
Research Report No. 2007:02

Peer–to–peer Traffic

Measurements

Dragos Ilie

David Erman

Department of Telecommunication Systems,

School of Engineering,

Blekinge Institute of Technology,

S–371 79 Karlskrona, Sweden

c© 2007 by Dragos Ilie and David Erman. All rights reserved.

Blekinge Institute of Technology
Research Report No. 2007:02
ISSN 1103-1581
Published 2007.
Printed by Kaserntryckeriet AB.
Karlskrona 2007, Sweden.

This publication was typeset using LATEX.

Abstract

The global Internet has emerged to become an integral part of everyday life. Internet is now as
fundamental a part of the infrastructure as is the telephone system or the road network. Peer-to-
Peer (P2P) is the logical antithesis of the Client-Server (CS) paradigm that has been the ostensible
predominant paradigm for IP-based networks since their inception.
Current research indicates that P2P applications are responsible for a substantial part of the
Internet traffic. New P2P services are developed and released at a high pace. The number of users
embracing new P2P technology is also increasing fast. It is therefore important to understand the
impact of the new P2P services on the existing Internet infrastructure and on legacy applications.
This report describes a measurement infrastructure geared towards P2P network traffic collection
and analysis, and presents measurement results for two P2P applications: Gnutella and BitTorrent.

Contents

1 Introduction 1

1.1 Motivation . 2

2 Peer–to–Peer Protocols 3

2.1 P2P Evolution . 3
2.2 P2P Definitions . 4
2.3 Distributed Hash Tables . 5
2.4 P2P and Ad-Hoc Networks . 6
2.5 P2P and File Sharing . 7
2.6 P2P and the Grid . 8
2.7 P2P and Sensor Networks . 9

3 Protocol Descriptions 11

3.1 BitTorrent . 11
3.2 Gnutella . 20

4 Measurement Software Description 29

4.1 Passive measurements . 29
4.2 Network infrastructure . 31
4.3 TCP Reassembly Framework . 32
4.4 Application Logging . 35
4.5 Log Formats . 36

5 BitTorrent 41

5.1 Measurement details . 41
5.2 Aggregate results . 42
5.3 Swarm size dynamicity . 45

6 Gnutella 47

6.1 Session Statistics . 47
6.2 Message Statistics . 48
6.3 Transfer Rate Statistics . 51

A BitTorrent Application Log DTD 55

B Acronyms 57

Bibliography 59

iii

List of Figures

3.1 BitTorrent handshake procedure. 14
3.2 Example announce GET request. 15
3.3 Example scrape GET request. 17
3.4 BitTorrent handshake procedure. 18
3.5 Example of a Gnutella session. 26

4.1 Measurement network infrastructures. 32
4.2 Measurement procedures. 33
4.3 Extract from BitTorrent XML log file. 38
4.4 Sample BitTorrent log file. 40

5.1 Temporal structure of measurements. 42
5.2 Swarm size for measurement 6. 45
5.3 Swarm size for measurement 10. 46

6.1 Gnutella Transfer Rates. 54
6.2 Gnutella Transfer Rates at IP layer. 54

v

List of Tables

2.1 P2P and CS content models. 5

5.1 Measurement summary. 42
5.2 Content summary. 43
5.3 Download time and average download rate summary. 43
5.4 Session and peer summary. 44
5.5 Downstream protocol message summary. 44
5.6 Upstream protocol message summary. 45

6.1 Incoming session statistics. 48
6.2 Outgoing session statistics. 48
6.3 Incoming + Outgoing session statistics. 48
6.4 Message size statistics. 49
6.5 Message duration statistics. 49
6.6 Message interarrival time statistics. 50
6.7 Message interdeparture time statistics. 50
6.8 Handshake message rate statistics. 51
6.9 Handshake byte rate statistics. 51
6.10 PING–PONG message rate statistics. 51
6.11 PING–PONG byte rate statistics. 51
6.12 QUERY–QUERY HIT message rate statistics. 51
6.13 QUERY–QUERY HIT byte rate statistics. 52
6.14 QRP and HSEP message rate statistics. 52
6.15 QRP and HSEP byte rate statistics. 52
6.16 PUSH and BYE message rate statistics. 52
6.17 PUSH and BYE byte rate statistics. 52
6.18 VENDOR and UNKNOWN message rate statistics. 53
6.19 VENDOR and UNKNOWN byte rate statistics. 53
6.20 Gnutella (all type) message rate statistics. 53
6.21 Gnutella (all type) byte rate statistics. 53
6.22 IP Byte rate statistics. 53

vii

Chapter 1

Introduction

The global Internet has emerged to become an integral part of everyday life. Internet is now as
fundamental a part of the infrastructure as is the telephone system or the road network. The
driving factor pushing the acceptance and widespread usage of the Internet was the introduction
of the World-Wide Web (WWW) by Tim Berners-Lee in 1989. The WWW provided ways of
accessing information at rates and amounts then unimagined, and quickly became the Internet
“killer application”.

In May 1999, ten years after the advent of the WWW, Shawn Fanning introduces Napster, arguably
the first modern P2P application. The Napster application and protocols were the first to allow
users to share files among each other without the need of a central storage server. Very quickly,
Napster became immensly popular, and the P2P revolution begun.

Since the advent of Napster, P2P systems have become wide-spread with the emergence of file-
sharing applications such as Gnutella, Kazaa and eDonkey. These systems have generated head-
lines across the globe when the U.S. Recording Industry Association (RIAA http://www.riaa.com)
and Motion Picture Association of America (MPAA http://www.mpaa.org) have filed law suits
against file-sharing users suspected of copyright infringement. The law suits are partly responsible
for the embrace of the term P2P as an equivalent for illegal file-sharing. Fortunately, the concept
of P2P networking is broader than that and P2P systems have many useful and legal applications.

The P2P paradigm is the logical antithesis of the CS paradigm that has been the ostensible
predominant paradigm for IP-based networks since their inception. This is however only true to a
certain degree, as the idea of sharing among equals has been imbued in the Internet since the early
days of the network. Two examples supporting this statement are the e-mail system employed
in the Internet and the Domain Name System (DNS). Both protocols are so tightly connected
to the inner workings of the Internet, that it is impossible to imagine the degree of usage that
the Internet sees today in the absence of those protocols. Once an e-mail has left the user’s mail
software, it is routed among mail transfer agents (MTAs), all acting as as equally valued message
forwarders. The DNS is the first distributed information database, and implements a hierarchical
mapping scheme, which is comparable to the multi-layered P2P systems that have appeared the
last few years, such as Gnutella.

The major difference between legacy P2P systems such as DNS and e-mail and the new systems
such as Gnutella, Napster and eDonkey is that the older systems work as part of the network core,
while the new applications are typically application-layer protocols run by edge-node applications.
This shift of the edge nodes from acting as service users to being both service providers and users
is significantly changing the characteristics of the network traffic.

1

CHAPTER 1. INTRODUCTION

This report describes a measurement infrastructure geared towards P2P network traffic collection
and analysis. The current chapter has provided a brief introduction, which will be followed by
the motivation for the work described in the report. Chapter two continues with a discussion of
P2P networks and related network types. Chapter three provides a fairly detailed descriptions of
the two protocols measured for the report, BitTorrent and Gnutella. Chapter four explains briefly
various network measurement techniques and then presents the measurement infrastructure and
software developed at Blekinge Institute of Technology (BTH). Chapter five and six present
some of the results obtained from the network traffic measurements of BitTorrent and Gnutella
protocols, respectively.

1.1 Motivation

The research group at the Department of Telecomunication Systems at BTH has traditionally
been involved in research areas related to Internet traffic measurements.

Lately, P2P applications seem to be responsible for the predominant part of the Internet traffic
[1]. New P2P services are developed and released at a high pace. The number of users embracing
new P2P technology is also increasing fast. It is therefore important to understand the impact of
the new P2P services on the existing Internet infrastructure and on legacy applications. It was
natural in this context for the research focus at BTH to turn towards P2P traffic. This can be seen
as part of a broader effort to adapt new services to coexist with older ones as well as to optimize
the overall online user experience.

We applied several constraints on selecting which P2P protocols to study: open protocol spec-
ifications, open-source software implementation, large user base and access to discussion groups
where system developers can be contacted. Open protocol specifications were essential because
this means no reverse engineering or other type of guess-work is necessary to decode protocol
messages, thus allowing the research to focus on measurements and analysis. Access to source
code enabled us to understand how certain protocol features, not covered by specifications, were
implemented by various vendors. A large user base guaranteed enough peers would be available
for measurements. Access to system developers in discussion groups helped us sort out some of
the more intricate details of specifications and implementation. Both Gnutella and BitTorrent
satisfied all these constraints.

The P2P research at BTH has two goals. The first is to establish analytical traffic models that will
offer new insights about the properties of P2P traffic. This will hopefully lead to more scalable
P2P networks and more efficient and fair resource utilization. The second goal is to research new
P2P services that can be built on top of the existing P2P infrastructure, leveraging the advantages
offered by P2P systems (e.g., efficient data dissemination and load balancing).

In particular, our group is planning to perform research on issues related to routing in overlay
networks: Quality of Service (QoS) guarantees, reliability, scalability and multipath routing and
transport [2]. Furthermore, we would like to investigate the applicability of our results in ad-hoc,
grid and sensor networks.

2

Chapter 2

Peer–to–Peer Protocols

The concept of P2P protocols in relation to data communications is quite broad. Generally, this
means that nodes engaged in mutual data exchange are capable of equivalent functionality. This is
in contrast to pure CS protocols, where nodes may either serve or be served data. A more formal
definition of P2P protocols is provided in Section 2.2.

2.1 P2P Evolution

The earliest recorded use of the term “peer-to-peer” occured in 1984 and was the context of IBM’s
Advanced Peer to Peer Networking (APPN) architecture [3]. This was the result of multiple
enhancements to the Systems Network Architecture (SNA).

Although early networking protocols such as NNTP and SMTP were working in a P2P fashion –
indeed, the original ARPANET was designed as a P2P system – the term P2P did not become
mainstream before the appearance of Napster in the fall of 1999.

Napster was the first P2P service with the goal to provide users with easy means of finding music
files (MP3s). The architecture of Napster was built around a central server that was used to index
music files shared by client nodes. This approach is called a centralized directory. The centralized
directory allowed Napster to give a very rapid answer as to which hosts stored a particular file.
The actual file transfer occured directly between the host looking for the file and the host storing
the file.

The success of Napster became quickly a source of serious concern for major record companies, who
rapidly filed a lawsuit against Napster on grounds of copyright infringement. The lawsuit made
Napster immensely popular, attracting millions of additional users. However, Napster couldn’t
withstand the pressure of the lawsuit and in July 2001 they were forced to shut down the central
server. Without the central server the client nodes could no longer search for files. Thus, the
fragility of a centralized directory system became clear.

Napster is one of the first generation P2P applications as defined by [3]. Following the advent of
Napster, several other P2P applications emerged. Similar in appearance, but altogether different
beasts in detail. Gnutella [4], which was released by Justin Frankel of Winamp fame in early
2000, opted to implement a fully distributed system, with no central authority. The same year
saw the emergence of the FreeNet system. FreeNet was the the brainchild of Ian Clarke, who had
written his Master’s thesis on a distributed, anonymous and decentralized information storage and
retrieval system. This system later became FreeNet. FreeNet’s major difference to previous P2P

3

CHAPTER 2. PEER–TO–PEER PROTOCOLS

systems was the complete anonymity that it offered users.

The fully distributed architecture was resilient to node failures and was also immune to service
disruptions of the type experienced by Napster. However, experience with Gnutella showed that
fully distributed P2P systems may lead to scalability problems due to massive amounts of signaling
traffic [5].

By late 2000 and early 2001, the P2P boom had started in earnest, and applications such as KaZaA,
DirectConnect, SoulSeek and eDonkey started appearing. These systems usually provided some
form of community-like features such as chat rooms and forums, in addition to the file-sharing
services provided by previous systems.

KaZaA, which uses the FastTrack protocol, introduced the concept of supernodes in order to
solve scalability problems similar to those experienced by Gnutella. Each supernode manages a
number of regular nodes and exchanges information about them with other supernodes. Regular
nodes upload file lists and search requests to their supernode. The search requests are processed
solely among supernodes. Regular peers establish direct HyperText Transfer Protocol (HTTP)
connections in order to download files.

Gnutella resolved the scalability problem in a similar way. In Gnutella, supernodes are called
ultrapeers.

The last few years have seen the evolution of the old systems to better utilize network resources,
and also the emergence of new systems with the specific focus on efficient bandwidth utilization.
The prime example of these is the BitTorrent system. Also, new systems tend to focus on using
Distributed Hash Tables (DHTs). DHTs force network topology and data storage to follow specific
mathematical structures in order to optimize various parameters (e.g., minimize delay or number
of hops). They are seen as a promising alternatives to the flooding algorithms required by routing
in unstructured P2P networks.

2.2 P2P Definitions

There is no clear concensus regarding an exact definition of a P2P system. Schollmeier makes an
attempt in [6] to define a P2P network. In general, the notion of a P2P network appears to be
leaning towards some form of utlization of edge node resources by other edge node resources. The
resource in question is commonly accepted to be files, and much research is being done on efficient
localisation and placement of files. There also seems to be some concensus regarding the idea of
pure and hybrid systems.

