
do not satisfy the min-max constraints [VMK04, KVMKK02]. When this is done we are left
with additive metrics only. For i = 1, . . . , m we denote by wi(u, v) the i-th additive metric for
the link (u, v) between nodes u and v such that (u, v) ∈ E. The MCP optimization problem
for m additive constraint values Li on the requested path is shown in Table 2.3.

29



CHAPTER 2. THEORETICAL FOUNDATION

find xp, for all w ∈ Pw and all p ∈ Pw

subject to
∑

p∈Pw

xp = rw, for all w ∈W

xp ≥ 0, for all p ∈ Pw and w ∈W

∑

∀p: (i,j)∈p

xp ≤ Cij for all p ∈ Pw and w ∈W

Table 2.2: Feasible routing problem

find path P

subject to wi(P ) =
∑

(u,v)∈P

wi(u, v) ≤ Li for i = 1 . . . m and all (u, v) ∈ E

Table 2.3: Multi-constrained path selection problem (MCP)

The MCP problem problem can be comfortably extended to an multi-constrained optimal
path (MCOP) selection problem by minimizing or maximizing over one of the metrics wi.
The alternative is to define a path-length function over all metrics [VMK04, KVMKK02] and
to minimize the path-length function itself. More details about this approach are provided in
Chapter 8.

The four problems presented here imply that for each pair of nodes (u, v) all possible
paths connecting u and v have been precomputed leaving the optimization problem itself to
deal with selecting one of these paths according to the constraints. All paths connecting two
nodes (u, v) in a graph G(V, E) can be computed efficiently, for example by the depth-first
search method [CLR01]. The exception is described in Chapter 8, where we see that path
discovery is part of SAMCRA’s algorithm.

2.5 Algorithms and Complexity

The optimality conditions presented in Chapter 2.2 provide good hints on how to solve opti-
mization problems by using differential analysis. For example, in the case of unconstrained
optimization, the first-order conditions say that if one can solve the system of differential
equations

∇f (x∗) = 0 (2.63)

the solution x∗ is a local minimum (and also a global minimum in the case of a convex
function).

This approach works well for problems with a small number of variables. For larger
problems the effort to solve them becomes prohibitive. In that case it is more reasonable to
approximate the solution using an algorithmic approach.

Definition 2.53 (Algorithm). An algorithm is a step-by-step iterative procedure to solve a
problem [Lue04, GJ79]. The general form of an algorithm for a feasible space X is

xk+1 = Ξ (xk) (2.64)

30



2.5. ALGORITHMS AND COMPLEXITY

where xk ∈ X denotes step k of the algorithms and Ξ is a mapping from X to X. The term
Ξ can be a matrix, a function or some other form of mathematical expression. When applied
to a vector x ∈ X, Ξ produces another vector y ∈ X.

The algorithmic approaches can be divided into three categories:

i) numerical methods

ii) heuristics

iii) meta-heuristics.

Numerical methods solve problems by function approximation and finite differential cal-
culus [Ham86, DF07]. For example, a trick often used is to approximate a function f at
a point x with the polynomial generated by the second-degree Taylor series. The resulting
gradient vector and the Hessian matrix can provide valuable insight about how the function
changes in different directions in a neighborhood of x. Numerical methods require that cer-
tain conditions apply to the problem in question or else the approximations may not converge
to an optimal value. Further, they are susceptible to roundoff and truncation errors and to
stability problems related to the feedback loop in Eq. 2.64 [Ham86]. Chapter 3–6 present
various examples of numerical methods for optimization.

If numerical methods do not work well on the problem at hand, then it may be possible
to apply a heuristic [DF07]. Heuristics are algorithms that search the feasible space in an
intelligent way. In general, heuristics involve a tradeoff between computation time and accu-
racy: fast heuristics sometimes cannot find the optimal solution and accurate heuristics find
the optimal solution always, but for some problem instances they can take an unreasonable
amount of time to finish. In Chapter 8 we describe a heuristic called SAMCRA.

Metaheurstics are algorithms that combine various heuristics in an effort to obtain an ap-
proximate solution even in the case of difficult problem instances [BR03, DF07]. Metaheuristic
often employ a probabilistic element in order to avoid being trapped in a local minima. The
PSO method described in Chapter 7 is an example of metaheuristic.

All algorithms use some type of convergence criteria. Intuitively, we say that an algorithm
has converged when xk+1 = xk or when f (xk+1) = f (xk), meaning that x∗ = xk. However,
this may not happen at all when the algorithm is implemented by a computer program. Since
computers are finite-state machines they have finite precision in representing real numbers
(i. e. , they use floating-point numbers). This implies that numbers are rounded off, which
leads to round-off errors. In practice, it means that the optimal value of the algorithm
approaches the true value x∗ in an ǫ-neighborhood dictated by the floating-point precision
used. Therefore, the convergence criteria should be of one of the forms shown below [Eng06]:

i) f (xk+1)− f (xk) < ǫ(1 + |f (xk+1) |),

ii) ‖xk − xk+1‖ <
√

ǫ(1 + ‖xk+1‖),

iii) ‖∇f (xk+1)‖ < ǫ1/3(1 + |f (xk+1) |.

Additionally, one needs a stopping condition. Obviously if the algorithm converges according
to one of the criteria above, then it can stop. Otherwise, one needs an upper bound ζ on the
number of steps k performed by the algorithm. If the k = ζ the algorithm stops. Clearly,
the choice of ζ is very important since setting the value too low causes the algorithm to stop

31



CHAPTER 2. THEORETICAL FOUNDATION

even if the problem has an optimal solution, whereas if the value is too high the algorithm
will run for a long time, even if no solution exists.

An important issue related to algorithms is that of computational complexity. It is con-
venient to express complexity in terms of the size of input data to the algorithm. Then, the
complexity is related to space required to store the input data and to the time it takes to run
the algorithm until a solution is found1. In general it is assumed that time complexity has
more impact than space complexity. This means that in general we are confident that there
is a way to store the input data, but we are worried about the running time of the algorithm.
The procedure to estimate the time complexity can be briefly explained as follows.

It is assumed that the input to an algorithm consists of n elements. For example, the n
elements can be the set of edges in a graph G(V, E). The algorithm must process the input
data in a number of steps that is roughly proportional to n. This proportion is expressed as
a polynomial anx + bny + . . . cnz, where a, b, c, x, y, z are constant integers2. Then the time
complexity is the polynomial term that dominates the expression when n → ∞. Unfortu-
nately, estimating the numbers of steps can be nontrivial. Therefore one tends to settle for
estimating an upper bound, which is referred to as the worst-case scenario. The worst-case
scenario is an estimate on the maximum number of steps that the algorithm would require
for any instance of a problem. If, for example, it is calculated that the worst-case scenario of
a problem with n elements scales as n2 (the dominating factor in the polynomial), then we
write O

(

n2
)

. If the problem scales as a constant, which means it is independent of the size
of the input, we write O (1).

Sometimes it is possible to also compute (in a similar way) a lower bound, which we
call the minimum complexity. The minimum complexity tells us what is the the minimum
computational effort for any problem instance. If, for example, the dominating factor in the
minimum complexity polynomial is n, we write o (n).

So far we have assumed that the time complexity can be approximated by a polynomial.
Actually, there is also a large volume of problems with exponential time complexity (e. g. ,,
O (n!) and O (kn) for k ∈ Z) [PS98].

Problems that can be solved in polynomial time are said to belong to the class of problems
P and those with exponential time complexity are confined to the class NP3. Some problems
are said to be NP-complete. The implications of this are that if a polynomial-time algorithm
is found to solve the problem, then it would mean that all problems in the class NP can
be solved in polynomial time. Should this occur, it would also answer one of the greatest
questions in computer science, namely if the class P is equivalent to NP. The interested
reader can find more information in [Coo83, GJ79].

In terms of the problems considered in Chapter 2.4, the MCP and MCOP problem are
NP-complete [WC96]. However, Kuipers and Van Mieghem have shown [KVM05] that NP-
complete behavior is unlikely to occur in realistic communication networks. The optimal rout-
ing problem is NP-complete only if the solution is constrained to non-bifurcated paths [PM04].

1We assume that ζ = ∞.
2They don’t have to be integers, but we assume this for simplicity purposes.
3This is actually a gross simplification, but it is good enough for the scope of the report.