A P2P network is defined in [6] as a network in which the service offered by the system is provided
by the participating nodes share part of some local resource pool, such as disk space, files, CPU
processing time etc. A pure P2P network is one in which any given participant may be removed
without the system experiencing loss of service. Examples of this type of networks are Gnutella,
FastTrack and FreeNet. A hybrid P2P network is one in which a central authority of some sort
is necessary for the system to function properly. Note that, in contrast to the CS model, the
central authority in a hybrid network rarely share resources – this functionality is still provided
by the participating peers. The central authority is commonly an indexing server for files or
provides a peer localisation service. Examples of this type of network are Napster, eDonkey and
DirectConnect.

It is also possible to take a resource view on the two types of P2P networks described above. We
consider the functions of content insertion, distribution and control and how they are performed
in P2P and CS networks. We summarize these in table 2.1.

4

2.3. DISTRIBUTED HASH TABLES

Insertion Insertion is the function of adding content to the resource pool of a network.
We refer here to insertion in the sense of providing the content, so that in both
pure and hybrid networks content is inserted by the participating peers. This
is analogous with the peers sharing content. In a CS system however, content
is always provided by the server, and thus also “shared” by the server.

Distribution Distribution is the function of retrieving content from the resource pool of a
network. Again, P2P systems lack central content localization, thus content
is disseminated in a distributed fashion. This does not necessarily mean that
parts of the same content is retrieved from different sources, i.e. swarming, but
rather that the parts, e.g. files, of the total resource pool are retrieved from
different sources.

By hybrid CS systems, we here refer to Content Delivery Networks (CDNs),
such as Akamai [7], and redundant server systems in which several servers
provide the same content, but are accessed by client from a single Universal
Resource Locator (URL). This is a very common model for Web servers in the
Internet today.

Control Control is the function of managing the resource pool of a network, such as
admission control, resource localization etc. This is the primary function that
separates the two types of P2P networks. The peers participating in fully
distributed networks are required to assist in the control mechanisms in the
network, while the hybrid systems may rely on a central authority for this. Of
course, the clients in CS systems have no responsibility towards the network
control functionality.

Table 2.1: P2P and CS content models.

Pure P2P Hybrid P2P Hybrid CS Pure CS

Insertion Distributed Distributed Central Central

Distribution Distributed Distributed Central/Distributed Central

Control Distributed Central Central Central

In addition to the definitions above, [3] also classifies P2P systems according to their “genera-
tion”. In this classification scheme, hybrid systems such as Napster are considered first generation
systems, while fully decentralized systems such as FastTrack and Gnutella are second generation
systems. A third generation is discussed as being the improvement upon the first two with respect
to features such as redundancy, reliability or anonymity.

2.3 Distributed Hash Tables

Hash tables are data structures used for quick lookups of information (data).

A hash record is defined as a key with the corresponding value. Hash keys are typically numerical
values or strings, while the hash values are indexes in an array and therefore are usually numerical.
The array itself is called the hash table. A hash function operates on a given hash key producing
a corresponding unique hash value (index) that points to a location in the the hash table. This is
the location where the data is stored or the best place to start a search for it. The quality of a hash
table and its hash function is related to the probability of collisions. A collision happens when two

5

CHAPTER 2. PEER–TO–PEER PROTOCOLS

or more keys point to the same location in the hash table. This problem can be solved by enlarging
and rearranging the hash table, but will in general lead to severe performance degradation.

DHTs are hash tables spread across many nodes in a network. Each node participating in a DHT
is responsible for a subset of the DHT keys. When the hash function is given a key it will produce
a hash value that identifies the node responsible for that particular key.

In general, DHTs require the use of a structured overlay network. This means that the network
topology must follow a particular mathematical (geometric) structure (e.g., a circle as in Chord
[8] or a hypercube as in CAN [9]). The structure is typically mapped on some interval equivalent
to ℜ or ℜn. Each key gets a well defined position (coordinates) in the specific space interval. A
host that joins the DHT is allocated a position in the same space interval. The host will then
“own” the coordinates in some neighbourhood of its position. This is how keys are distributed to
hosts. Search algorithms can then exploit the properties of the structure to quickly locate which
host is owning what key. This is called DHT-routing or key based routing. For example, CAN
uses a d-dimensional Cartesian coordinate space and its routing exploits this property by choosing
the smallest Cartesian distance to the destination. A good comparison of the tradeoffs between
different DHT geometries is presented in [10].

Although DHTs appear to be a very efficient form of information dissemination, storage and
lookup, they also suffer from a number of problems [11]:

Scalability: The cost to maintain the integrity of the DHT when nodes join/leave the overlay
is rather high.

Load balancing: Some keys are much more popular than others. Hosts responsible for these
keys must handle a disproportionally high volume of traffic compared to other nodes. This
phenomena is refered to as “hot spots”.

Search flexibility: DHTs cannot handle efficiently keyword searches, at least not as efficient
at exact searches.

Heterogeneity adaptation: In a heterogeneous environment nodes have different storage,
memory, transmission and processing capabilities. Since the topology in a DHT must adapt
to a specific structure, it usually does not have enough flexibility to take the heterogeneity
factors into account.

Current research is addressing these problems [12].

2.4 P2P and Ad-Hoc Networks

During the late 1990s cheap wireless network cards for portable computers became widely available,
with 802.11 emerging as the de-facto standard. They were used mostly in office-like environments
together with one or more wireless base stations, also called Access Points (APs). The base sta-
tions offer services such as frequency allocation, authentication and authorization. The maximum
distance from the AP, where radio communication with it is still possible, defines the (radio) cell
radius.

In the absence of repeaters or high-performance antennas, the wireless cards have limited range on
the order of a few hundred meters. In order to communicate with wireless units that are outside
the range, they forward the data to the nearest AP which, using either the wired or wireless
network, would further forward the data to the destination.

6

2.5. P2P AND FILE SHARING

The type of wireless network described above is called a Wireless LAN (WLAN) in infrastructure
mode. When only one AP is used, the units movement is confined to the cell radius. This setup
is called Basic Structure Service (BSS). Sometimes it is desirable to cover a larger area, such
as a whole building or campus. This can be done by using several APs that perform handover
when wireless units move between them. In this case the set of participating APs and wireless
units is called Extended Service Set (ESS). The ESS mode hides implementation details (e.g.,
communication between base stations) from the network layer presenting it with what appears to
be a regular link layer. Thus, the handovers are transparent for the network layer [13].

Infrastructure mode may not be an option for certain type of environments such as geographically
isolated sites, disaster areas or dynamic battlefields. In this type of scenario, the wireless units
must be able to communicate with each other in the absence of base stations. Two units that are
outside radio range from each other and wish to exchange data will use intermediate units (within
radio range) to route the data to destination. This type of communication mode is called ad-hoc
mode and the network is called a mobile ad-hoc network (MANET).

In essence, each wireless host in the ad-hoc WLAN acts as a router for the other hosts. There is
currently a large variety of ad-hoc routing protocols. A complete description is outside the scope of
this report, but the interested reader may start with [14]. The important thing to this discussion
is that each wireless unit supplies and demands the same type of services from the other WLAN
units. This is a typical form of P2P computing according to the P2P definition in [6].

2.5 P2P and File Sharing

File sharing is almost as old as operating systems themselves. Early solutions include protocols
such as UNIX remote copy (rcp) command and the File Transfer Protocol (FTP). They were
quickly followed by full-fledged network file systems such as NFS and SAMBA. Common for these
protocols (with the exception of rcp) is that they were shaped around the CS paradigm, with the
servers being the entity storing and serving files. A client that wants to share files must upload
them to a server to make them available to other clients.

Instant messaging systems such as ICQ[15], Yahoo! Messenger[16] and Microsoft Messenger[17]
attempted to solve this problem by implementing a mechanism similar to rcp. Users could thus
share file with each other without having to store them on a central server. In fact, this was the
first form of P2P filesharing. Napster further extended this idea by implementing efficient file
search facilities.

In the public eye, P2P is synonymous with file sharing. While other applications that may be
termed P2P, e.g. the SETI@home project [18], distributed.net [19] and ZetaGrid [20] have been
rather successful in attracting a user-base, no other type of service come close to attracting the
number of users that filesharing services have. Services such as those mentioned here are examples
of altruistic systems in the sense that the participating peers provide CPU processing power and
time to a common resource pool that is then used to perform various complex calculations such as
calculating fast Fourier transforms of galactical radio data, code-breaking or finding roots of the
Riemann Zeta-function.

One of the reasons for the difference in number of users could be that the incentive to altruistically
share resources without gaining anything other than some virtual fame or feel-good points of having
contributed to the greater good of humanity seems to be low. Most file sharing P2P systems employ
some form of admission scheme in which peers are not allowed to join the system or download
from it unless they are sharing an adequate amount of files. This provides a dual incentive: first,
a peer wanting to join the network must1 provide sort of an entry token in the form of shared

1Not in all systems, but in most hybrid systems.

7

CHAPTER 2. PEER–TO–PEER PROTOCOLS

files, and second, peers joining the system know that there is a certain amount of content provided
to them once they join. The BitTorrent P2P system is one of the most prominent networks in
enforcing incentive, though admission control in a BitTorrent network is typically handled through
web-based registration systems.

As not all files are equally desirable in every system, files not belonging to the general category
of files handled in a specific P2P network should not be allowed in. For instance, a network such
as Napster, which only managed digital music files, might not be interested in peers sharing text
files. For systems that require a large amount of file data to be shared as an admission scheme,
this becomes a problem. Peers may share “junk files” just to gain access to the network. Junk files
are files that are not really requested or desired in the network. This practice is usually scorned
upon, but is hard to get to grips with. Some systems, such as eDonkey have implemented a rating
system, in which peers are punished for sharing junk files.

Similar to junk files, there are also “fakes” or “decoys”. Fakes are files inserted in the network
that masquerade under a filename that does not represent the actual content, or files that contain
modified versions of the same content. By adding fakes into the network, the real content is made
more difficult to find. This problem is alleviated by using various hashing techniques for the files
instead of only relying on the filenames to identify the content. An example of this is the insertion
of a faked Madonna single, in which the artist had overlaid a phrase on top of her newly released
single.

While file sharing in and of itself is not an illegal technology and has several non-copyright infring-
ing uses, the ease with which peers may share copyrighted material has drawn the attention of
the MPAA (Motion Picture Association of America) and RIAA (Recording Industry Association
of America). These organizations are of the view that sharing of material under the copyrights
of their members is seriously harming their revenue streams, by decreasing sales. In 2004, the
MPAA and RIAA started suing individuals for sharing copyrighted material. However, not all
copyright holders and artists agree on this course of action, nor do they agree on the detrimental
effect file sharing has on sales or artistic expression. Several smaller record labels have embraced
the distribution of samples of their artist’s music online, and artists have formed coalitions against
what they feel is the oppressive behaviour of the larger record labels.

More recently, P2P systems have been employed by corporations to distribute large files such as
Linux distributions, game demos and patches. Many companies make use of the BitTorrent system
for this, as it provides for substantial savings in bandwidth costs.

2.6 P2P and the Grid

The goal of distributed computing is to provide a cost-efficient alternative to expensive supercom-
puters by harnessing the collective processing power of a group of general purpose workstations.
This approach lead to computer clusters such as Beowulf [21]. Computer clusters typically involve
tens or hundreds of computers owned by a company or organization, which are interconnected in
a LAN configuration.

With the growing popularity of Internet, scientists and engineers have been looking at ways of
distributing computations to Internet-connected computers with free computing cycles to share.
This approach typically involves several hundred thousand computers spread across the world and
is referred to as Internet computing. It differs from clusters in two ways: the number of hosts
participating and the geographic spread.

Internet computing is part of greater effort called Grid computing. Grid computing takes on a
holistic view focusing not only on distributing computations but also catering for resource allo-

8

2.7. P2P AND SENSOR NETWORKS

cation, job scheduling, security and collaboration between users and organizations. It does that
by providing open architecture and protocol specifications and by defining services to be provided
by grid members. Examples of Grid computing efforts include the Globus Toolkit [22, 23] and
BOINC [24].

P2P is related to Grid and Internet computing through the direct exchange of resources and
services that takes place between peers. The above mentioned ZetaGrid and SETI@home could
be viewed as a type of “proto-grid”2, and the distributed screensaver ElectricSheep [25] is a more
light-hearted variant of the “proto-grid” systems.

The main difference between the Grid and P2P is that “Grid computing addresses infrastructure
but not yet failure, whereas P2P addresses failure but not yet infrastructure” [26]. For a good
comparison of P2P and Grid computing see [26] and [27].

2.7 P2P and Sensor Networks

The term sensor network refers to a wireless communication network consisting of a rather large
number (hundreds to thousands) of small-sized, densely deployed, electronic devices (sensors) that
perform measurements in their immediate vicinity and transfer the results to a computation center
in a hop-by-hop fashion [28]. The geographic area covered by a sensor network is called a sensor
field.

Sensor networks are similar to ad-hoc networks with reference to data routing. Both type of
networks require each node to actively participate in routing decisions (and data forwarding)
in order to allow for communications across distances larger than the radio range of a single
node. The main difference is that sensors have very stringent requirements for low power and
low computation operation. The low power requirement generally means that nodes have smaller
radio range than ad-hoc networks. This is the reason why they are densly deployed. The low
computation requirement means that they typically use CPUs with limited capabilities in order to
conserve energy (i.e., battery power). This means that they often employ special purpose routing
protocols that require less computation.

A major difference between sensor networks and other type of networks (e.g., ad-hoc, grid and
wired) is that sensor networks are data-centric as opposed to node-centric. For example, in a data-
centric network the user or the application will ask which node (e.g., sensor) is exceeding a specific
temperature. In contrast, in a node-centric network the user or application would rather ask what
is the temperature of a specific node [29]. A data-centric approach will typically require attribute-
based naming. An attribute is a name for a particular type of data. Lists of attributes define the
type of data a node is interested in. For example the attribute list “grid=50, temperature>30C”
asks for data from grid 50 from sensors that measure a temperature exceeding 30 degrees Celsius.

The data centric approach coupled with the low power, low computation operation requirements
and the number of sensors in a sensor field makes it impractical to monitor each node at all times.
Therefore, the focus is instead on self-organizing sensor networks that cluster nodes in a manner
that facilitates local coordination in pursuit of global goals [29]. This lead to research into localized
algorithms for coordination. Currently, directed diffusion appears to be a very strong candidate.
In directed diffusion nodes establish gradients of interest for specific data. The gradients lead
to the natural formation of routes between data providers (sources) and data consumers (sinks).
Details on directed diffusion are found in [30].

In order to minimize the volume of data transfers, each node in a sensor network performs data

2The term proto-grid is used to denote a first generation grid that may have left out some of the requirements
for a true grid implementation.

9

CHAPTER 2. PEER–TO–PEER PROTOCOLS

fusion (data aggregation). Data fusion works by combining data described by a specific attribute,
which was received from different nodes. Data-centric routing may lead to problems related to
implosion and overlap deficiencies [31]. The implosion problem is caused by multiple nodes sending
the exact same data to their neighbours. The overlap problem is similar to implosion and appears
when nodes covering different geographical areas send overlapping data. Data fusion attempts to
solve both problems.

P2P networks and sensor networks share similarities with ad-hoc routing. Further, P2P networks
are becoming more data centric, in particular when they use DHTs. For example, in a DHT-based
file sharing application the users are interested in which nodes host a specific file rather then being
interested in what files a specific node is hosting.

10

Chapter 3

Protocol Descriptions

3.1 BitTorrent

BitTorrent is a P2P protocol for content distribution and replication designed to quickly, efficiently
and fairly replicate data [32, 33]. The BitTorrent system may be viewed as being comprised of two
protocols and a set of resource metadata. The two protocols are used for communication among
peers, and for the communication with a central network entity called the tracker. The metadata
provides all the information needed for a peer to join in a BitTorrent distribution swarm and to
verify correct reception of a resource.

We use the following terminology for the rest of the report: a BitTorrent swarm refers to all the
network entities partaking in a distribution of a specific resource. When we refer to the BitTorrent
protocol or protocol in singular, we refer to the peer–peer protocol, while explicitly referring to
the tracker protocol for the peer–tracker communication. The collection of protocols (peer, tracker
and metadata) are referred to as the BitTorrent protocol suite or protocol suite.

In contrast to many other P2P protocols such as eDonkey [34], DirectConnect [35], KaZaA [36],
the BitTorrent protocol suite does not provide any resource query or lookup functionality. Nor
does it provide any chat or messaging facilities. The protocols rather focus on fair and effective
replication and distribution of data. The signaling is geared towards an efficient dissemination of
data only.

Fairness in the BitTorrent system is implemented by enforcing tit-for-tat exchange of content
between peers. Non-uploading peers are only allowed to download very small amounts of data,
making the download of a complete resource very time consuming if a peer does not share down-
loaded parts of the resource.

With one exception, the protocols operate over Transport Control Protocol (TCP) and use swarm-
ing, i.e., peers simultaneously downloading parts, so-called pieces, of the content from several peers
simultaneously. The rationale for this is that it is more efficient in terms of network load, as the
load is shared across links between peers. This results in a more evenly distributed network
utilization than conventional CS distribution systems such as, e.g., FTP or HTTP.

The size of the pieces is fixed on a per-resource basis and cannot be changed. The default piece
size is 218 bytes. The selection of an appropriate piece size is a fairly important issue. If the
piece size is small, re-downloading a failed piece is fast, while the amount of extra data needed
to describe all the data in the resource grows. Larger piece sizes means less metadata, but longer
re-download times.

11

CHAPTER 3. PROTOCOL DESCRIPTIONS

3.1.1 BitTorrent Encoding

BitTorrent uses a simple encoding scheme for most of its protocol messages and associated data.
This encoding scheme is known as bencoding. The scheme allows for data structuring and type
definition, and currently supports four data types: strings, integers, lists and dictionaries.

strings Strings are encoded length-prefixed. The length should be given in base ten,
and ASCII coded. The length should be followed by a colon, immediately
followed by the specified number of characters as string data.

Note that the string encoding does not nessecarily mean that the string data
are humanly readable, i.e., in the printable ASCII range. Strings carry any
valid 8-bit value, and are commonly used to carry binary data.

Example: 3:BTH encodes the string “BTH”.

integers Integers are encoded by enclosing a base ten ASCII coded numerical string by
i and e. Negative numbers are accepted, but not leading zeroes, except in the
case for the value 0 itself.

Example: i23e encodes the integer 23.

lists Lists are encoded by enclosing any valid bencoding type, including other lists,
by l and e. More than one type is allowed.

Example: l3:agei30ee encodes the string “age” and the integer 30.

dictionaries Dictionaries are encoded by enclosing (key, value) pairs by d and e. The keys
must be bencoded strings and the values may be any valid bencoding type,
including other dictionaries.

Example: d3:agei30e4:name5:james5likesl4:food5:drinkee encodes the
structure:

age: 30

name: james

likes: {food, drink}

3.1.2 Resource Metadata

A peer interested in downloading some content by using BitTorrent must first obtain a set of
metadata, the so-called torrent file, to be able to join a set of peers engaging in the distribution
of the specific content. The metadata needed to join a BitTorrent swarm consists of the network
address information (in BitTorrent terminology called the announce URL) of the tracker and
resource information such as file and piece size. The torrent file itself is a bencoded version of the
associated meta information.

An important part of the resource information is a set of Secure Hash Algorithm One (SHA-1) [37,
38] hash values1, each value corresponding to a specific piece of the resource. These hash values are
used to verify the correct reception of a piece. When rejoining a swarm, the client must recalculate
the hash for each downloaded piece. This is a very intensive operation with regards to both CPU
usage and disk I/O, which has resulted in certain alternative BitTorrent clients storing information
regarding which pieces have been successfully downloaded within a specific field in the torrent file.

A separate SHA-1 hash value, the info field, is also included in the metadata. This value is
used as an identification of the current swarm, and the hash value appears in both the tracker

1These are also known as message digests.

12

3.1. BITTORRENT

and peer protocols. The value is obtained by hashing the entire metadata (sans the info-field
itself). Of course, if a third-party client has added extra fields to the torrent file that may change
intermittently, such as the resume data mentioned above, these should not be taken into account
when calculating the info-field hash value.

The metadata as defined by the original BitTorrent design does not contain any information
regarding the peers participating in a swarm, though this information is added by some alternative
clients to lessen strain on trackers when rejoining a swarm.

3.1.3 Network Entities and Protocols

A BitTorrent swarm is composed of peers and at least one tracker. The peers are responsible
for content distribution among each other. Peers locate other peers by communicating with the
tracker, which keeps peer lists for each swarm. A swarm may continue to function even after the
loss of the tracker, but no new peers are able to join.

To be functional, the swarm initially needs at least one connected peer to have the entire con-
tent. These peers are denominated as seeds, while peers that do not have the entire content, i.e.,
downloading peers, are denominated as leechers.

The BitTorrent protocols (except the metadata distribution protocol) are the tracker protocol
and the peer protocol. The tracker protocol is either a HTTP-based protocol or a UDP-based
compact protocol, while the peer protocol is a BitTorrent-specific binary protocol. Peer-to-tracker
communication usually takes place using HTTP, with peers issuing HTTP GET requests and the
tracker returning the results of the query in the returning HTTP response.

The purpose of the peer request to the tracker is to locate other peers in the distribution swarm and
to allow the tracker to record simple statistics of the swarm. The peer sends a request containing
information about itself and some basic statistics to the tracker, which responds with a randomly
selected subset of all peers engaged in the swarm.

The Peer Protocol

The peer protocol, also known as the peer wire protocol, operates over TCP, and uses in-band
signaling. Signaling and data transfer are done in the form of a continuous bi-directional stream
of length-prefixed protocol messages over a common TCP byte stream.

A BitTorrent session is equivalent with a TCP session, and there are no protocol entities for tearing
down a BitTorrent session beyond the TCP teardown itself. Connections between peers are single
TCP sessions, carrying both data and signaling traffic.

Once a TCP connection between two peers is established, the initiating peer sends a handshake
message containing the peer id and info field hash (Figure 3.1). If the receiving peer replies with
the corresponding information, the BitTorrent session is considered to be opened and the peers
start exchanging messages across the TCP streams. Otherwise, the TCP connection is closed.
Immediately following the handshake procedure, each peer sends information about the pieces of
the resource it possesses. This is done only once, and only by using the first message after the
handshake. The information is sent in a bitfield message, consisting of a stream of bits, with each
bit index corresponding to a piece index.

The BitTorrent peer wire protocol has the following protocol messages:

piece The only payload-related protocol message. The message contains one sub-

13

CHAPTER 3. PROTOCOL DESCRIPTIONS

Peer BPeer A

info

info,peer_id B

peer_id A

bitfield exchange

message exchange

Figure 3.1: BitTorrent handshake procedure.

piece.

request The request-message is the method a peer wishing to download uses to notify
the sending peer what subpieces is desired.

cancel If a peer has previously sent a request message, this message may be used
to withdraw the request before it has been serviced. Mostly used during
end-game mode2.

interested This message is sent by a peer to another peer to notify it that the former
intends to download some data. See Section 3.1.4 for a description of this
and the following three messages.

not interested This is the negation of the previous message. It is sent when a peer no longer
wants to download.

choke This message is send by a data transmitting peer to notify the receiving peer
that it will no longer be allowed to download.

unchoke The negation of the previous message. Sent by a transmitting peer to a peer
that has previously sent an interested message to the former.

have After a completed download, the peer sends this message to all its connected
peers to notify them of which parts of the data are available from the peer.

bitfield Only sent during the initial BitTorrent handshake, and is then exchanged
between the connecting peers. Contains a bitfield indicating which pieces
the peer has.

keepalive Empty message, to keep a connection alive.

The Tracker Protocol

The tracker is accessed by HTTP or HTTPS GET requests. The default listening port is 6969.
The tracker address, port and top-level directory are specified in the announce url field in the
torrent file for a specific swarm.

2End-game mode occurs when a peer only has very few pieces left to download. The peer requests these pieces
from all connected peers, and downloads from whoever answers the quickest, and cancels the rest of the requests.

14

3.1. BITTORRENT

Tracker queries

Tracker queries are encoded as part of the GET URL, in which binary data such as the info hash
and peer id are escaped as described in RFC1738 [39]. The query is added to the base URL by
appending a questionmark, ?, as described in RFC2396 [40].

The query itself is a sequence of parameter=value pairs, separated by ampersands, &, and possibly
escaped. An example request is given in Figure 3.2.

GET /announce?info_hash=n%05hV%A9%BA%20%FC%29%12%1Ap%D4%12%5D%E6U%0A%85%E1&\

peer_id=M3-4-2--d0241ecc3a07&port=6881&key=0fcca260&uploaded=0&downloaded=0&\

left=663459840&compact=1&event=started HTTP/1.0

Figure 3.2: Example announce GET request.

Each announce request must include the following parameters:

info_hash The SHA-1 hash of the value contained in the info field in the torrent file.

peer_id A 20-byte string to uniquely identify the requesting peer. There is no con-
census regarding the generation of this value, but several distinct types of
ID-generation have appeared that may be used to identify which client a peer
is running.

There is some disagreement between the official protocol description [41] and
the Wiki [33]. The original specification states that this field most likely will
have to be URL escaped, while the other claims that it must not be escaped.

port The listening port of the client. The default port range for the reference client
is 6881–6889. Each active swarm needs a separate port in the default client,
but third party clients have implemented single-port functionality.

uploaded The total number of bytes uploaded to all peers in the swarm, encoded in base
ten ASCII. The specification does not state whether this takes into account
re-transmits or not.

downloaded The total number of bytes downloaded from all peers in the swarm, encoded
in base ten ASCII. The specification does not state whether this takes into
account re-transmits or not.

left The total number of bytes left to download, also encoded in base ten ASCII.

The following parameters may optionally be included:

compact If set to 1, the tracker response will not be a proper bencoded datum as described
below, but rather a binary list of peer addresses and ports. This list is encoded
as a six-byte datum for each peer, in which the first six bytes are the IP address
of the peer, and the last two bytes are the peer’s listening port. This saves quite
a bit of bandwidth, but is only usable in an IPv4 environment.

numwant Specifies the number of peers that the requesting peer is requesting from the
tracker.

event May be one of:

started The first request to the tracker, must include this parameter–
value pair.

15

CHAPTER 3. PROTOCOL DESCRIPTIONS

stopped If shutting down, this should be specified to indicate graceful
shutdown.

completed Included to notify the tracker once a download is complete,
and should not be included when joining a swarm with the full
content.

key Used as session identifier.

Tracker replies

The tracker HTTP response, unless the compact parameter is 1, is a bencoded dictionary with the
following fields:

interval Indicates the number of seconds between subsequent requests to the tracker.

complete Number of seeds in the swarm.

incomplete Number of leechers in the swarm.

peers Contains a list of dictionaries. Each dictionary in this list has the following
keys:

peer id The peer id paramater that the peer has reported to the tracker.

ip IP address or DNS name of the peer.

port Listening port of the peer.