32



Chapter 3

Descent Methods

In this chapter we focus on basic descent methods, which are iterative methods used for
solving unconstrained optimization problems. We selected the steepest descent method and
Newton’s method because of their importance to the field of unconstrained optimization. In
fact, the conjugate gradient method presented in Chapter 4 is an intermediate between these
two methods. Additionally, the gradient projection method presented in Chapter 6 is based
on the steepest descent method [Lue04].

The general idea of descent methods is that given a point x in the feasible space they
attempt to discover a descent direction d. A descent direction d is a vector such that
f (x + d) < f (x). However, in order to speed up the convergence it is desired to scale d

by a factor σ chosen in such a way that f (x + σd) achieves a minimum value along the line
x + σd. This is called line search and is the second important ingredient of all descent-based
optimization methods. Line search is essentially the problem of finding the minimum in one
dimension. This can be done either analytically, or through heuristics such as golden section
search or Brent’s method [PTVF02, Lue04].

It follows from the discussion above that the main property of descent methods is to
decrease the value of the objective function at each step k such that

f (xk+1) < f (xk) (3.1)

except when xk is optimal [BV04]. The general descent method (GDM) is shown in Algo-
rithm 1.

1: Initialize x0

2: repeat

3: Find a descent direction ∆k

4: Line search: find a step length σk

5: xk+1 ← xk + σk∆k

6: until stopping condition is satisfied

Algorithm 1: General descent method (GDM)

The choice of an initial point x0 does not affect the convergence of the algorithm to a local
minimum, provided that one exists. However, choosing an initial point close to the optimal
solution requires less iterations. The procedure to find a descent direction depends on the
specific descent algorithm in question. The symbol ← on line 5 of Algorithm 1 indicates that

33



CHAPTER 3. DESCENT METHODS

the expression or variable on the left side of the symbol is assigned the value (or matrix)
resulting from the expression on the right side of the symbol. Within an algorithm we use
the symbol “=” for comparison and not for assignment.

The methods described in this chapter can applied only to unconstrained problems. Con-
strained problems can be solved only if, for example, one can construct the Lagrangian of the
objective function and then solve the resulting min-max problem as described in Chapter 2.2.

3.1 Steepest Descent Method

We recall from Chapter 2.1.5 that the gradient at x points in the direction of the greatest
increase of f (x). The steepest descent method (SDM) searches for the next feasible point in
the direction opposite to the gradient(i. e. , ∆k = −∇f (xk)), as shown in Algorithm 2. The
step length σk is restricted to nonnegative values.

1: Initialize x0

2: repeat

3: Line search: find σk that minimizes f (xk − σk∇f (xk))
4: xk+1 ← xk − σk∇f (xk)
5: until stopping condition is satisfied

Algorithm 2: Steepest descent method (SDM)

The steepest method is motivated by considering first-order Taylor approximation in the
direction dk from the point xk

f (xk + dk) ≈ T1(xk + dk) = f (xk) +∇f (xk)
T dk (3.2)

Accordingly, the term ∇f (xk)
T d provides the descent direction −∆k when ‖d‖ = 1 [BV04].

3.2 Newton’s Method

Newton’s method is based on using a second order Taylor approximation of the objective
function f (x) in a direction dk from the point xk

f (xk + dk) ≈ T2(xk + dk) = f (xk) +∇f (xk)
T

dk +
1

2
dT

k ∇2f (xk) dk. (3.3)

The idea is to find the optimum solution of the Taylor approximation and use that as the step
∆k. We do this by calculating the gradient of T2(xk + dk and then applying Definition 2.44
on page 25 [BV04, LRV01, Lue04]. The gradient of T2(xk + dk) is

∇T2(xk + dk) = ∇f (xk) +∇2f (xk) dk. (3.4)

If we let

∇T2(xk + dk) = 0 (3.5)

and solve for dk, we obtain

∆k = dk = −
[

∇2f (xk)
]−1∇f (xk) . (3.6)

34



3.2. NEWTON’S METHOD

Newton’s method uses a step length σk = 1. It possible to decide the step length using a
linear search in which case, the method is called the damped or guarded Newton’s method.
In Algorithm 3 we assume that there is a boolean variable controlling which version of the
algorithm is being used.

1: Initialize x0

2: repeat

3: Compute ∇f (xk) and −
[

∇2f (xk)
]−1

4: dk ← −
[

∇2f (xk)
]−1∇f (xk)

5: if damped Newton’s method then

6: Line search: find σk that minimizes f (xk + σkdk)
7: else

8: σk ← 1
9: end if

10: xk+1 ← xk + σkdk

11: until stopping condition is satisfied

Algorithm 3: Newton’s method (NM)

35



CHAPTER 3. DESCENT METHODS

36



Chapter 4

Conjugate Gradient Method

The conjugate gradient method (CGM) was initially intended for solving a system Ax = b

of n equations in n variables [HS52]. This is equivalent to minimizing the quadratic function

f (x) =
1

2
xT Ax− bT x, (4.1)

where A is a n×n positive definite matrix [GVL96, Lue04]. The main idea of the CGM is to
gain better performance than that of the steepest descent method or of the Newton’s method
by finding the solution in n steps. This implies that the algorithm takes a step of the “right”
length along each of the n basis vectors. It also means that each step is taken in a direction
orthogonal to the previous direction. In the CGM this is done using conjugate vectors.

Definition 4.1 (Conjugate vectors). Two vectors d1 and d2 are said to be conjugate with
respect to the positive definite matrix A, if dT

1 Ad2 = 0 [Lue04]. A set of vectors d0, . . . ,dk

that are pairwise conjugate to A (i. e. , dT
i Adj = 0,∀i 6= j) are also linearly independent.

Given a set of n conjugate vectors d0, . . . ,dn−1, the solution x∗ to the equation Ax = b

can be written as the linear combination of conjugate vectors

x∗ = c0d0 + · · ·+ cn−1dn−1. (4.2)

Each constant ci can be calculated by multiplying both sides of Eq. 4.2 by dT
i A such that

ci =
dT

i Ax∗

dT
i Adi

=
dT

i b

dT
i Adi

. (4.3)

The remaining question is how to chose the conjugate vectors. We do not dwell upon the
theory surrounding the algorithm, but rather present each step as shown in Algorithm 4. The
interested reader can find more information in [HS52, GVL96, Lue04].

We assume that the CGM starts at some point x0 in the feasible space. We let r0 =
Ax0 − b, which can be thought of as the residual value (error) of the equation Ax = b when
x0 6= x∗. The vectors rk have actually a gradient interpretation in underlaying theory, which
explains the name of the method [Lue04]. Additionally, we set d0 to the negative of the
gradient (residual) value r0.

The step length σk is calculated by the expression on line 5 in Algorithm 4. Each step
length σk is equivalent to a variable ci in Eq. 4.2. The new feasible solution xk+1 is computed

37



CHAPTER 4. CONJUGATE GRADIENT METHOD

1: Initialize x0

2: r0 ← b−Ax0

3: d0 ← −r0

4: repeat

5: σk ← −
rT

k dk

dT
k Adk

6: xk+1 ← xk + σkdk

7: rk+1 ← Axk+1 − b

8: βk ←
rT

k+1Adk

dT
k Adk

9: dk+1 ← −rk+1 + βkdk

10: until stopping condition is satisfied

Algorithm 4: Conjugate gradient method (CGM)

on Line 6. Line 7–9 are used to compute a new direction dk+1, which is orthogonal to the
previous direction.

To use the method with a nonquadratic function we perform a second degree Taylor
approximation in each point xk. In the neighborhood of those points the Taylor polynomial
behaves as a quadratic function. This is the same idea as in the case of Newton’s method. In
the case of the CGM we replace in Algorithm 4 the residuals rk by the gradient ∇f (xk) and
the matrix A by the Hessian ∇2f (xk) [Lue04]. These changes are shown in Algorithm 5.

The CGM with quadratic approximation (Q-CGM) does not usually converge in n steps.
It is customary to restart the algorithm after n steps in order to improve convergence, which
should explain the for-loop.