If the request fails for some reason, the dictionary only contains a failure reason-key, which contains
a string indicating the reason for the failed request.

Tracker UDP protocol extension

To lower the bandwidth usage for heavily loaded trackers, a UDP-based tracker protocol has been
proposed [42].

The UDP tracker protocol is not part of the official BitTorrent specification, but has been imple-
mented in some of the third-party clients and trackers.

Compared to the standard HTTP-based protocol, the UDP protocol uses about 50 % less band-
width. It also has the advantage of being stateless, as opposed to the stateful TCP connections
required by the HTTP scheme, which means that a tracker is less likely to run out of resources
due to things like half-open TCP-connections.

The scrape convention

Web scraping is the name for the procedure of parsing a web page to extract information from
it. In BitTorrent, trackers are at liberty to implement functionality to allow peers to request
information regarding a specific swarm without resorting to error-prone web-scraping techniques.

If the last name in the announce url, i.e. the name after the last /-character is announce, then the
tracker supports scraping by using the announce url with the name announce replaced by scrape.

The scrape request may contain a info hash parameter, as shown in Figure 3.3, or be completely
without parameters.

16

3.1. BITTORRENT

GET /scrape?info_hash=n%05hV%A9%BA%20%FC)%12%1Ap%D4%12%5D%E6U%0A%85%E1 HTTP/1.0

Figure 3.3: Example scrape GET request.

The tracker will respond with a bencoded dictionary containing information about all files that
the tracker is currently tracking. The dictionary has a single key, files, whose value is another
dictionary whose keys are the 20-bit binary info hash values of the torrents on the specific tracker.
Each value of these keys contains another dictionary with the following fields:

complete Number of seeds in the swarm.

downloaded Number of registered complete-events for the swarm.

incomplete Number of leechers in the swarm.

name This optional field contains the name of the file as defined in the name-field
in the torrent file.

3.1.4 Peer States

A peer maintains two states for each peer relationship. These states are known as the interested
and choked states. The interested state is imposed by the requesting peer on the serving peer,
while for the case of the choked state the opposite is true. If a peer is being choked, then it will not
be sent any data by the serving peer until unchoking occurs. Thus, unchoking is usually equivalent
with uploading.

The interested state indicates whether other peers have parts of the sought content. Interest should
be expressed explicitly, as should lack of interest. That means that a peer wishing to download
notifies the sending peer (where the sought data is) by sending an interested message, and as soon
as the peer no longer needs any other data, a not interested message is issued. Similarly, for a
peer to be allowed to download, it must have received an unchoke message from the sending peer.
Once a peer receives a choke message, it will no longer be allowed to download. This allows the
sending peer to keep track of the peers that are likely to immediately start downloading when
unchoked. A new connection starts out choked and not interested, and a peer with all data, i.e.,
a seed, is never interested.

In addition to the two states described above, some clients add a third state – the snubbed state. A
peer relationship enters this state when a peer purports that it is going to send a specific sub-piece,
but fails to do so before a timeout occurs (typically 60 seconds). The local peer then considers
itself snubbed by the non-cooperating peer, and will not consider sub-pieces requested from this
peer to be requested at all.

3.1.5 Sharing Fairness and Bootstrapping

The choke/unchoke and interested/not interested mechanisms provides fairness in the BitTorrent
protocol. As it is the transmitting peer that decides whether to allow a download or not, peers
not sharing content will be reciprocated in the same manner.

To allow peers that have no content to join the swarm and start sharing, a mechanism called
optimistic unchoking is employed. Optimistic unchoking means that from time to time, a peer
with content will allow even a non-sharing peer to download. This will allow the peer to share the
small portions of data received and thus enter into a data exchange with other peer.

17

CHAPTER 3. PROTOCOL DESCRIPTIONS

request(piece,subpiece)

request(piece,subpiece)

request(piece,subpiece)

request(piece,subpiece)

Peer A Peer B Peer C

interested
interested

unchoke
unchoke

piece(subpiece)

piece(subpiece)
piece(subpiece)

piece(subpiece)

have
have

Figure 3.4: BitTorrent handshake procedure.

This means that while sharing resources is not strictly enforced it is strongly encouraged. It also
means that peers that have not been able to configure their firewalls and/or Network Address
Translation (NAT) routers properly will only be able to download the pieces altrustically shared
by peers through the optimistic unchoking scheme.

3.1.6 Data Transfer

Data transfer is done in parts of a piece (called sub-piece, block or chunk) at a time, by issuing a
request message. Sub-piece sizes are typically of size 16384 or 32768 bytes.

To allow TCP to increase throughput, several requests are usually sent back-to-back. Each request
should result in the corresponding sub-piece to be transmitted. If the sub-piece is not received
within a certain time (typically one minute), the non-transmitting peer is snubbed, i.e., it is
punished by not being allowed to download, even if unchoked. Data transfer is done by sending a
piece message, which contains the requested sub-piece (Figure 3.4). Once the entire piece, i.e., all
sub-pieces, has been received, and the SHA-1 hash of the piece has been verified, a have message
is sent to all connected peers.

The have message allows other peers in the swarm to update their internal information on which
pieces are available from which peers.

End-game mode

When a peer is approaching completion of the download, it sends out requests for the remaining
data to all currently connected peers to quickly finish the download. This is known as the end-
game mode. Once a requested subpiece is received, the peer sends out cancel-messages to all
peers that have not yet sent the requested data.

Without the end-game mode, there is a tendency for peers to download the final pieces from the
same peer, which may be on a slow link [41].

18

3.1. BITTORRENT

3.1.7 BitTorrent Performance Issues

Even though BitTorrent has become very popular among home users, and widely deployed in
corporate environments, there are still some issues currently being addressed for the next version
of BitTorrent.

The most pressing issue is the load on the central tracker authority. There are two main problems
related to the tracker: peak load and redundancy. Many trackers also handle more than a single
swarm. The most popular trackers handle several hundred swarms simultaneously. It is not
uncommon for popular swarms to contain hundreds or even thousands of peers. Each of these
peers connect to the tracker every 30 minutes by default to request new peers and provide transfer
statistics. An initial peer request to the tracker results in about 2-3 kB of response data. If these
requests are evenly spread out temporally, the tracker can usually handle the load. However, if a
particularly desired resource is made available, this may severely strain the tracker, as it will be
subject to a mass accumulation of connections akin to a distributed denial of service attack by
requesting peers. This is also known as the flash-crowd effect [43].

It is imperative for a swarm to have a functioning tracker if the swarm is to gain new peers since,
without the tracker, new peers have no location to receive new peer addresses. Tracker redundancy
is currently being explored and two alternatives are studied: backup trackers and distributing the
tracking functionality in the swarm itself. An extension exists to the current protocol that adds a
field, announce-list, to the metadata, which contains URLs to alternate trackers. No good way
of distributing the tracking in the swarm has yet been found, but a network of distributed trackers
has been proposed. Proposals of peers sending their currently connected peers to each other have
also cropped up, but again, no consensus has been agreed on. Additionally, DHT functionality
has been implemented in third party clients to address this problem [44]. A beta version of the
reference client also has support for DHT functionality.

Another important problem is the initial sharing delay problem. If a torrent has large piece
sizes, e.g., larger than 2 MB, the time before a peer has downloaded an entire piece and can start
sharing the piece can be quite substantial. It would be preferable to have the ability to have
varying verification granularities for the data in the swarm, so that a downloading peer does not
have to wait for an entire piece to begin calculating the hashes of the data. One way to do this
would be to use a mechanism known as Merkle trees [45], which allow for varying granularity. By
using this mechanism, a peer may start sharing after having downloaded only a small amount of
the data (on about the same order as the subpiece sizes).

3.1.8 Super Seeding

When a swarm is fairly new, i.e., there are few seeds in the swarm and peers have little of the shared
resource, it makes sense to try to evenly distribute the pieces of the content to the downloading
peers. This will speed up the dissemination of the entire content in the swarm. A normal seed
would announce itself as having all pieces during the initial handshaking procedure, thus leaving
the piece selection up to the downloading peer. Seeds have usually been in the swarm longer. This
means that they are likely to have a better view on which pieces are the most rare in the swarm,
and thus most suitable to be first inserted. As soon as peers start receiving the rare pieces, other
peers can download them from other peers instead of seeds. This further balances the load in and
increases the performance of the swarm.

A seed that employs super seeding does not advertise having any pieces at all during handshake.
As peers connect to the in effect hidden seed, it instead sends have-messages on a per-peer basis
to entice specific peers to download a particular piece.

19

CHAPTER 3. PROTOCOL DESCRIPTIONS

This mechanism is most effective in new swarms, or when there is a high peer-to-seed ratio and
the peers have little data. It is not recommended for everyday use.

As certain peers might have heuristics governing which swarms to be part of, a swarm containing
only super seeds might be discarded. This is because peers cannot detect the super seed as a seed,
thus assuming that the swarm is unseeded. This decreases the overall performance of the swarm.

3.2 Gnutella

Gnutella is a decentralized P2P system. Participants can share any type of resources, although
the currently available specification covers only file resources. The first “official”Gnutella protocol
was version 0.4 [4]. Soon, Gnutella version 0.6 [46] was released with improvements based on
the lessons learned from version 0.4. The protocol is easily extendable, which has lead to a
variety of proprietary and non-proprietary extensions (e.g., Ultrapeers and the Query Routing
Protocol (QRP)). For a while, the two protocol versions lived side by side and improvements were
merged from the v0.6 line into the legacy v0.4 line. However, it seems that July 1st 2003 was sort
of a “flag day” when Gnutella v0.4 peers were blocked from the network3.

The activities of Gnutella peers can be divided into two main categories: signaling and user data
exchange (further referred to as data exchange).

The signaling activities are concerned with discovering the network topology and locating re-
sources. Data exchange occurs when a peer has localized a resource of interest (e.g., a document
file). The peer downloads files over direct HTTP connections.

3.2.1 Ultrapeers and Leaf Nodes

Initially, the Gnutella network (referred to as the Gnet from now on) was non-hierarchical. How-
ever, experience has shown that the abundance of signaling was a major threat to the scalability
of the network [5]. Limewire (a company promoting an enhanced Gnutella servent4) suggested
the introduction of a two-level hierarchy: ultrapeers (UPs) and leaf nodes (LNs). UPs are faster
nodes in the sense that they are connected to high-capacity links and have a large amount of CPU
power available. LNs maintain a single connection to their ultrapeer. A UP maintains 10-100
connections, one for each LN and 1-10 connections to other UPs [47]. The UPs do signaling on
behalf of the LNs thus shielding them from large volumes of signaling traffic. A UP does not
necessarily have leaf-nodes – it can work standalone.

Some servents may not be capable to become leaf nodes or ultrapeers for various reasons (e.g.,
they lack required functionality). In this case, they are labeled legacy nodes. In order to improve
the overall scalability of the Gnet and to preserve bandwidth, UPs and LNs may refuse to connect
to legacy nodes.

According to the Gnutella Development Forum (GDF) mailing list, the Gnutella community has
recently adopted what is called support for high outdegree5. This implies that UPs maintain
at least 32 connections to other UPs and 100–300 connections to different leaf nodes. LNs are
recommended to maintain approximately connections to UPs. The numbers may differ slightly
between different Gnutella vendors. The claim is that high-outdegree support allows a peer to

3This was discovered in the source code for gtk-gnutella-0.92. The software checks if the current date is later
than July 1 2003. If true, it disables Gnutella v0.4 signaling.

4Servent denotes a software entity that acts both as a client or as a server. The name is a combination of the
words SERVer and cliENT.

5First mentioned in [48].

20

3.2. GNUTELLA

connect to the majority of Gnet peers in four hops or less.

3.2.2 Peer Signaling

Peer signaling can be divided into the following categories: peer discovery, resource query, ultrapeer
routing and miscellaneous signaling. Peer discovery is done mainly through the use of Gnutella
Web Cache (GWC) servers and PING and PONG messages. Query signaling consists of QUERY
and QUERY HIT messages. Ultrapeer routing can employ various schemes but the recommended
one is the QRP. Ultrapeers signal among themselvs using PING and PONG messages. Finally,
there are some miscellaneous messages flowing in the Gnet such as PUSH, Horizon Size Estimation
Protocol (HSEP) or other messages based on proprietary Gnutella extensions.

3.2.3 Peer Discovery

A Gnutella node that wants to join the overlay must first have information about the listening
socket6 of at least another peer that is already member of the overlay. This is referred to as the
bootstrap problem.

The old way to solve the bootstrap problem was to visit a web site that published up-to-date lists
of known peers. The first step was to select one of the peers listed on the page, cut-and-paste
its address (i.e., the listening socket) from the Web browser into the Gnutella servent and try to
open a connection to it. This process would continue until at least one connection was successfully
opened. At this point the PING–PONG traffic would, hopefully, reveal more peers to which the
servent could connect. The addresses of newly found peers were cached in the local hostcache and
reused when the servent application was restarted.

Since peers in general have a short life span [49] (i.e., they enter and leave the network very often)
the hostcache kept by each node often got outdated. Gnutella Web Cache (GWC) servers7 try to
solve this problem. Each GWC server is essentially an HTTP server serving a list of active peers
with associated listening sockets. The Web page is typically rendered by a Common Gateway
Interface (CGI) script or Java servlet, which is also capable of updating the list contents. UPs
update the list continuously, ensuring that new peers can always join the overlay.

A list of available GWC servers is maintained at the main GWebCache web site. This list contains
only GWC servers that have elected to register themselves. Unofficial GWC servers exist as well.