1: Initialize x0

2: repeat

3: r0 ← ∇f (x0)
4: d0 ← −r0

5: for k = 0, 1, . . . , n− 1 do

6: σk ← −
rT

k dk

dT
k∇2f (xk) dk

7: xk+1 ← xk + σkdk

8: rk+1 ← ∇f (xk+1)
9: if k 6= N − 1 then

10: βk ←
rT

k+1∇2f (xk) dk

dT
k∇2f (xk)dk

11: dk+1 ← −rk+1 + βkdk

12: end if

13: end for

14: x0 ← xn

15: until stopping condition is satisfied

Algorithm 5: Conjugate gradient method with quadratic approximation (Q-CGM)

The requirement to evaluate the Hessian in each iteration of the Q-CGM leads to a
performance bottleneck [Lue04]. The Fletcher-Reeves CGM (FR-CGM) tries to alleviate this

38



problem by proposing a line search for σk. Additionally, the computation of βk does not need
to evaluate the Hessian. These changes can be observed on line 6 and 10 in Algorithm 6.

1: Initialize x0

2: repeat

3: r0 ← ∇f (x0)
4: d0 ← −r0

5: for k = 0, 1, . . . , N − 1 do

6: Line search: find σk that minimizes f (xk + σkdk)
7: xk+1 ← xk + σkdk

8: rk+1 ← ∇f (xk+1)
9: if k 6= N − 1 then

10: βk ←
rT

k+1rk+1

rT
k rk

11: dk+1 ← −rk+1 + βkdk

12: end if

13: end for

14: x0 ← xN

15: until stopping condition is satisfied

Algorithm 6: Fletcher-Reeves conjugate gradient method (FR-CGM)

Additional changes in the computation of βk were suggested by Polak and Ribiere in an
effort to increase the algorithm efficiency. Algorithm 7 presents the Polak-Ribiere CGM (PR-
CGM).

1: Initialize x0

2: repeat

3: d0 ← −r0 ← ∇f (x0)
4: for k = 0, 1, . . . , N − 1 do

5: Line search: find σk that minimizes f (xk + σkdk)
6: xk+1 ← xk + σkdk

7: rk+1 ← ∇f (xk+1)
8: if k 6= N − 1 then

9: βk ←
(rk+1 − rk)

T
rk+1

rT
k rk

10: dk+1 ← −rk+1 + βkdk

11: end if

12: end for

13: x0 ← xN

14: until stopping condition is satisfied

Algorithm 7: Polak-Ribiere conjugate gradient method (PR-CGM)

Conjugate gradient methods are suitable for use in unconstrained optimization problems.
If constrained optimization problems can be converted to an unconstrained problem, then
the conjugate gradient methods can be used to solve them. Additionally, conjugate gradient
methods can be used to solve feasibility problems of the type Ax = b, where A is a n × n
matrix.

39



CHAPTER 4. CONJUGATE GRADIENT METHOD

40



Chapter 5

Simplex Method

The simplex method attempts to solve the linear problems with linear constraints of the form
shown in Table 5.1.

minimize f (x) = cT x

subject to Ex = p (1)
Gx ≥ s (2)
Hx ≤ t (3)
xi ∈ R for i = 1, . . . , n

Table 5.1: Linear optimization problem in general form

This is called the general form of the linear optimization problem. The unknown variables
are denoted by the column vector x with n elements. The vector cT holds the coefficients for
the unknown variables. The matrix E contains the coefficients for the equality constraints.
Similarly, the matrices G and H represent the coefficients for the inequality constraints. The
vectors p,s and t contain the constants on the right hand side of the equalities and inequalities
respectively.

In the description of the linear problem any combination of the constraints (1)–(3) may
appear. If there are no constraints of the type (1)–(3), then the linear problem is uncon-
strained.

In order to apply the simplex method it is necessary to convert the problem description
from the general form to the standard form shown in Table 5.2.

minimize f (x) = cT x

subject to Ax = b

xi ≥ 0 and bi > 0 for i = 1, . . . , N

Table 5.2: Linear optimization problem in standard form

In this case the matrix A contains the constraints (1)–(3) where the inequality constraints
(2) and (3) have been changed to equality constraints [Lue04].

For example, given the the constraint row i in matrix G

gi1x1 + gi2x2 + · · ·+ ginxn ≥ si (5.1)

41



CHAPTER 5. SIMPLEX METHOD

this row can be converted into standard form by subtracting from it a surplus variable y1

such that

gi1x1 + gi2x2 + · · ·+ ginxn − yi = s1. (5.2)

There are just as many surplus variables as rows in the matrix G. Similarly, for the constraints
row i in matrix H

hi1x1 + hi2x2 + · · ·+ hinxn ≥ ti (5.3)

we introduce add a slack variable wi on the right side of the equality sign such that

hi1x1 + hi2x2 + · · ·+ hinxn + wi = ti. (5.4)

When surplus variables and slack variables have been introduced we can view the matrix A in
Table 5.2 as the original matrix E from Table 5.1 augmented by matrix G and H. Similarly,
the vector x from Table 5.1 has been augmented by the vector y and w at the same time
as vector p has been augmented by s and t. In the course of applying the simplex method
surplus and slack variables are treated as the other x values. In the end they will be set equal
to zero.

Also, note that in Table 5.2 all elements of x (i. e. , all unknown variables xi) are not
allowed to be negative. If the problem in general form requires that some variables xi be
allowed to take on negative values in addition to zero and positive values, we need to introduce
free variables qi ≥ 0 and ri ≥ 0. We then let xi = qi − ri and replace all xi accordingly.
Additionally, all components of the vector b must be nonnegative. This can be easily achieved
by multiplying with −1 both sides of the equal sign [Lue04].

The simplex method assumes that there are m independent columns in A (i. e. , the matrix
A is of rank m), which also means that the columns are base vectors in the space R

m. The
m columns correspond to m components in x. We denote by B the matrix containing the
m independent columns of A. Then we can uniquely solve the equation By = b for a vector
y with m components. If we let the m components in x assume the corresponding values
in y and set the remaining n −m components to zero, then x is a solution to the equation
Ax = b. This is called a basic solution and the components of the vector x are called basic
variables. If the basic solution lies within the feasible region of the problem in Table 5.2 then
it is called a basic feasible solution [PS98, Lue04].

Geometrically, the feasible region of the problem described in Table 5.2 is always a convex
polytope, also called simplex. For example, in two dimensions the simplex corresponds to a
triangle, whereas in three dimensions it corresponds to a polyhedron (i. e. , a pyramid with
triangular base). The vertices of the simplex constitute basic feasible solutions. For a problem
with n variables and m constraints there are

(

n

m

)

=
n!

m!(n−m)!
(5.5)

feasible solutions. The simplex method attempts to find the optimal solution by searching
the vertices of the polytope in an efficient manner [PS98].

The algorithm starts in one of the simplex vertices, which according to the discussion
above corresponds to a basic feasible solution. There it evaluates how the objective function
changes if it were to “move” into one of the (n−m) neighboring vertices. The move is always
along the edges of the simplex. When the algorithm has moved to a neighboring vertex one
of the the m base vectors is replaced by one of the other (n−m) vectors.

42



If we denote by xk the feasible solution at step k in the simplex method and by dk the
direction along the edge to one of the neighboring vertices, then the rate of the change
in the objective function due to moving along dk is given by the directional derivative
Ddf (xk) = ∇f (xk)

T
d = cT d. The algorithm computes the (n − m) directional deriva-

tives and then selects a direction that provides a maximum decrease (or increase if we try to
solve a maximization problem) in the objective function. The next step in the algorithm is
to compute the feasible solution along the selected direction by the formula [LRV01]

xk+1 = xk + σkdk (5.6)

where the step σk can be calculated from dk and the current base vectors.

Before showing the complete algorithm we need to discuss the following issues:

i) how to find the (n−m) directions,

ii) how to choose a step length σk,

iii) how to choose the initial vertex (i. e. , basic feasible solution) to start from.