New Gnutella peers implement the following bootstrap procedure: upon start they connect to
the main GWebCache Web site, obtain the list of GWC systems, try to connect to a number of
them, and finally end up building their own hostcache. Alternatively, the node can connect to
an unofficial GWC system or connect directly to a node in the Gnet. The last option requires a
priori knowledge about the listening socket of a Gnet node.

Recently, it was observed that GWC servers were becoming overloaded. There appeared to be
two reasons behind the heavy load: an increase in the number of GWC-capable servents and the
appearance of a large number of misbehaving servents. The UDP Host Cache (UHC) protocol
was suggested as a way to alleviate the problem. The protocol works as a distributed bootstrap
system, transforming UHC-enabled servents into GWC servers [50].

6By socket, we refer to the tuple <host address, protocol, port>.
7Also abbreviated as GWebCache servers.

21

CHAPTER 3. PROTOCOL DESCRIPTIONS

3.2.4 Signaling Connection Establishment

Assuming a Gnutella servent has obtained the socket address (i.e., the IP address and port pair)
of a peer, it will attempt to establish a full-duplex TCP connection. The explanation below will
use typical TCP terminology calling the servent that has done the TCP active open client and its
peer server. Once the TCP connection is in place, a handshaking procedure takes place between
the client and the server:

1. The client sends the string GNUTELLA CONNECT/0.6<CR><LF> where <CR> is the ASCII
code for carriage return and <LF> is the ASCII code for line feed.

2. The client sends all capability headers in a format similar to HTTP and ends with <CR><LF>

on an empty line, e.g.,

User-Agent: BearShare/1.0<CR><LF>

X-Ultrapeer: True<CR><LF>

Pong-Caching: 0.1<CR><LF>

<CR><LF>

3. The server responds with the string GNUTELLA/0.6 <status-code><status-string><CR>

<LF>. The <status-code> follows the HTTP specification with code 200 meaning success.
The <status-string> is a short human readable description of the status code (e.g., when
the code is 200 the string will typically be set to OK).

4. The server sends all capability headers as described in step 2.

5. The client parses the server response to compute the smallest set of common capabilities
available. If the client still wishes to connect, it will send GNUTELLA/0.6 <status-code>

<status-string><CR><LF> to the server with the <status-code> set to 200. If the
capabilities do not match, the client will set the <status-code> to an error code and close
the TCP connection.

If the handshake is successful, the client and the server start exchanging binary Gnutella messages
over the existing TCP connection. The existing TCP connection lasts until one of the peers decides
to terminate the session. At that point the peer ending the connection has the opportunity to
send an optional Gnutella BYE message. Then the peer closes the TCP connection.

Modern servents include a X-Try header in their response if they reject a connection. The header
contains a list of socket addresses to recently active servents, to which the other peer can try
to connect. The purpose of the X-Try header is to increase connectivity and reduce the need to
contact a GWC server.

3.2.5 Compressed Message Streams

If the capability set used by the peers includes stream compression then all data on the TCP
connection, with the exception of the initial handshake, is compressed [51]. The type of compres-
sion algorithm can be selected in the capability header, but the currently supported algorithm is
deflate, which is implemented in zlib [52].

3.2.6 Gnutella Message Headers

Each Gnutella message starts with a generic header that contains the following:

22

3.2. GNUTELLA

•Message ID/GUID (Globally Unique ID) to uniquely identify messages on Gnet. Leaving out
some details, the GUID is a mixture of the node’s Ethernet MAC address and a timestamp
[53].

•Payload type code that identifies the type of Gnutella message (e.g., PONG messages have
payload type 0x01).

•Time-To-Live (TTL) to limit the signaling radius and its adverse impact on the network.
Messages with TTL > 15 are dropped8.

•Hop count to inform receiving peers how far the message has traveled (in hops).

•Payload length to describe the total length of the message following this header. The next
generic Gnutella message header is located exactly this number of bytes from the end of this
header.

The generic Gnutella header is followed by the actual message which may have its own head-
ers. Also, the message may contain vendor extensions. Vendor extensions are used when a spe-
cific type of servent wants to implement experimental functionality not covered by the standard
specifications. The vendor extensions should be implemented using Gnutella Generic Extension
Protocol (GGEP) [54], since the protocol provides a transparent way for regular servents to interact
with the vendor servents.

3.2.7 PING–ONG Messages

Each successfully connected pair of peers starts periodically sending PING messages to each other.
The receiver of the PING message decrements the TTL in the Gnutella header. If the TTL is
greater than zero the node increments the hop counter in the message header and then forwards
the message to all its directly connected peers, with the exception of the one from where the
message came. Note that PING messages do not carry any user data (not even the sender’s
listening socket). This means that the payload length field in the Gnutella header is set to zero.

PONG messages are sent only in response to PING messages. More than one PONG message can
be sent in response to one PING. The PONG messages are returned on the reverse path used by
the corresponding PING message. Each PONG message contains detailed information about one
active Gnutella peer. It also contains the same GUID as the PING message that triggered it. The
PONG receiver can, optionally, attempt to connect to the peer described in the message.

UPs use the same scheme, however they do not forward PINGs and PONGs to/from the LNs
attached to them.

3.2.8 QUERY and QUERY_HIT Messages

A Gnutella peer wishing to locate some specific resource (e.g., file) must assemble a QUERY
message. The message describes the desired resource using a text string. For a file resource this is
the file name. In addition, the minimum speed (i.e., upload rate) of servents that should respond
to this message is specified as well. There may be additional extensions attached to the message
(e.g., proprietary extensions) but those are outside the scope of this document.

In Gnutella v0.4, the QUERY message is sent to all peers located one hop away, over the signaling
connections established during the handshake. Peers receiving a QUERY message forward it to
all directly connected peers unless the TTL field indicates otherwise.

8Nodes that support high outdegree will drop messages with TTL > 4.

23

CHAPTER 3. PROTOCOL DESCRIPTIONS

The newer Gnutella v0.6 attempts to alleviate the problems of the previous version by introducing
a form of selective forwarding called dynamic query [48]. A dynamic query first probes how popular
the targeted content is. This is done by using a low TTL value in the QUERY message that is sent
to a very limited number of directly connected peers. A large number of replies indicate popular
content, whereas a low number of replies imply rare content. For rare content, the QUERY TTL
value and the number of directly connected peers receiving the message are gradually increased.
This procedure is repeated until enough results are received or until a theoretical limit of the
number of QUERY message receivers is reached. This form of resource discovery requires all LNs
to rely on UPs for their queries (i.e., LNs do not perform dynamic queries).

If a peer that has received the QUERY message is able to serve the resource, it should respond
with a QUERY HIT message. The GUID for the QUERY HIT message must be the same as
the one in the QUERY message that has triggered the response. The QUERY HIT message lists
each resource name that matches the resource description from the QUERY message9 along with
the resource size in bytes and other information. In addition, the QUERY HIT messages contain
the listening socket which should be used by the message receiver when it wants to download the
resource. The Gnutella specification discourages the use of messages with sizes greater than 4 kB.
Consequently, several QUERY HIT messages may be issued by the same servent in response to a
QUERY message.

The QUERY HIT receiver must establish a direct HTTP connection to the listening socket de-
scribed by the message (Section 3.2.13) in order to download the data. If the QUERY HIT sender
(i.e., the resource owner) is behind a firewall, incoming connections will typically not be accepted.

To work around this problem, when a firewall is detected, the downloader must send a PUSH
message over the signaling connection. The message will be routed in reverse direction along the
path taken by the received QUERY HIT message. The resource owner can use the information in
the PUSH message to establish a TCP connection to the downloader. The downloader can then
use the HTTP GET method to retrieve the resource. For details, see Section 3.2.10.

Some servents use the metadata extension mechanism [55] to allow for richer queries. The idea is
that metadata (e.g., author, genre, publisher) is associated with files shared by a servent. Other
servents can query those files not only by file name, but also by the metadata fields.

3.2.9 Query Routing Protocol

The mission of ultrapeers is to reduce the burden put on the network by peer signaling. They
achieve this goal by eliminating PING messages among leaf nodes and by employing query routing.
There are various schemes for ultrapeer query routing but the recommended scheme the QRP [56].
Ultrapeers signal among themselves by using PING and PONG messages.

QRP [56] was introduced in order to mitigate the adverse effects of flooding used by the Gnutella
file queries and is based on a modified version of Bloom filters [57]. The idea is to break a query
into individual keywords and have a hash function applied to each keyword. Given a keyword,
the hash function returns an index to an element in a finite discrete vector. Each entry in the
vector is the minimum distance expressed in hops to a peer holding a resource that matches the
keyword in the query. Queries are forwared only to leaf nodes that have resources that match
all the keywords. This substantially limits the bandwith used by queries. Peers run the hash
algorithm over the resources they share and exchange the routing tables (i.e., hop vectors) at
regular intervals.

9For example the string linux could identify a resource called linux_redhat_7.0.iso as well as a resource
called linux_installation_guide.txt.gz. Thus, this query would yield two potential results. Both results will be
returned to the QUERY sender.

24

3.2. GNUTELLA

Individual peers (legacy or ultrapeer nodes) may run QRP and exchange routing tables among
themselves [58]. However, the typical scenario is that legacy nodes do not use QRP, leaf nodes
send route table updates only to ultrapeers, and ultrapeers propagate these tables only to directly
connected ultrapeers.

3.2.10 PUSH Messages

PUSH messages are used by peers that want to download resources from peers located behind
firewalls that prevent incoming TCP connections. The downloader sends a PUSH message over
the existing TCP connection, which was setup during the handshake phase. The PUSH message
contains the listening socket of the sender. The host behind the firewall can then attempt to
establish a TCP connection to the listening socket described in the message. If the TCP connection
is established successfully, the host behind the firewall sends the following string over the signaling
connection:

GIV <File Index>:<Servent Identifier>/<File Name><LF><LF>

The <File Index> and <Servent Identifier> are the values found in the corresponding PUSH
message and <File Name> is the name of the resource requested. Upon the receipt of the message
the receiver issues an HTTP GET request on the newly established TCP connection.

GET /get/<File Index>/<File Name> \

HTTP/1.1<CR><LF>

User-Agent: Gnutella<CR><LF>

Connection: Keep-Alive

Range: bytes=0-<CR><LF>

<CR><LF>

3.2.11 BYE Messages

The BYE message is an optional message used when a peer wants to inform its neighbours that it
will close the signaling connection. The message contains an error code along with an error string.
The message is sent only to hosts that have indicated during handshake that they support BYE
messages.

3.2.12 Horizon Size Estimation Protocol Messages

The Horizon Size Estimation Protocol (HSEP) is used to obtain estimates on the number of reach-
able resources (i.e., nodes, shared files and shared kilobytes of data) [59]. Hosts that support HSEP
announce this as part of the capabiliy set exchange during the Gnutella handshake. If the hosts
on each side of a connection support HSEP, they start exchanging HSEP message approximately
every 30 seconds. The HSEP message consists of n_max triples. Each triple describes the number
of nodes, files and kilobytes of data estimated at the corresponding number of hops from the node
sending the message. The n_max values is the maximum number of hops supported by the protocol
with 10 hops being the recommended value [59].

The horizon size estimation can be used to quantify the quality of a connection: the higher the
number of reachable resources, the higher the quality of the connection.

25

CHAPTER 3. PROTOCOL DESCRIPTIONS

3.2.13 Data Exchange (File Transfer)

Data exchange takes place over a direct HTTP connection between a pair of peers. Both HTTP 1.0
and HTTP 1.1 are supported but use of HTTP 1.1 is strongly recommended. Most notably, the
use of features such as persist connection and range request is encouraged.

The range request allows a peer to continue an unfinished transfer from where it left off. Further-
more, it allows servents to utilize swarming, which is the technique to retrieve different parts of the
file from different peers. Swarming is not part of the Gnutella protocol and regular Gnutella ser-
vents (i.e., servents that do not explicitly support swarming) can be engaged in swarming without
being aware of it. From their point of view, a peer is requesting a range of bytes for a particular
resource. The intelligence is located at the peer downloading data.

The persist connection feature is useful for swarming. It allows a peer to make several requests
for different byte ranges in a file, over the same HTTP connection.

Fig. 3.5 shows a simple Gnet scenario, involving three legacy peers. It is assumed that Peer A has
obtained the listening socket of Peer B from a GWC server. Using the socket descriptor, Peer A
attempts to connect to Peer B. In this example, Peer B already has a signaling connection to Peer
C.

Gnutella message over

Separate HTTP connection

established TCP connection

TCP connection

PONG

PING

PING

PONG

PONGQUERY

QUERY

QUERY HIT

QUERY HIT

PONG

PONG

PING

PING

HTTP response

HTTP GET

Peer A Peer CPeer B

GNUTELLA CONNECT/0.6

GNUTELLA/0.6 200 OK

GNUTELLA/0.6 200 OK

Figure 3.5: Example of a Gnutella session.

26

3.2. GNUTELLA

The first three messages between Peer A and Peer B illustrate the establishment of the signaling
connection between the two peers. The two peers may exchange capabilities during this phase as
well.

The next phase encompasses the exchange of network topology information with the help of PING
and PONG messages. The messages are sent over the TCP connection established previously (i.e.,
during the peer handshake). It is observed that PING messages are forwarded by Peer B from
Peer A to Peer C in both directions as well as that PONG messages follow the reverse path taken
by the corresponding PING message.

At a later time the Peer A sends a QUERY message, which is forwarded by Peer B to Peer C. In
this example, only Peer C is able to serve the resource, which is illustrated by the QUERY HIT
message. The QUERY and QUERY HIT messages use the existing TCP connection, just like
the PING and PONG messages. Again, it is observed that the QUERY HIT message follows the
reverse path taken by the corresponding QUERY message.