We assume that the linear problem is already in standard form and that the matrix A

contains m rows and n columns. For simplicity we assume that x1, . . . , xm are the basic
variables. We rewrite the terms of the equation Ax = b so that the basic variables are
expressed in terms of nonbasic ones and of the b values.

x1 = b1 − a1,m+1xm+1 − a1,m+2xm+2 − · · · − a1,nxn

x2 = b2 − a2,m+1xm+1 − a2,m+2xm+2 − · · · − a2,nxn

... (5.7)

xm = bm − am,m+1xm+1 − am,m+2xm+2 − · · · − am,nxn

Expressing the equations in this form is possible only when m ≤ n [PTVF02]. We can now
read the (n−m) direction vectors as the columns containing the aij coefficients. For example,
the directions along the xm+1 axis and xm+2 axis respectively are the n-elements vectors

dm+1 =

































−a1,m+1

−a2,m+1
...

−am,m+1

1
0
0
...
0

































dm+2 =

































−a1,m+2

−a2,m+2
...

−am,m+2

0
1
0
...
0

































(5.8)

Note that the vector component corresponding to the new direction (i. e. , the (m+1) compo-
nent of the vector dm+1 and the (m + 2) component of the vector dm+2) were set to one and
the remaining (n− (m + 1)) components are set to zero. The direction vectors are properly
scaled by the step length σk, which is described next.

43



CHAPTER 5. SIMPLEX METHOD

Once we have chosen a direction we have in essence decided which variable xj will join the
basis. Since we can only have m variables in a basic feasible solution we must decide which
one of the old basis components will leave the basis. The obvious choice is to get rid of the
component that limits the decrease the most (or increase in case of a maximum problem) in
the objective function. Given a direction vector d along the axis xj , we focus on the negative
vector elements {di : di < 0}. For each such element we compute the ratio xi/ − di, where
xi is the corresponding element in the vector x. We select the minimum ratio and the value
i decides which element xi leaves the basis [LRV01]. Incidentally, the ratio is also the step
length σk that we were looking for:

σk = min
xi

−di
for all i such that di < 0 (5.9)

In the case that no di < 0, then it is said that the solution is unbounded. This means that the
simplex extends towards infinity along the axis xj and consequently the objective function
approaches −∞ or +∞.

Algorithm 9 summarizes the discussion so far. The only detail left for discussion is how
to obtain the basic feasible solution required at the beginning of the algorithm. If all m
equations contain slack variables then the initial basic feasible solution will consist entirely
by slack variables. Otherwise one must consider the auxiliary optimization problem

minimize
∑m

i=1 αi

subject Ax + α = b

x ≥ 0
α ≥ 0

where A, x and b are the original variables as in Table 5.2 (including slack variable, surplus
variables and free variables) and α is a vector of artificial variables. Artificial variables are
used only for the equations that do not contain any slack variables. This problem has a initial
basic solution α = b. Consequently, it can be solved using Algorithm 9. If the algorithm
finds a solution, then all elements of a equal zero due to the objective function

∑m
i=1 αi and

the constraint α ≥ 0. The elements of x constitute a basic feasible solution that can be used
to solve the original problem by using the simplex method. If no feasible solution is found
then we cannot solve the original problem either. The two-phase simplex method is shown in
Algorithm 8.

Require: linear optimization problem in standard form
1: PHASE 1
2: Add artificial variables α to the original problem to construct the auxiliary problem
3: Solve the auxiliary problem using the simplex method described in Algorithm 9
4: if auxiliary problem cannot be solved then

5: exit

6: end if

7: PHASE 2
8: Let x0 equal the optimal solution to the auxiliary problem
9: Solve the original problem using the simplex method described in Algorithm 9

Algorithm 8: Two-phase simplex method (2-SM)

44



Require: basic feasible solution x0

1: k ← 0
2: loop

3: Compute the direction vector d
(i)
k for each direction i as shown in Eq. 5.7

4: for all direction vectors d
(i)
k do

5: ri ← cT d
(i)
k

6: end for

7: if minimization problem then

8: if all ri ≥ 0 then

9: xk is the optimal solution
10: return xk

11: else

12: mj ← min ri for all ri < 0
13: end if

14: else if maximization problem then

15: if all ri ≤ 0 then

16: xk is the optimal solution
17: exit

18: else

19: mj ← max ri for all ri > 0
20: end if

21: end if

22: The element xj is joining basis

23: if d
(i)
k has no negative elements then

24: The solution is unbounded
25: exit

26: end if

27: σk ← min xl

−dl
for all l such that dl < 0 where dl is an element of d

(i)
k

28: The element xl is leaving basis

29: xk+1 ← xk + σkd
(i)
k

30: k = k + 1
31: end loop

Algorithm 9: Simplex method (SM)

45



CHAPTER 5. SIMPLEX METHOD

If there is no objective function in the standard form of a linear optimization problem,
then we have a feasibility problem, expressed as a system of linear equations:

Ax = b (5.10)

Such systems can be solved by Gauss elimination or LU-decomposition [GVL96, PTVF02],
although neither one is discussed here. Additionally, if the matrix A is symmetric positive
definite, then the conjugate gradient method discussed in Chapter 4 can be used to solve the
system of linear equations as well.

46



Chapter 6

Gradient Projection Method

We consider here the gradient projection method (GPM) with the ability to solve the nonlinear
problem with linear constraints

minimize f (x)
subject to Gx ≤ b

Hx = c

x ∈ Ω.

We assume that the vector x has n elements and that G and H are matrices with p × n
and m× n elements, respectively. The GPM can be extended to handle nonlinear con-
straints [Lue04], but that is not within the scope of this report.

The idea of a working set is fundamental to the GPM. The working set W consists of all
or a subset of active constraints at a point x. A constraint Gix is said to be active at x if
Gix = 0, as formally defined in Chapter 2.2. The use of a working set implies that at each
feasible point x we are in fact considering the problem with equality constraints only

minimize f (x)
subject to Aqx = b

x ∈ Ω

where Aqx denote the set of q active constraints. Additionally, this means that the KKT-
conditions apply at x.

The working set constraints define a surface across which we have to search the next
feasible point. This is called the working surface. In the GPM, the direction dk in which we
search for the next feasible point xk+1 is given by the projection of the negative gradient on
the working space. This projection is provided by the projection matrix

P k =
[

I −AT
q (AqA

T
q )−1Aq

]

. (6.1)

The new direction is computed by multiplying the projection matrix with the gradient dk =
P k∇f (xk) [Lue04].

When a direction dk is found, the next issue is finding the step length σk. We can do
this by using a line search algorithm. However, in this case we are not interested in searching
along the whole line. Instead, we want to find the longest line segment xk +σkdk that can be
contained within the constraints. We can do that in two phases. During phase one we find

47



CHAPTER 6. GRADIENT PROJECTION METHOD

the maximum number α such that xk +αdk is feasible. Then we can proceed with phase two,
which gives the step length σk that minimizes f (xk + σkdk), where 0 ≤ σk ≤ α.

If d = 0 we have either found the optimal solution or the algorithm is prevented by the
constraints Aq from going any further.

To test if we have found an optimal solution we compute the Lagrange multipliers λ =
−(AqA

T
q )−1Aq∇f (xk). If all λj ≥ 0 for all j corresponding to active inequalities, then we

have indeed found the optimum [Lue04].
If on the other hand one or more λj are negative, then we need to remove one constraint

from the working set so that the algorithm can advance to the next feasible point. To do that
we remove from Aq row j corresponding to the smallest (most negative) λj .

The complete method is shown in Algorithm 10. A feasible solution x0 is required to
start the algorithm. This can be either identified in the problem specification or through a
procedure similar to PHASE 1 of the simplex method described in Chapter 5.

Require: x0 such that it is a feasible point (e. g. , use PHASE 1 of the simplex method)
1: Let the rows of Aq represent the q active constraints
2: repeat

3: P ←
[

I −AT
q (AqA

T
q )−1

]

4: d← −P ∇f (x)T

5: if d 6= 0 then

6: α← max{α : (x + αd) is feasible}
7: Line search: find σk that minimizes f (xk + σkdk), such that 0 ≤ σk ≤ α
8: x← x + σkd

9: else

10: λ← −(AqA
T
q )−1Aq∇f (x)T

11: if λj ≥ 0 for all j corresponding to active inequalities then

12: return x since it satisfies the KKT-conditions.
13: else

14: delete row j from Aq corresponding to the smallest λj

15: end if

16: end if

17: until stopping condition is satisfied

Algorithm 10: Gradient projection method (GPM)

If the optimization problem has no constraints other than that all solutions x are restricted
to the positive orthant, then there is a more efficient version of the GPM, as described
in [BG91].