Finally, Peer A opens a direct HTTP connection to Peer C and downloads the resource by using
the HTTP GET method. The resource contents are returned in the HTTP response message.

The exchange of PING–PONG and QUERY–QUERY HIT messages continues until one of the
peers tears down the TCP connection. A Gnutella BYE message may be sent as notification that
the signaling connection will be closed.

3.2.14 Other Features

Gnutella has support for many other featues which are important, but not whithin the scope of
this document. The remainder of this section will present some of these features briefly.

Hash/URN Gnutella Extensions

The Hash/URN Gnutella Extensions (HUGE) specification [60] provides a way to identify files by
Uniform Resource Names (URN) and in particular by SHA-1 hash values. The advantages of using
HUGE and SHA-1 is that files with same content but different names can be discovered through
the QUERY–QUERY HIT mechanism and that the file integrity can be checked upon download
by recomputing the SHA-1 hash value.

File Magnets and Magma Lists

Building on HUGE, file magnets represent the bridge between the Web and P2P networks. Web
pages can include special URL links (file magnets), which encode URNs to resources available on
the P2P network. When a user clicks on such a link, the web browser will transfer the URN to
the local Gnutella servent, which will perform a query on Gnet.

A Magma list is a list of file magnets, e.g., the favourite documents, music or pictures shared by
a Gnutella user.

Download Mesh

In order to speed up file downloads and to distribute the load among servents, when a peer sends
a QUERY HIT message it includes a list of peers that are known to have the same file (i.e.,

27

CHAPTER 3. PROTOCOL DESCRIPTIONS

the download mesh). The simplest way a servent can build such a list is to remember the list
it obtained itself when it downloaded the file. Download meshes require support for the HUGE
extension. The main benefit of using a download mesh is the ability to perform efficient swarming,
i.e., to be able to quickly download simultaneously from several locations.

Partial File Sharing

Partial File Sharing (PFS) is an optimization of swarming and download meshes. Servents that
support PFS do not wait to download the whole file before replying to matching QUERY messages.
If a servent requests the file before its download has completed, the servent that has the partial file
will set the Content-Range header in the HTTP reply informing the other peer about the amount
of available data.

Passive/Active Remote Queueing

Most servents limit the number of uploads that can occur simultaneously, in order to preserve band-
width. When Passive/Active Remote Queueing (PARQ) is used, download requests are queued
at the servent hosting the file [61]. The specification allows servents to check their place in the
download queue. It allows hosts to temporarily (maximum 5 minutes) become unavailable. This
feature can come in handy if the servent crashes or temporarily looses its Internet connection.

Firewall-to-Firewall aka. Reliable UDP File Transfer

Firewall-to-Firewall (F2F) allows two firewalled hosts, both of them connected to Internet through
NAT servers, to transfer files among themselves over UDP [62]. The technique to open the UDP
ports in the firewall is known as “UDP hole punching” and is documented fairly well in [63].

LAN Multicast

Recently, a specification was made available which allows servents located on the same LAN to
take advantage of IP multicast to transfer files [64]. The advantages of LAN multicast is that file
transfers are more efficient due to IP multicast and generally much faster due to higher bandwitdh,
lower latency and lower number of hops.

28

Chapter 4

Measurement Software Description

Traffic measurements have been used within the networking research community for a very long
time, going back to the early teletraffic researchers, such as Conny Palm and Engset [65].

Williamson [66] identifies four main reasons for the usefulness of network traffic measurements:
network troubleshooting, protocol debugging, workload characterization and performance evalu-
ation. For the present work, only the latter two are considered, with an emphasis on workload
characterization.

When deciding on making measurements, there are two avenues from which to choose: active or
passive measurements. Active measurements entail actively probing a network with either artifi-
cially generated traffic or having a node join in the network as an active participant. Probing with
artificial traffic is analogous to system identification using impulses in, e.g., vibration experiments
or acoustical environments. A passive measurement is one where the network is silently monitored
without any intrusion.

4.1 Passive measurements

Passive measurements are commonly used when data on “real” networks are desired, for instance
to use in trace-driven simulations, model validation or bottleneck identification. Essentially, this
technique observes a live network without interacting with it.

Depending on the level of accuracy desired, different measurement options are available. For
coarse-grained measurements, on a timescale the order of seconds, there is the possibility of using
SNMP and RMON to gather information from networking hardware. This is usually used as part of
normal network operations, and not very useful for protocol evaluations and per-flow performance
evaluation. Per-flow information is available in, e.g., Cisco’s NetFlow [67] , but again, no packet
inspection is available.

Finer-grained measurements with full packet inspection capabilities are available in both hardware
and software configurations. Software configurations provide measurement accuracies in tens of
microseconds, while dedicated measurement hardware gives nanosecond accuracy.

There are two main approaches to perform passive application layer measurements for network
traffic. In the first approach, called application logging, the traffic is measured by the application
itself. The other approach is to obtain measurements indirectly, by monitoring traffic at the link
layer and performing application flow reassembly using a specially designed application. This

29

CHAPTER 4. MEASUREMENT SOFTWARE DESCRIPTION

approach is referred to as flow reassembly. A mixture of these two approaches is possible as well.

4.1.1 Application Logging

Unless already supported, application logging requires changes in the application software to record
incoming and outgoing network data and other events of interest, e.g., transitions between appli-
cation states, failures, CPU and memory usage etc. This implies modifying the application source
code. In the case of open source software these changes can be performed rather straightforwardly.
However, for closed source software one would need to negotiate an agreement with the vendor to
obtain and modify the source code.

The advantage of application logging is that measurement data is readily available from within the
application. Measurement code embedded at relevant places in the application can continuously
monitor all variables of interest. On the other hand, the main disadvantage associated with this
method (apart from the licensing issue discussed above) is related to timestamp accuracy. The
accuracy of the timestamp is affected by three main factors: drift in the frequency of the crystal
controlling the system clock, latency in the Operating System (OS) and latency in the network
stack.

The frequency drift of the crystal is due to temperature changes and age. Its influence on the
timestamp is rather small when compared to the other two factors.

Latency in the OS refers to the delay between the time when a user-space process requests a times-
tamp from the operating system and the time when the timestamp is available to the process. The
delay is largely accounted for by scheduling in the kernel when the calling process is temporarily
preempted by other processes. The problem becomes increasingly worse for interpreted programs,
e.g., the reference BitTorrent client, which is a python script. In this case the timestamps are
subject to additional scheduling imposed by the interpreter.

A significant amount of queueing and scheduling occurs in the TCP/IP stack as well, especially
in the routines for IP and TCP reassembly. The effect is that timestamps at the application layer
are only indicative for the actual time when packets enter or leave the link-layer at the node in
question.

4.1.2 Flow Reassembly

The flow reassembly method attempts to address some of these problems by moving the measure-
ments closer to the network. Link-layer measurements have enjoyed a long tradition in the network
community. However, since the interest is now moving towards what happens at the application
layer, one needs to develop dedicated software able to decode application layer messages from the
observed link-layer traffic, essentially replicating parts of the application of interest.

Flow reassembly involves three stages: link-layer capture, transport stream reassembly, e.g., TCP
reassembly, and application message decoding.

A plethora of link-layer capture software is available under very liberal licenses on the Internet,
e.g., tcpdump and ethereal [68, 69]. The common denominator for this software is that in a
shared-medium LAN such as Ethernet, the capturing software forces the network interface to
work in promiscuous mode, thus enabling it to monitor all traffic in the LAN. An issue to consider
carefully when selecting capture software, is the timestamping operation. The operation should
be performed as close as possible to the place where the frame is read from the network card
(if possible in the network driver or on the card itself). Failure to do so may lead to similar
inaccuracies as in the case of application logging.

30

4.2. NETWORK INFRASTRUCTURE

Transport stream reassembly deals with missing or duplicate packets and with packets arriving in
the wrong order. At the IP layer this involves reassembly of IP fragments. At the TCP layer, the
transport stream reassembly replicates the TCP reassembly functionality from the network stack.

The main problem with regards to TCP reassembly is to obtain the same TCP state transitions
that occurred at the time when the traffic was recorded. This is particularly hard to do in a
heterogeneous network environment, since different OSs handle special TCP conditions in different
ways. For example, retransmitted segments may overlap the data received previously and one must
decide whether to keep the old or the new data. Windows and UNIX take opposing views of this
scenario [70]. A solution to minimize the inconsistencies in protocol implementations is to use a
traffic normalizer [71]. Similar problems apply to reassembly of IP fragments.

Application message decoding uses reassembled transport layer flows to obtain application mes-
sages exchanged by end-points. The main advantage of flow reassembly is that it provides a more
accurate view of how the application affects the network. Furthermore, flow reassembly can be
run on a dedicated host different from the hosts participating in the application session. Such a
dedicated host has also the possibility to analyze all traffic passing by the recording interface. In
contrast, application logging can only provide information about the flows in which the measuring
host is an active participator. Furthermore, the flow reassembly method can save link-layer traffic
to disk for off-line analysis.

A major disadvantage associated with flow reassembly is that all application states must be inferred
from the recorded network traffic. This is not always possible, since certain application state
transitions may be independent of network events. Another disadvantage is that a lot of existing
functionality (e.g., IP and TCP reassembly) is duplicated. A well-known programming mantra
states that the probability to encounter bugs increases proportionally to the volume of new code.
An even more serious problem is related to the link-layer capture. On heavily loaded links, the
hardware may not be able to record all data and will start dropping frames. This has an impact
on the host performing the measurements but not necessarily on the host participating in the
application layer session.

Off-line traffic analysis features, similar to those found in flow reassembly, can be implemented
using application logging by adding suitable message recording points in the software application.
This means, in fact, a measurement method that is a mixture between application logging and
flow reassembly. Such a mixed methodology has the advantages of both methods, e.g., no need to
infer application state from link-layer traces, and no need to decide beforehand what statistics to
collect.

4.2 Network infrastructure

The P2P measurement infrastructure developed at BTH consists of peer nodes and protocol decod-
ing software. Tcpdump [68] and tcptrace [72] are used for traffic recording and protocol decoding.
Although the infrastructure is currently geared towards P2P protocols, it can be easily extended
to measure other protocols running over TCP as well. Furthermore, we plan to develop similar
modules to measure UDP-based applications as well.

The BTH measurement nodes run the Gentoo Linux 1.4 operating system, with kernel version 2.6.5.
Each node is equipped with an Intel Celeron 2.4 GHz processor, 1 GB RAM, 120 GB hard drive, and
10/100 FastEthernet network interface. The network interface is connected to a 100Mbit switch
in the lab at the Telecommunication Systems department, which is further connected through a
router to the GigaSUNET backbone (Fig. 4.1(a)).

Our experience with the current setup has been that the traffic recording step alone accounts for

31

CHAPTER 4. MEASUREMENT SOFTWARE DESCRIPTION

about 70 % of the total time taken by measurements. Protocol decoding is not possible when the
hosts are recording traffic. The main reason is that the protocol decoding phase, which is I/O
intensive, requires large amounts of CPU power and RAM. To overcome this problem, we are
proposing a distributed measurement infrastructure similar to the one shown in Fig. 4.1(b).

(a) Measurement setup (b) Distributed measurement setup

Figure 4.1: Measurement network infrastructures.

When used in the distributed infrastructure, the P2P nodes are equipped with an additional
network interface, which we refer to as the management interface. P2P traffic is recorded from
the primary interface and stored in a directory on the disk. The directory is exported using the
Network File System (NFS) over the management interface. Data processing workstations can read
recorded data over NFS as soon as it is available. Optionally, the data processing workstations
can be located in private LAN or VPN in order to increase security, save IP address space and
decrease the number of collisions on the Ethernet segment. In this case, the Internet access router
provides Internet access to the workstations, if needed.

4.3 TCP Reassembly Framework

Each measurement node has tcpdump version 3.8.3 installed on it. When the node is running
measurements, tcpdump is started before the Gnutella servent in order to avoid missing any
connections. Tcpdump can also be run on a different node in the network, provided that the
ultrapeer switch port is mirrored to the port where the tcpdump host is recording or if the switch
is replaced with a hub and both the tcpdump host and the ultrapeer are connected to it.

During the data collection stage, tcpdump collects Ethernet frames from the switch port where
the ultrapeer node is connected. Since most P2P applications can use dynamic ports, all traffic
reaching the switch port must be collected. However, to increase the performance during data
collection and data processing, one can turn off most or all server software on the ultrapeer node.
It is possible, in addition, to apply a filter to tcpdump that drops packets used by traditional
services, which are running on well-known ports (e.g., HTTP, FTP, SSH).

32

4.3. TCP REASSEMBLY FRAMEWORK

The volume of collected data can be quite large, e.g., the resulting trace file could grow well
beyond 2 GB in less than one day, which is larger than most standard filesystems can handle
without modification. This is directly related to the number of peers the servent is allowed to
connect to. In the case of Gnutella we observed on average 130 peers (100 leaf nodes and 30
ultrapeers) and collected approximately 33 GB captured trace data in eleven days. The solution
was to have tcpdump spread the recorded data across several files, each 600 MB large. This file
size was chosen such that each data file is small enough to fit on a recordable CD.

Log data
reduction

Postprocessing
and analysis

TCP Reassembly Application msg
flow reassemblywith tcpdump

Data collection

Log parsing

Figure 4.2: Measurement procedures.