48



Chapter 7

Particle Swarm Optimization

Particle swarm optimization (PSO) is a metaheuristic optimization method. The method is
based on the swarm intelligence displayed by bird flocking behavior. In this case the swarm
consists of particles. The term particle is used to denote that individuals in the swarm have
velocity and acceleration, although they lack mass and volume. Each individual particle
“flows” through the multidimensional search space having its position and velocity influenced
by neighboring particles as well as by a random component. The general PSO method is used
to solve unconstrained optimization problems of the form

minimize f (x)
subject to x ∈ R

n

We assume that each vector x consists of n elements and we denote by m the num-
ber of particles in a swarm (i. e. , the swarm size). The typical size of the swarm is 10–30
particles [Eng06].

In order to cope with particle identification we overload the variable notation used so far.
We write xi to specify the position in R

n for particle i and we denote by xij the position
of particle i along the jth coordinate axis. Note that xj is a vector and xij is a scalar.
Additionally, if we want to specify their value at a specific step k in the algorithm, we write

x
(k)
i and x

(k)
ij .

For each particle i there is a personal best position variable

y
(k+1)
i =

{

y
(k)
i if f

(

x
(k+1)
i

)

≥ f
(

y
(k)
i

)

x
(k+1)
i otherwise

(7.1)

being maintained. For a maximization problem the first condition is reversed:

f
(

x
(k+1)
i

)

≤ f
(

y
(k)
i

)

. (7.2)

In addition, the method must maintain a global best position, ŷ(k), or a local best position,

ŷ
(k)
i .

The global best PSO (GB-PSO) method computes ŷ(k) be considering the personal best
position of all particles in the swarm, such that

ŷ(k) = y
(k)
i such that f

(

y
(k)
i

)

= min
(

f
(

y
(k)
0

)

, . . . , f
(

y(k)
m

))

. (7.3)

49



CHAPTER 7. PARTICLE SWARM OPTIMIZATION

In the case of the local best PSO (LB-PSO), for each particle i, a neighborhood Ni of size η
must be defined. The neighborhood is defined as [Eng06].

Ni = {y(k)
i−η, y

(k)
i−η+1, . . . ,y

(k)
i−1, y

(k)
i , y

(k)
i+1, . . . ,y

(k)
i+η} (7.4)

The local best position ŷ
(k)
i is the best position within the neighborhood

ŷ
(k)
i = y

(k)
i ∈ Ni such that f

(

ŷ
(k)
i

)

= min f (x) , ∀x ∈ Ni (7.5)

The position of a particle x
(k)
ij is influenced by a cognitive component C

(k)
j and by a social

component S
(k)
j . Both components are stochastic variables drawn from the standard unit

distribution U(0, 1). This fact is indicated in the complete algorithm by writing C
(k)
j

d
= U(0, 1)

and S
(k)
j

d
= U(0, 1), respectively. Cj and Sj are scaled by the positive scalars c and s. The

scalars are called acceleration constants and their main use is to establish a sort of ratio
between the cognitive and social component. The value of the acceleration constants is static
and typically decided by empirical studies [Eng06].

The cognitive and social components of a particle are combined into a velocity component.
This is done depending upon the radius of social network used for particles. In the case of
GB-PSO the social network covers the entire swarm and the velocity component is

v
(k)
ij = v

(k)
ij + cC

(k)
j

(

y
(k)
ij − x

(k)
ij

)

+ sS
(k)
j

(

ŷ
(k)
j − x

(k)
ij

)

(7.6)

On the other hand, for the LB-PSO the social network is confined to the neighborhood Ni of
particle i and the velocity component is calculated as

v
(k)
ij = v

(k)
ij + cC

(k)
j

(

y
(k)
ij − x

(k)
ij

)

+ sS
(k)
j

(

ŷ
(k)
ij − x

(k)
ij

)

. (7.7)

Using the velocity component the position of particle can be updated as

x
(k+1)
i = x

(k)
i + v

(k+1)
i . (7.8)

The initial position x
(0)
i can be sampled from a uniform distribution U(xmin, xmax), where

xmin and xmax contain the minimum and maximum position along each coordinate in R
n.

Algorithm 11 and Algorithm 12 summarize these two PSO algorithms. In terms of effi-
ciency, the difference between GB-PSO and LB-PSO is that GB-PSO converges faster than
LB-PSO but is more likely to be trapped in local minima. The stopping condition is one of
those described in Chapter 2.5. Additional termination criteria are discussed in [Eng06].

Constrained problems that can be converted to unconstrained problems can also be solved
with PSO methods. Another possibility to solve constrained problems is to reject infeasible
solutions by not allowing them to be recorded as personal best, local best and global best
positions. Additionally, one can generate new random positions within the feasible space.
In [Eng06] there are several other methods presented that can extend the PSO methods to
handle constrained optimization problems.

50



1: x
(0)
i

d
= U (xmin, xmax) for all i = 1, . . . , m

2: y
(0)
i ← x

(0)
i for all i = 1, . . . , m

3: ŷ
(0)
i ← x

(0)
i for all i = 1, . . . , m

4: repeat

5: C
(k)
j

d
= U(0, 1) for all j = 1, . . . , n

6: S
(k)
j

d
= U(0, 1) for all j = 1, . . . , n

7: for each particle i = 1, . . . , m do

8: if f (xi) < f (yi) then

9: yi ← xi

10: end if

11: if f (yi) < f (ŷ) then

12: ŷ ← y

13: end if

14: end for

15: for each particle i = 1, . . . , m do

16: for each dimension j = 1, . . . , n do

17: v
(k)
ij ← v

(k)
ij + cC

(k)
j

(

y
(k)
ij − x

(k)
ij

)

+ sS
(k)
j

(

ŷ
(k)
j − x

(k)
ij

)

18: x
(k+1)
i ← x

(k)
i + v

(k+1)
i

19: y
(k+1)
i ←

{

y
(k)
i if f

(

x
(k+1)
i

)

≥ f
(

y
(k)
i

)

x
(k+1)
i otherwise

20: ŷ(k) ← y
(k)
i such that f

(

y
(k)
i

)

= min
(

f
(

y
(k)
0

)

, . . . , f
(

y
(k)
m

))

21: end for

22: end for

23: until stopping condition is satisfied

Algorithm 11: Global best particle swarm optimization (GB-PSO)

51



CHAPTER 7. PARTICLE SWARM OPTIMIZATION

1: x
(0)
i

d
= U (xmin, xmax) for all i = 1, . . . , m

2: y
(0)
i ← x

(0)
i for all i = 1, . . . , m

3: ŷ
(0)
i ← x

(0)
i for all i = 1, . . . , m

4: repeat

5: C
(k)
j

d
= U(0, 1) for all j = 1, . . . , n

6: S
(k)
j

d
= U(0, 1) for all j = 1, . . . , n

7: for each particle i = 1, . . . , m do

8: if f (xi) < f (yi) then

9: yi ← xi

10: end if

11: if f (yi) < f (ŷ) then

12: ŷ ← y

13: end if

14: end for

15: for each particle i = 1, . . . , m do

16: for each dimension j = 1, . . . , n do

17: v
(k)
ij ← v

(k)
ij + cC

(k)
j

(

y
(k)
ij − x

(k)
ij

)

+ sS
(k)
j

(

ŷ
(k)
ij − x

(k)
ij

)

18: x
(k+1)
i ← x

(k)
i + v

(k+1)
i

19: y
(k+1)
i ←

{

y
(k)
i if f

(

x
(k+1)
i

)

≥ f
(

y
(k)
i

)

x
(k+1)
i otherwise

20: ŷ
(k)
i ← y

(k)
i ∈ Ni such that f

(

ŷ
(k)
i

)

= min f (x) , ∀x ∈ Ni

21: end for

22: end for

23: until stopping condition is satisfied

Algorithm 12: Local best particle swarm optimization (LB-PSO)

52



Chapter 8

SAMCRA

Self-Adaptive Multiple Constraints Routing Algorithm (SAMCRA) is a heuristic that is able
to solve efficiently MCP and MCOP problems with additive metrics. The algorithm relies on
the following four key concepts [VMK04, KKKVM04]:

i) non-linear path length definition,

ii) k-shortest path computation,

iii) principle of path dominance,

iv) look-ahead concept.