4.3.1 TCP Reassembly

Assuming that the measured P2P application runs over TCP, the next step is to reassemble the
TCP frames to a flow of ordered bytes. The TCP reassembly module builds on the TCP engine
available in tcptrace.

The module reads the tcpdump traces in the order they were created. Each trace is scanned for
TCP connections. When found, they are stored in a list with connection records. Further, when
a new TCP segment is found in the trace file, the module scans the connection list comparing the
socket pair of the segment with each entry in the list. If no entry matches the socket pair of the
new segment, then a new connection is considered to be found and a record is created for it, which
finally is added to the connection list. Otherwise, the connection record matching the socket pair
is retrieved and sent together with the new segment to the TCP reassembly engine.

The TCP reassembly engine is similar to the one used by the FreeBSD TCP/IP stack as described
in [73]. For each active connection, the reassembly engine keeps a doubly linked list, which is
referred to as the reassembly list. When given a connection record and a new segment, it retrieves
the correct reassembly list and then it inserts the new segment in the correct place in the list. The
reassembly engine is capable of handling out-of-order segments as well as forward and backward
overlapping between segments.

4.3.2 Application Data Flow Reassembly

Whenever new data is available, the application data reassembly module is notified. Upon no-
tification, it will ask the TCP reassembly module for a new segment from the reassembly list
corresponding to the socket pair received with the notification. When it receives the new seg-
ment, it interprets the contents according to the specification for the protocol it decodes. Since
application messages may span several segments and since a segment may contain data from
two consecutive messages, each segment is appended to the end of a data buffer before further
processing, thus creating a contiguous data flow containing at least one application message.

33

CHAPTER 4. MEASUREMENT SOFTWARE DESCRIPTION

Gnutella Reassembly

In the case of a new Gnutella connection, the application reassembly module first waits for the
handshake phase to begin. If the handshake fails the connection is marked invalid and it is
eventually discarded by the memory manager.

If the handshake is successful, the application reassembly module scans the capability lists sent
by the nodes involved in the TCP connection. If the nodes have agreed to compress the data, the
connection is marked as compressed. Further segments received from the TCP reassembly module
for this connection are first sent to the decompressor, before being appended to the data buffer.

The decompressor uses the inflate() function of zlib [52] to decompress the data available in the
new segment. Upon successful decompression the decompressed data is appended to the data
buffer.

Immediately after the handshake phase, the application reassembly module attempts to find the
Gnutella message header of the first message. Using the payload length field, it is able to discover
the beginning of the second message. This is the only way in the Gnutella protocol to discover
message boundaries and thus track application state changes. Based on the message type field
in the message header, the corresponding decoding function is called, which outputs a message
record to the log file. The message records follow a specific format required by the postprocessing
stage.

BitTorrent Reassembly

The BitTorrent reassembler works in a fashion much similar to the Gnutella reassembler. It is
however less complex, since the BitTorrent protocol is substantially less complex than the Gnutella
protocol. Each BitTorrent message is fixed-length and is prepended by the message type in a 32-bit
little-endian word, making the decoding straightforward.

The timestamp of the first TCP segment of each message is recorded, along with the timestamp of
the last segment. In the case of single-segment messages (all messages except the piece-messages),
the first and last segments are the same.

A rudimentary HTTP parser is also available, which is used to parse tracker responses.

4.3.3 Data Compression and Postprocessing

Since the logs can grow quite large, they can be processed through an optional stage of data
compression. The compression is achieved by using the on-the-fly deflate compression offered by
zlib. Additional data reduction can be achieved if the user is willing to sacrifice some detail by
aggregating data over time.

The postprocessing module interprets the (optionally compressed) log data and it is able to de-
multiplex it based on different types of constraints: message type, IP address, port number, etc.
The data output format of this stage is suitable for input to numerical computation software such
as MATLAB and standard UNIX text processing software such as sed, awk and perl.

34

4.4. APPLICATION LOGGING

4.4 Application Logging

Application logging is commonly used in server software to enable traceability of errors and client
requests. In certain server applications, such as critical business systems and other high-security
systems, server logs are very important for detecting intrusion attempts and for estimating severity
of security breaches. In other applications, logs are a useful tool for performance analysis.

However, client applications do not usually provide for much in terms of logging. If logging is
made available, it usually provides rather coarsely grained information, such as application start
and other very high-level application events. It is unusual that an application provides the amount
of log detail needed to analyze the network performance of the application.

To provide adequate detail in application logs, it is necessary to modify the application in such a
way that the application both provides the detailed event information needed and a way to store
this information in a log file or database.

In applications that are based on an event-loop with a central managing component, obtaining
the relevant information is a fairly easy task, as the events being handled contain all information
relevant to the specific event. By adding a timestamp, these may then be ejected to a log file or
database. On the other hand, in a threaded and less centralised application, this becomes a more
difficult task, as events may not be handled through a single component.

An additional issue with client-side logging is deployment of the modified clients. It is important
to have a large enough number of users to provide representative data. Also, not all users may
agree to running a modified client.

One of the most difficult problems relates to the non-availability of client-source code. For ex-
ample, most proprietary software does not provide the source code for the application, making
modification impossible without substantial reverse engineering.

Log storage may become an issue if, for instance, the application is running on an embedded
system where there is no storage available except for internal memory. Also, if measurements are
performed over a long period of time and/or there is a large number of events, the application logs
may grow prohibitively large.

4.4.1 BitTorrent Software Modifications

The reference BitTorrent client version1 is written in the python programming language [74].
Python is an interpreted and interactive language with object oriented features that combines syn-
tactical clarity with powerful components and system-level functionality. This makes the process
of extending software written in the language less complicated than in a compiled and syntactically
more demanding language such as C or Java.

The client is written as an event-based program, reacting on incoming protocol messages and
internal timers. The internal timers activate the sending of messages such as tracker requests,
unchoking peers and network timeouts. For the purpose of the present work, the incoming network
message handling routines are the important part. These are mainly located in a single software
component, which handles all incoming events. This component consists of a function containing
the main loop (that receives the network messages), and several message specific functions to
handle the incoming messages that are invoked from the main loop. While it is possible to intercept
the messages in the main loop, it is much easier to do so in the specific message handling routines.
There are two major reasons for this:

1Version 3.4.1, released on March 11, 2004.

35

CHAPTER 4. MEASUREMENT SOFTWARE DESCRIPTION

•The message type is already implicitly given by the call of the function.

•Message-specific information is provided automatically, without the need to write extra pars-
ing code. For instance, in the case of a piece request message being intercepted in the main
loop, it would have been necessary to parse the incoming message to find information such
as piece number and subpiece index.

Before saving the ejected log messages to disk, they are compressed by the zlib library [52].
This is beneficial both with regards to disk storage and with regards to the amount of disk I/O
performed. The degradation in CPU performance of the compression is practically negligible on
the measurement computers.

Finally, extra parameters have been added to the application to allow changing the filename of the
log-file, and code to automatically generate a date and timestamped filename if none was given.

4.5 Log Formats

Selection of a log format that provides a suitable amount of information is an important issue. It
is important to capture enough information to make relevant statistical analysis possible, while at
the same time keep the sizes of the log files to a manageable level.

This problem is most noticeable when designing a log format for application logs, as it is not
possible to re-run a specific measurement a second time if one has chosen too small a subset of
metrics to log. Packet captures are less affected by this, but are not impervious to similar effects
in the case of, for instance, too small capture size for the recorded packets, thus losing parts of
the payload data. In both cases, information is irretrievably lost.

Complete packet captures that contain all data transmitted on a link may be used to re-generate
log files as needed. This is however often a very time-consuming process, and it is preferable to
avoid it whenever possible.

4.5.1 BitTorrent XML Log Format

The eXtensible Markup Language (XML) [75] has a number of attractive features that makes it
a good choice as a log format. XML is by concept and design made to be easily parsable by a
computer, while at the same time be at least semi-readable by humans.

Some of the salient advantages of using XML as a log format are :

Parsability There are several XML parsing libraries available for a plethora of languages,
including, but not limited to, perl, C, C++, python and MATLAB. This
makes the writing of log parsers much easier, since it is not necessary to write
an application specific parser for the log format.

Extensibility It is easy to add new log fields, and new log fields do not necessitate changing
the parser. This is very useful when deciding what information goes into the
log, as fields may be added and removed easily.

Validation The number and types of fields are easily verifiable, and is usually performed
as part of the XML validation process provided by the parsing library.

36

4.5. LOG FORMATS

Two drawbacks with using XML as a log format are that the parsing is slightly slower than an
application specific parser, and that memory requirements are substantially higher when using
specific parsers. In particular, it is rarely possible to use the Document Object Model (DOM)
parsers to parse the log files. These parsers maintain a representation of the entire XML file in
memory and, with log files in the gigabyte range, the amount of memory required is substantial.
Simpler parsers, such as Simple API for XML (SAX) parsers, are therefore used. These parse the
document on an element by element basis, removing the need for keeping the entire document
in memory. This solution unfortunately also means that the transformation capabilities provided
by eXtensible Stylesheet Language Transformations (XSLT) cannot be used, and specific software
making use of provided SAX parsers must be created. A third drawback is that using XML adds
metadata, which in turn makes the storage requirements for the logs higher.

XML documents are text documents comprised of elements and attributes. Attributes are con-
tained within the elements, and usually carry element-specific information and modifiers. The
XML document type used for the BitTorrent log files is comprised of only two elements: EVENTLIST
and EVENT. The EVENTLIST element carries information regarding the torrent-file used for the mea-
surement and the settings that were used for the BitTorrent client during the measurement session.
Figure 4.3 shows two excerpts from such an XML document.

Every EVENT element contains the attributes type and timestamp. The timestamp attribute
signifies the time at which this event was ejected to the log file, expressed as a UNIX timestamp,
i.e., the number of seconds elapsed since 00:00:00 UTC, January 1, 1970. The type field denotes
the event type. The various values for the type-attribute are:

announce The only tracker-related event type available. It is ejected into the log file when
the peer communicates with the tracker to request more peers. This element
carries the following attributes:

uploaded Denotes the number of subpiece bytes this peer has sent to
other peers since it was launched.

downloaded Denotes the number of subpiece bytes this peer has received
from other peers since the client was launched.

left Denotes the number of bytes of the resource that remain to
download.

last This parameter is undocumented in both the official protocol
specification and Wiki.

trackerid Used by the tracker for maintaining state.

event Is one of started, none or completed. The value started

should be used when sending the initial tracker announce

message, and only then. The None value is used when trans-
mitting the periodic updates to the tracker, while the value
completed is sent exactly once to the tracker when the down-
load is complete.

numwant Denotes the number of new peer addresses the peer is re-
questing from the tracker.

start_dl This element is ejected for every newly initiated TCP connection to a peer.
Note that it does not necessarily imply that the BitTorrent handshake will be
completed.

connect This element is ejected after every completed BitTorrent handshake.

unchoke, choke, interested, not interested, request, piece, have, cancel

37

CHAPTER 4. MEASUREMENT SOFTWARE DESCRIPTION

<
E
V
E
N
T
t
y
p
e
=
"
a
n
n
o
u
n
c
e
"
t
i
m
e
s
t
a
m
p
=
"
1
0
8
4
4
2
8
2
1
7
.
0
4
1
8
8
0
"
u
p
l
o
a
d
e
d
=
"
0
"
d
o
w
n
l
o
a
d
e
d
=
"
0
"
l
e
f
t
=
"
6
6
1
1
2
7
1
6
8
"
l
a
s
t
=
"
N
o
n
e
"
t
r
a
c
k
e
r
i
d
=
"
N
o
n
e
"
e
v
e
n
t
=
"
s
t
a
r
t
e
d
"
n
u
m
w
a
n
t
=
"
5
0
"
/
>

<
E
V
E
N
T
t
y
p
e
=
"
s
t
a
r
t
_
d
l
"
t
i
m
e
s
t
a
m
p
=
"
1
0
8
4
4
2
8
2
1
8
.
7
1
7
5
5
2
"
s
r
c
=
"
2
2
0
.
2
3
3
.
6
.
1
9
"
p
o
r
t
=
"
6
8
8
1
"
n
c
o
n
n
s
=
"
1
"
/
>

<
E
V
E
N
T
t
y
p
e
=
"
u
n
c
h
o
k
e
"
t
i
m
e
s
t
a
m
p
=
"
1
0
8
4
4
2
8
2
1
8
.
7
1
7
7
4
7
"
d
s
t
=
"
2
2
0
.
2
3
3
.
6
.
1
9
"
d
s
t
i
d
=
"
-
A
Z
2
0
8
4
-
v
8
j
2
j
Y
Q
i
0
G
O
q
"
n
c
o
n
n
s
=
"
1
"
/
>

<
E
V
E
N
T
t
y
p
e
=
"
c
o
n
n
e
c
t
"
t
i
m
e
s
t
a
m
p
=
"
1
0
8
4
4
2
8
2
1
8
.
7
1
7
8
6
7
"
s
r
c
=
"
2
2
0
.
2
3
3
.
6
.
1
9
"
s
r
c
i
d
=
"
-
A
Z
2
0
8
4
-
v
8
j
2
j
Y
Q
i
0
G
O
q
"
n
c
o
n
n
s
=
"
1
"
/
>

<
E
V
E
N
T
t
y
p
e
=
"
b
i
t
f
i
e
l
d
"
t
i
m
e
s
t
a
m
p
=
"
1
0
8
4
4
2
8
2
1
9
.
3
8
8
4
8
8
"
s
r
c
=
"
2
2
0
.
2
3
3
.
6
.
1
9
"
s
r
c
i
d
=
"
-
A
Z
2
0
8
4
-
v
8
j
2
j
Y
Q
i
0
G
O
q
"
n
c
o
n
n
s
=
"
1
"
/
>