For a path P with a set of m additive metrics (weights) w(P ) and m constraints L,
SAMCRA collapses all metrics into the path length metric

Λ(P ) =
∥

∥

∥

w

L

∥

∥

∥

∞
= max

1≤i≤m

wi(P )

Li
. (8.1)

The purpose of the non-linear path length is to obtain a better match of the boundaries of
the constraints when searching the feasible space. Since each path is represented by a single
metric, one is tempted to apply Dijkstra’s algorithm to solve the problem. However, Dijkstra’s
algorithm relies on the property that subsections of the shortest path are also shortest paths.
This property does not hold in this case due to the non-linear path length definition [VMK04].

SAMCRA attempts to alleviate this problem by its second key concept, which is the k-
shortest path computation. At each intermediate node on the path the algorithm stores the
shortest path found, the second shortest, up to the kth shortest. The value of k is decided
by the remaining two key concepts.

The principle of path dominance says that a path P1 from the source node to some
intermediate node is dominated if there is another path P2 for which at least one metric i is
wi(P2) > wi(P1) and all other j metrics are wj(P2) ≥ wj(P1), ∀j 6= i. If there is no such path
P2 then the path P1 is called nondominated. SAMCRA discards dominated paths.

SAMCRA’s look-ahead concept revolves around computing the shortest path from the
destination node to each node n in the graph G(V, E), for each of the m metrics. This is
done during the initialization phase of SAMCRA and implies that Dijkstra’s algorithm is run
m times. We denote by A the source node, by B the destination node and by n any other
node in the graph. The look-ahead computes a bound bn

i = wi (P
∗(n, B)) for metric i on

53



CHAPTER 8. SAMCRA

the shortest path P ∗(n, B) (on metric wi) between n and B. The usefulness of bi becomes
apparent when one considers the situation that SAMCRA has just computed the path from
the source node A to the intermediate node n. At that point, the algorithm knows the values
of wi (P (A, n)) and bi for all metrics i. Therefore, it can check if the inequality

wi (P (A, n)) + bi(n) ≤ Li (8.2)

holds for i = 1, . . . , m. If the inequality does not hold for at least one i, then the path from
A to B over the intermediate node n can be ignored.

If the inequality in Eq. 8.2 holds then one can compute the expected path length over an
intermediate node n using Eq. 8.1. This value is an upper bound on the expected path length
for all paths connecting A and B. In SAMCRA’s algorithm shown below, this value is stored
in the variable MAX and any path with a length greater than MAX is discarded [VMK04].

We have tried to keep SAMCRA’s pseudo-code structured the same way as in [VMK04,
Kui04]: main function shown in Algorithm 13, initialization routine displayed in Algorithm 14,
feasibility function in Algorithm 15 and update queue function shown in Algorithm 16.
The functions INSERT, EXTRACT MIN and DECREASE KEY are explained in depth
in [CLR01]. Here we mention only the effect of calling them. Table 8.1 contains the vari-
able definitions. SAMCRA requires as input the graph G(V, E), the number of link metrics
(weights) m, the source and destination nodes A and B, and the constraint vector L.

Require: G, m, A, B, L
1: b← call INITIALIZE(G, m, A, B)
2: while Q 6= ∅ do

3: [u, cu, ui, Λ (ui)]← call EXTRACT MIN(Q)
4: if ui 6= NIL then

5: ui ← GRAY

6: end if

7: if u = B then

8: DONE: return ui

9: else

10: for all nodes v adjacent to u, except π(ui) and A do

11: D ← call FEASIBILITY(G, u, i, v, c, d, w, MAX)
12: PLEN ← Λ(d(ui) + w(u→ v) + bv

13: if PLEN ≤MAX and D = FALSE then

14: call UPDATEQUEUE(G, u, i, v, j, c, d, w, π, PLEN)
15: if v = B and PLEN < MAX then

16: MAX ← PLEN
17: end if

18: end if

19: end for

20: end if

21: end while

Algorithm 13: Self-Adaptive Multiple Constraints Routing Algorithm (SAMCRA)

Line 1 of Algorithm 13 call the initialization function. For each node in the graph, the
function clears the number of stored paths and then it stores the theoretical maximum path
length in the variable MAX. The INITIALIZE function calls the DIJKSTRA function, which

54



Variable Definition

V set of vertices (nodes)

E set of edges (links)

G graph G(V, E)

m number link weights considered in this problem

A source node on the path to be computed

B destination node on the path to be computed

L = [L1, . . . , Lm] constraint values vector

Λ(P ) the nonlinear length of (sub)path P

u, v intermediate nodes

c = [c1, . . . , cN ] counter for the number of paths stored at each node, where
N is the number of nodes in V

MAX maximum length that a (sub)path may have

bn
i = wi (P

∗
i (n, B)) lower bound for weight i on the shortest path for weight i

between some node n and node B

w(P ) = [w1(P ), . . . , wm(P )] weight vector for the path P , such that
wi(P ) ≤ Li

w(u→ v) weight vector for the link connecting node u and v

Q queue storing the nodes on the path from A to B

ui = Pi(A, u) ith path from A to u stored in Q in the entry for node u

vi = Pi(A, v) ith path from A to v stored in Q in the entry for node v

π predecessor list

π (ui) = π (Pi(A, u)) predecessor node on the ith path from A to u

D boolean variable denoting if the (sub)path is dominated or
not

bn =
[

bn
1 . . . bn

m

]

lower bounds vector

d(ui) = w (P (A, u)) subpath weight vector for ui

PLEN predicted length variable

Table 8.1: Variable definitions for SAMCRA

55



CHAPTER 8. SAMCRA

calculates for each i the bounds bi for all nodes n ∈ V and also the shortest paths from A to
B. If any path has an expected length smaller than one, then that path length is stored in
MAX. Line 11–12 clear the queue variable Q and update the number of paths stored at node
A. The queue Q stores entries of the type [node, number of stored subpaths, list of

stored subpaths ui, path length for bi bounds]. The entries are sorted by minimum
path length ui. On line 13 we inserted node A into the queue. Since we have no subpaths
computed for A, the corresponding variable in the entry is marked NIL. Line 14 returns the
vector b with bounds to the main function, where an integrative process is started on line 2.

Require: G, m, A, B
1: for all v ∈ E do

2: cv = 0
3: end for

4: MAX = 1.0
5: for i = 1, . . . , m do

6: [bi(n), P ∗
i (A, B)]← call DIJKSTRA(G, A, B, i)

7: if Λ (P ∗
i (A, B)) < MAX then

8: MAX = Λ (P ∗
i (A, B))

9: end if

10: end for

11: Clear queue: Q← ∅
12: cA ← 1
13: call INSERT(Q, A, cA, NIL,Λ (bA))
14: return b

Algorithm 14: INITIALIZE

Line 3 in the main function extracts from Q the entry with the shortest subpath ui.
SAMCRA uses a color scheme for subpaths: new (undiscovered paths) are considered to be
white, discovered paths are colored grey and discarded paths are colored black. This explains
line 4–6. If the destination node u on the extracted subpath ui is node B then the algorithm
has successfully found the optimal path. Otherwise, it attempts to extend the subpath to one
of node u’s neighbors, with the exception of the previous node on the path and node A (to
avoid loops). For each of these nodes SAMCRA calls the FEASIBILITY function.

Require: G, u, i, v, c, d, w, MAX
1: for j = 1, . . . , cv do

2: if
(

d(ui) + w(u→ v)
)

− d(vj) ≤ 0 or Λ (d(vj)) > MAX then

3: vj ← BLACK

4: return FALSE

5: else if d(vj)−
(

d(ui) + w(u→ v)
)

≤ 0 then

6: return TRUE

7: end if

8: end for

Algorithm 15: FEASIBILITY

Given node u’s neighbor v, the FEASIBILITY function checks the length of the extended
path A→ u→ v against each subpath A→ v stored at node v. If the subpath is longer than

56



the extended path or longer than MAX the subpath is colored black and is not considered
anymore. If this is not the case, line 5 checks if the extended path is dominated by the subpath
vj . The FEASIBILITY function returns TRUE if the extended subpath is dominated and
false otherwise.

Line 12 in the main function computes the predicted length PLEN for the extended
subpath. If the predicted length does not exceed MAX and the extended subpath is not
dominated, then the function UPDATEQUEUE is called.

Require: G, u, i, v, j, c, d, w, π, PLEN
1: for j = 1, . . . , cv do

2: if vj = BLACK and Λ(d(vj + bv)) > PLEN then

3: call DECREASE KEY(Q, v, j, PLEN)
4: d(vj)← d(ui) + w(u→ v)
5: π(vj)← ui

6: return

7: end if

8: end for

9: cv ← c + 1
10: call INSERT(Q, v, cv, uv, PLEN)
11: k ← cv

12: d(vk)← d(ui) + w(u→ v)
13: π(vk)← ui

Algorithm 16: UPDATEQUEUE

Line 2 of the UPDATEQUEUE method checks if any black path exists with predicted
length greater than the predicted length PLEN of the extended path. If this is the case,
then DECREASE KEY updates the predicted length of path vj in node v’s entry with the
value PLEN. Line 4–6 update the subpath weight vector, the predecessor list of the path vj

and then cause the function to return. If the condition on line 2 in UPDATEQUEUE is not
met by any path vj , then line 9-13 updates the subpath count, inserts the subpath into Q’s
entry for v and updates the weight vector and predecessor list. Line 15-16 in the Algorithm 13
updates the MAX variable if necessary.

57



CHAPTER 8. SAMCRA

58



Chapter 9

Final Remarks

The last few years the Internet has witnessed a tremendous growth in terms of multimedia-
based service. These services, with emphasis on those being served live, demand better QoS
than that provided by IP’s best-effort service.

Although two major QoS architectures have been designed, none of them has been widely
deployed. The last few years new research has uncovered a new class of QoS architecture
based on overlay networks. The ROVER project at BTH in Karlskrona, Sweden is concerned
with the research and development of components for overlay-based QoS architectures. QoS
routing is one such component. Briefly stated, the mission of QoS routing is to find and to
manage optimal network paths subject to various QoS constraints. In this report we have
surveyed a number of optimization algorithms that can be used for this purpose.

We started by presenting the theoretical foundation of optimization theory. Applied op-
timization theory lies at the intersection of several disciplines: calculus, linear algebra, graph
theory, computation and complexity theory. For each discipline we tried to provide the min-
imum amount of theory required by concepts in optimization theory.

In terms of optimization algorithms we presented a mixture of numerical methods, a
heuristic and a metaheuristic method. We also discussed briefly the applicability of each
method to routing optimization problems.

The future work is to implement these methods on top of a library of numerical methods
such as GNU Scientific Library (GSL) [GDT+06] and test their performance in solving prob-
lems on different network topologies. A plan for the longer term is to integrate some of these
optimization algorithms with routing protocols in overlay networks.

59



CHAPTER 9. FINAL REMARKS

60



Appendix A

Acronyms

API application programming
interface

AS autonoumous system

BGP Border Gateway Protocol

BTH Blekinge Institute of
Technology

CGM conjugate gradient method

DiffServ Differentiated Services

FEC forward error correction

FR-CGM Fletcher-Reeves CGM

GDM general descent method

GPM gradient projection method

GB-PSO global best PSO

GSL GNU Scientific Library

IP Internet Protocol

IntServ Integrated Services

KKT Karush-Kuhn-Tucker

LB-PSO local best PSO

MCP multi-constrained path

MCOP multi-constrained optimal
path

QoS quality of service

ORP Overlay Routing Protocol

OSPF Open Shortest Path First

PR-CGM Polak-Ribiere CGM

PSO particle swarm optimization

Q-CGM CGM with quadratic
approximation

RDP Route Discovery Protocol

RIP Routing Information Protocol

RMP Route Management Protocol

ROVER Routing in Overlay Networks

RSVP Resource Reservation Protocol

RTT round-trip time

SAMCRA Self-Adaptive Multiple
Constraints Routing
Algorithm

SDM steepest descent method

UDP User Datagram Protocol

UUID universally unique identifier

VoIP voice over IP

61



APPENDIX A. ACRONYMS

62



Bibliography

[AMO93] Ravindra K Ahuja, Thomas L. Magnanti, and James B. Orlin. Network Flows:
Theories, Algorithms, and Applications. Prentice Hall, Upper Saddle River, NJ,
USA, 1993. ISBN: 0-13-617549-X.

[And01] David G. Andersen. Resilient overlay networks. Master’s thesis, Dept. of Electri-
cal Engineering and Computer Science, Massachusetts Institute of Technology,
May 2001.

[Arm03] Grenville J. Armitage. Revisiting IP QOS. ACM SIGCOMM Computer Com-
munications Review, 33(5):81–88, October 2003.

[BBC+98] Steven Blake, David L. Black, Mark A. Carlson, Elwyn Davies, Zheng Wang,
and Walter Weiss. RFC 2475: An Architecture for Differentiated Services.
IETF, December 1998. Category: Informational.

[BCS94] Robert Braden, David D. Clark, and Scott Shenker. RFC 1633: Integrated
Services in the Internet Architecture: an Overview. IETF, June 1994. Category:
Informational.

[BDH+03] L. Burgsthaler, K. Dolzer, C. Hauser, J. Jähnert, S. Junghans, C. Macián, and
W. Payer. Beyond technology: The missing pieces for QoS success. In Proceed-
ings ot the ACM SIGCOMM Workshops, pages 121–130, Karlsruhe, Germany,
August 2003.

[Bel03] Gregory Bell. Failure to thrive: QoS and the culture of operational networking.
In Proceedings ot the ACM SIGCOMM Workshops, pages 115–120, Karlsruhe,
Germany, August 2003.

[BG91] Dimitri P. Bertsekas and Robert G. Gallager. Data Networks. Prentice Hall,
Upper Saddle River, NJ, USA, 2nd edition, 1991. ISBN: 0-13-200916-1.

[BR03] Christian Blum and Andrea Roli. Metaheuristics in combinatorial optimization:
Overview and conceptual comparison. ACM Computing Surveys, 35(3):268–308,
September 2003.

[BT97] Dimitri P. Bertsekas and John N. Tsitsiklis. Parallel and Distributed Computa-
tion: Numerical Methods. Athena Scientific, Belmont, MA, USA, 1997. ISBN:
1-886529-01-9.

[BV04] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge
University Press, Cambridge, UK, 2004. ISBN: 0-521-83378-7.

63



BIBLIOGRAPHY

[CFSK04] Byung-Gon Chun, Rodrigo Fonseca, Ion Stoica, and John Kubiatowicz. Char-
acterizing selfishly constructed overlay routing networks. In Proceedings of IN-
FOCOM, volume 2, pages 1329–1339, Hong Kong, China, March 2004.

[CHM+03] Jon Crowcroft, Steven Hand, Richard Mortier, Timothy Roscoe, and Andrew
Warfield. QoS’s downfall: At the bottom, or not at all! In Proceedings of
the ACM SIGCOMM Workshops, pages 109–114, Karlsruhe, Germany, August
2003.

[CLR01] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction
to Algorithms. The MIT Press, Cambridge, MA, USA, 2nd edition, 2001. ISBN:
0-262-53196-8.

[Coo83] Stephen A. Cook. An overview of computational complexity. Communications
of the ACM, 26(6):400–408, June 1983.

[DF07] Yezid Donoso and Ramon Fabregat. Multi-Objective Optimization in Computer
Networks Using Metaheuristics. Auerbach Publications, Boca Raton, FL, USA,
2007. ISBN: 0-8493-8084-7.

[DV07] Karel De Vogeleer. QoS routing in overlay networks. Master’s thesis, Blekinge
Institute of Technology (BTH), Karlskrona, Sweden, June 2007. MEE07:24.

[Edw94] Charles H. Edwards, Jr. Advanced Calculus of Several Variables. Dover Publi-
cations, Mineola, NY, USA, 1994. ISBN: 0-486-68336-2.

[Eng06] Andries P. Engelbrecht. Fundamentals of Computational Swarm Intelligence.
John Wiley & Sons, Chichester, West Sussex, England, 2006. ISBN: 0-470-
09191-6.

[FML+03] Chuck Fraleigh, Sue Moon, Bryan Lyles, Chase Cotton, Mujahid Khan, Deb
Moll, Rob Rockell, Ted Seely, and Christophe Diot. Packet-level traffic mea-
surements from the Sprint IP backbone. IEEE Network, 17(6):6–16, November
2003.

[GDT+06] Mark Galassi, Jim Davies, James Theiler, Brian Gough, Gerard Jungman,
Michael Booth, and Fabrice Rossi. GNU Scientific Library Reference Manual.
Network Theory Limited, Bristol, UK, 2nd edition, 2006. ISBN: 0-9541617-3-4.

[GJ79] Michael R. Garey and David S. Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completness. W. H. Freeman and Company, New
York, NY, USA, 1979. ISBN: 0-7167-1045-5.

[GO97] Roch Guérin and Ariel Orda. QoS-based routing in networks with inaccurate
information: Theory and algorithms. In Proceedings of INFOCOM, volume 1,
pages 75–83, Kobe, Japan, April 1997.

[GVL96] Gene H. Golub and Charles F. Van Loan. Matrix Computations. The Johns
Hopkins University Press, Baltimore, MD, USA, 3rd edition, 1996. ISBN: 0-
8018-5414-8.

64



BIBLIOGRAPHY

[Ham86] Richard W. Hamming. Numerical Methods for Scientists and Engineers. Dover
Publications, Mineola, NY, USA, 1986. ISBN: 0-486-65241-6.

[HS52] Magnus R. Hestenes and Eduard Stiefel. Methods of conjugate gradients for
solving linear systems. Journal of Research of the National Bureau of Standards,
49(6):409–436, December 1952.

[Hui00] Christian Huitema. Routing in the Internet. Prentice Hall, Upper Saddle River,
NJ, USA, 2nd edition, 2000. ISBN: 0-13-022647-5.

[Ili06] Dragos Ilie. Gnutella Network Traffic: Measurements and Characteristics. Li-
centiate dissertation, Blekinge Institute of Technology (BTH), Karlskrona, Swe-
den, April 2006. ISBN: 91-7295-084-6.

[IP07] Dragos Ilie and Adrian Popescu. A framework for overlay QoS routing. In
Proceedings of 4th Euro-FGI Workshop, Ghent, Belgium, May 2007.

[KF75] Andrey Nikolaevich Kolmogorov and Sergei Vasilovich Fomin. Introductory Real
Analysis. Dover Publications, Mineola, NY, USA, 1975. ISBN: 0-486-61226-0.

[KKKVM04] Fernando Antonio Kuipers, Turgay Korkmaz, Marwan Krunz, and Piet
Van Mieghem. Performance evaluation of constrained-based path selection al-
gorithms. IEEE Network, 18(5):16–23, September 2004.

[KR01] James F. Kurose and Keith W. Ross. Computer Networking: A Top-Down
Approach Featuring the Internet. Addison Wesley Longman, Boston, MA, USA,
2001. ISBN: 0-201-47711-4.

[Kui04] Fernando Antonio Kuipers. Quality of Service Routing in the Internet: Theory,
Complexity and Algorithms. PhD thesis, Delft University, Delft, The Nether-
lands, 2004. ISBN: 90-407-2523-3.

[KVM05] Fernando A. Kuipers and Piet F. A. Van Mieghem. Conditions that im-
pact the complexity of QoS routing. IEEE/ACM Transactions on Networking,
13(4):717–730, August 2005.

[KVMKK02] Fernando Kuipers, Piet Van Mieghem, Turgay Korkmaz, and Marwan Krunz.
An overview of constraint-based path selection algorithms for QoS routing.
IEEE Communications Magazine, 40(2):50–55, December 2002.

[KW98] Richard Kaye and Robert Wilson. Linear Algebra. Oxford University Press,
Oxford, UK, 1998. ISBN: 0-19-850237-0.

[Lee95] Whay C. Lee. Topology aggregation for hierarchical routing in ATM networks.
ACM SIGCOMM Computer Communications Review, 25(2):82–92, April 1995.

[LM04] Zhi Li and Prashant Mohapatra. QRON: QoS-aware routing in overlay net-
works. IEEE Journal on Selected Areas in Communications, 22(1):29–40, Jan-
uary 2004.

[LNC04] King-Shan Lui, Klara Nahrstedt, and Shigang Chen. Routing with topology
aggregation in delay-bandwith sensitive networks. IEEE/ACM Transactions
on Networking, 12(1):17–29, February 2004.

65



BIBLIOGRAPHY

[LRV01] Jan Lundgren, Mikael Rönnqvist, and Peter Värbrand. Linjär och Ickelinjär
Optimering. Studentlitteratur, Lund, Sweden, 2001. ISBN: 91-44-01798-7.

[Lue04] David G. Luenberger. Linear and Nonlinear Programming. Kluwer Academic
Publishers, Norwell, MA, USA, 2004. ISBN: 1-4020-7593-6.

[Men90] Bert Mendelson. Introduction to Topology. Dover Publications, Mineola, NY,
USA, 3rd edition, 1990. ISBN: 0-486-66352-3.

[PD00] Larry L. Peterson and Bruce S. Davie. Computer Networks: A Systems Ap-
proach. Morgan Kaufman Publishers, San Francisco, CA, USA, 2nd edition,
2000. ISBN: 1-55860-514-2.

[PM04] Michal Pióro and Deepankar Medhi. Routing, Flow, and Capacity Design in
Communication and Computer Networks. Morgan Kaufman Publishers, San
Francisco, CA, USA, 2004. ISBN: 0-12-557189-5.

[PS98] Christos H. Papadimitriou and Kenneth Steiglitz. Combinatorial Optimization:
Algorithms and Complexity. Dover Publications, Mineola, NY, USA, 1998.
ISBN: 0-486-40258-4.

[PTVF02] William H. Press, Saul A. Teukolsky, William T. Vettering, and Brain P. Flan-
nery. Numerical Recipes in C++: The Art of Scientific Computing. Cambridge
University Press, Cambridge, UK, 2nd edition, 2002. ISBN: 0-521-75033-4.

[RT02] Tim Roughgarden and Éva Tardos. How bad is selfish routing? Journal of the
ACM, 49(2):236–259, March 2002.

[Rud76] Walter Rudin. Principles of Mathematical Analysis. McGraw-Hill, New York,
NY, USA, 3rd edition, 1976. ISBN: 0-07-085613-3.

[Shi77] Georgi E. Shilov. Linear Algebra. Dover Publications, Mineola, NY, USA, 1977.
ISBN:0-486-63518-X.

[Shi96] Georgi E. Shilov. Elementary Real and Complex Analysis. Dover Publications,
Mineola, NY, USA, 1996. ISBN: 0-486-68922-0.

[SSBK04] Lakshminarayanan Subramanian, Ion Stoica, Hari Balakrishnan, and Randy
Katz. OverQoS: An overlay based architecture for enhancing Internet QoS. In
Proceedings of NSDI, San Francisco, CA, USA, March 2004.

[TLUN07] Wing-Yan Tam, King-shan Lui, Suleyman Uludag, and Klara Nahrstedt.
Quality-of-service routing with path information aggregation. Journal of Com-
puter Networks, 51:3574–3594, March 2007.

[TMW97] Kevin Thompson, Gregory J. Miller, and Rick Wilder. Wide-area Internet traffic
patterns and characteristics. IEEE Network, 11(6):10–23, November 1997.

[VMK04] Piet Van Mieghem and A. Kuipers, Fernando. Concepts of exact QoS routing
algorithms. IEEE/ACM Transactions on Networking, 12(5):851–864, October
2004.

66



BIBLIOGRAPHY

[Wan00] Zheng Wang. Internet QoS: Architectures and Mechanisms. Morgan Kaufman
Publishers, San Francisco, CA, USA, 2000. ISBN: 1-55860-608-4.

[WC96] Zheng Wang and Jon Crowfort. Quality-of-service routing for supporting mul-
timedia applications. IEEE Journal on Selected Areas in Communications,
14(7):1228–1234, September 1996.

[Wro97] John Wroclawski. RFC 2210: The Use of RSVP with IETF Integrated Services.
IETF, September 1997. Category: Standards Track.

[ZDE+93] Lixia Zhang, Stephen Deering, Deborah Estrin, Scott Shenker, and Daniel Zap-
pala. RSVP: A new resource reservation protocol. IEEE Network, 7(5):8–18,
September 1993.

67