<
E
V
E
N
T
t
y
p
e
=
"
i
n
t
e
r
e
s
t
e
d
"
t
i
m
e
s
t
a
m
p
=
"
1
0
8
4
4
2
8
2
1
9
.
4
2
9
7
7
5
"
d
s
t
=
"
2
2
0
.
2
3
3
.
6
.
1
9
"
d
s
t
i
d
=
"
-
A
Z
2
0
8
4
-
v
8
j
2
j
Y
Q
i
0
G
O
q
"
n
c
o
n
n
s
=
"
1
"
/
>

<
E
V
E
N
T
t
y
p
e
=
"
s
t
a
r
t
_
d
l
"
t
i
m
e
s
t
a
m
p
=
"
1
0
8
4
4
2
8
2
2
5
.
8
2
0
6
8
9
"
s
r
c
=
"
2
1
7
.
2
2
6
.
1
2
7
.
1
8
8
"
p
o
r
t
=
"
6
8
8
1
"
n
c
o
n
n
s
=
"
2
"
/
>

<
E
V
E
N
T
t
y
p
e
=
"
u
n
c
h
o
k
e
"
t
i
m
e
s
t
a
m
p
=
"
1
0
8
4
4
2
8
2
2
5
.
8
2
0
8
6
3
"
d
s
t
=
"
2
1
7
.
2
2
6
.
1
2
7
.
1
8
8
"
d
s
t
i
d
=
"
-
A
Z
2
0
8
4
-
8
w
t
C
l
b
R
5
1
o
M
R
"
n
c
o
n
n
s
=
"
2
"
/
>

<
E
V
E
N
T
t
y
p
e
=
"
c
o
n
n
e
c
t
"
t
i
m
e
s
t
a
m
p
=
"
1
0
8
4
4
2
8
2
2
5
.
8
2
0
9
8
9
"
s
r
c
=
"
2
1
7
.
2
2
6
.
1
2
7
.
1
8
8
"
s
r
c
i
d
=
"
-
A
Z
2
0
8
4
-
8
w
t
C
l
b
R
5
1
o
M
R
"
n
c
o
n
n
s
=
"
2
"
/
>

<
E
V
E
N
T
t
y
p
e
=
"
u
n
c
h
o
k
e
"
t
i
m
e
s
t
a
m
p
=
"
1
0
8
4
4
2
8
2
2
9
.
5
8
8
5
8
2
"
s
r
c
=
"
2
2
0
.
2
3
3
.
6
.
1
9
"
s
r
c
i
d
=
"
-
A
Z
2
0
8
4
-
v
8
j
2
j
Y
Q
i
0
G
O
q
"
n
c
o
n
n
s
=
"
2
"
/
>

<
E
V
E
N
T
t
y
p
e
=
"
r
e
q
u
e
s
t
"
t
i
m
e
s
t
a
m
p
=
"
1
0
8
4
4
2
8
2
2
9
.
5
8
8
8
3
3
"
d
s
t
=
"
2
2
0
.
2
3
3
.
6
.
1
9
"
d
s
t
i
d
=
"
-
A
Z
2
0
8
4
-
v
8
j
2
j
Y
Q
i
0
G
O
q
"
p
i
e
c
e
=
"
6
8
8
"
b
e
g
i
n
=
"
0
"
n
c
o
n
n
s
=
"
2
"
/
>

<
E
V
E
N
T
t
y
p
e
=
"
r
e
q
u
e
s
t
"
t
i
m
e
s
t
a
m
p
=
"
1
0
8
4
4
2
8
2
2
9
.
5
8
9
0
4
8
"
d
s
t
=
"
2
2
0
.
2
3
3
.
6
.
1
9
"
d
s
t
i
d
=
"
-
A
Z
2
0
8
4
-
v
8
j
2
j
Y
Q
i
0
G
O
q
"
p
i
e
c
e
=
"
6
8
8
"
b
e
g
i
n
=
"
1
6
3
8
4
"
n
c
o
n
n
s
=
"
2
"
/
>

<
E
V
E
N
T
t
y
p
e
=
"
r
e
q
u
e
s
t
"
t
i
m
e
s
t
a
m
p
=
"
1
0
8
4
4
2
8
2
2
9
.
5
8
9
1
9
0
"
d
s
t
=
"
2
2
0
.
2
3
3
.
6
.
1
9
"
d
s
t
i
d
=
"
-
A
Z
2
0
8
4
-
v
8
j
2
j
Y
Q
i
0
G
O
q
"
p
i
e
c
e
=
"
6
8
8
"
b
e
g
i
n
=
"
3
2
7
6
8
"
n
c
o
n
n
s
=
"
2
"
/
>

<
E
V
E
N
T
t
y
p
e
=
"
r
e
q
u
e
s
t
"
t
i
m
e
s
t
a
m
p
=
"
1
0
8
4
4
2
8
2
2
9
.
5
8
9
3
4
2
"
d
s
t
=
"
2
2
0
.
2
3
3
.
6
.
1
9
"
d
s
t
i
d
=
"
-
A
Z
2
0
8
4
-
v
8
j
2
j
Y
Q
i
0
G
O
q
"
p
i
e
c
e
=
"
6
8
8
"
b
e
g
i
n
=
"
4
9
1
5
2
"
n
c
o
n
n
s
=
"
2
"
/
>

<
E
V
E
N
T
t
y
p
e
=
"
r
e
q
u
e
s
t
"
t
i
m
e
s
t
a
m
p
=
"
1
0
8
4
4
2
8
2
2
9
.
5
8
9
4
7
7
"
d
s
t
=
"
2
2
0
.
2
3
3
.
6
.
1
9
"
d
s
t
i
d
=
"
-
A
Z
2
0
8
4
-
v
8
j
2
j
Y
Q
i
0
G
O
q
"
p
i
e
c
e
=
"
6
8
8
"
b
e
g
i
n
=
"
6
5
5
3
6
"
n
c
o
n
n
s
=
"
2
"
/
>

<
E
V
E
N
T
t
y
p
e
=
"
b
i
t
f
i
e
l
d
"
t
i
m
e
s
t
a
m
p
=
"
1
0
8
4
4
2
8
2
3
0
.
0
0
3
6
3
8
"
s
r
c
=
"
2
1
7
.
2
2
6
.
1
2
7
.
1
8
8
"
s
r
c
i
d
=
"
-
A
Z
2
0
8
4
-
8
w
t
C
l
b
R
5
1
o
M
R
"
n
c
o
n
n
s
=
"
2
"
/
>

<
E
V
E
N
T
t
y
p
e
=
"
i
n
t
e
r
e
s
t
e
d
"
t
i
m
e
s
t
a
m
p
=
"
1
0
8
4
4
2
8
2
3
0
.
0
5
2
0
9
9
"
d
s
t
=
"
2
1
7
.
2
2
6
.
1
2
7
.
1
8
8
"
d
s
t
i
d
=
"
-
A
Z
2
0
8
4
-
8
w
t
C
l
b
R
5
1
o
M
R
"
n
c
o
n
n
s
=
"
2
"
/
>

<
E
V
E
N
T
t
y
p
e
=
"
s
t
a
r
t
_
d
l
"
t
i
m
e
s
t
a
m
p
=
"
1
0
8
4
4
2
8
2
3
0
.
8
4
2
1
3
5
"
s
r
c
=
"
6
7
.
7
0
.
4
2
.
1
4
0
"
p
o
r
t
=
"
6
8
8
1
"
n
c
o
n
n
s
=
"
3
"
/
>

<
E
V
E
N
T
t
y
p
e
=
"
u
n
c
h
o
k
e
"
t
i
m
e
s
t
a
m
p
=
"
1
0
8
4
4
2
8
2
3
0
.
8
4
2
3
2
7
"
d
s
t
=
"
6
7
.
7
0
.
4
2
.
1
4
0
"
d
s
t
i
d
=
"
-
A
Z
2
0
8
4
-
1
l
G
4
1
a
B
m
x
d
c
r
"
n
c
o
n
n
s
=
"
3
"
/
>

<
E
V
E
N
T
t
y
p
e
=
"
c
o
n
n
e
c
t
"
t
i
m
e
s
t
a
m
p
=
"
1
0
8
4
4
2
8
2
3
0
.
8
4
2
4
3
8
"
s
r
c
=
"
6
7
.
7
0
.
4
2
.
1
4
0
"
s
r
c
i
d
=
"
-
A
Z
2
0
8
4
-
1
l
G
4
1
a
B
m
x
d
c
r
"
n
c
o
n
n
s
=
"
3
"
/
>

<
E
V
E
N
T
t
y
p
e
=
"
p
i
e
c
e
"
t
i
m
e
s
t
a
m
p
=
"
1
0
8
4
4
2
8
2
3
5
.
3
7
3
1
9
7
"
s
r
c
=
"
2
2
0
.
2
3
3
.
6
.
1
9
"
s
r
c
i
d
=
"
-
A
Z
2
0
8
4
-
v
8
j
2
j
Y
Q
i
0
G
O
q
"
p
i
e
c
e
=
"
6
8
8
"
b
e
g
i
n
=
"
0
"
l
e
n
g
t
h
=
"
1
6
3
8
4
"
/
>

<
E
V
E
N
T
t
y
p
e
=
"
r
e
q
u
e
s
t
"
t
i
m
e
s
t
a
m
p
=
"
1
0
8
4
4
2
8
2
3
5
.
3
7
5
2
6
2
"
d
s
t
=
"
2
2
0
.
2
3
3
.
6
.
1
9
"
d
s
t
i
d
=
"
-
A
Z
2
0
8
4
-
v
8
j
2
j
Y
Q
i
0
G
O
q
"
p
i
e
c
e
=
"
6
8
8
"
b
e
g
i
n
=
"
8
1
9
2
0
"
n
c
o
n
n
s
=
"
3
"
/
>

<
E
V
E
N
T
t
y
p
e
=
"
b
i
t
f
i
e
l
d
"
t
i
m
e
s
t
a
m
p
=
"
1
0
8
4
4
2
8
2
3
8
.
2
4
2
9
4
1
"
s
r
c
=
"
6
7
.
7
0
.
4
2
.
1
4
0
"
s
r
c
i
d
=
"
-
A
Z
2
0
8
4
-
1
l
G
4
1
a
B
m
x
d
c
r
"
n
c
o
n
n
s
=
"
3
"
/
>

<
E
V
E
N
T
t
y
p
e
=
"
i
n
t
e
r
e
s
t
e
d
"
t
i
m
e
s
t
a
m
p
=
"
1
0
8
4
4
2
8
2
3
8
.
2
7
9
3
2
5
"
d
s
t
=
"
6
7
.
7
0
.
4
2
.
1
4
0
"
d
s
t
i
d
=
"
-
A
Z
2
0
8
4
-
1
l
G
4
1
a
B
m
x
d
c
r
"
n
c
o
n
n
s
=
"
3
"
/
>

<
E
V
E
N
T
t
y
p
e
=
"
p
i
e
c
e
"
t
i
m
e
s
t
a
m
p
=
"
1
0
8
4
4
2
8
2
3
8
.
9
8
3
0
0
1
"
s
r
c
=
"
2
2
0
.
2
3
3
.
6
.
1
9
"
s
r
c
i
d
=
"
-
A
Z
2
0
8
4
-
v
8
j
2
j
Y
Q
i
0
G
O
q
"
p
i
e
c
e
=
"
6
8
8
"
b
e
g
i
n
=
"
1
6
3
8
4
"
l
e
n
g
t
h
=
"
1
6
3
8
4
"
/
>

<
E
V
E
N
T
t
y
p
e
=
"
r
e
q
u
e
s
t
"
t
i
m
e
s
t
a
m
p
=
"
1
0
8
4
4
2
8
2
3
8
.
9
8
3
4
2
0
"
d
s
t
=
"
2
2
0
.
2
3
3
.
6
.
1
9
"
d
s
t
i
d
=
"
-
A
Z
2
0
8
4
-
v
8
j
2
j
Y
Q
i
0
G
O
q
"
p
i
e
c
e
=
"
6
8
8
"
b
e
g
i
n
=
"
9
8
3
0
4
"
n
c
o
n
n
s
=
"
3
"
/
>

<
E
V
E
N
T
t
y
p
e
=
"
p
i
e
c
e
"
t
i
m
e
s
t
a
m
p
=
"
1
0
8
4
4
2
8
2
4
3
.
0
6
1
6
5
2
"
s
r
c
=
"
2
2
0
.
2
3
3
.
6
.
1
9
"
s
r
c
i
d
=
"
-
A
Z
2
0
8
4
-
v
8
j
2
j
Y
Q
i
0
G
O
q
"
p
i
e
c
e
=
"
6
8
8
"
b
e
g
i
n
=
"
3
2
7
6
8
"
l
e
n
g
t
h
=
"
1
6
3
8
4
"
/
>

<
E
V
E
N
T
t
y
p
e
=
"
r
e
q
u
e
s
t
"
t
i
m
e
s
t
a
m
p
=
"
1
0
8
4
4
2
8
2
4
3
.
0
6
2
0
1
2
"
d
s
t
=
"
2
2
0
.
2
3
3
.
6
.
1
9
"
d
s
t
i
d
=
"
-
A
Z
2
0
8
4
-
v
8
j
2
j
Y
Q
i
0
G
O
q
"
p
i
e
c
e
=
"
6
8
8
"
b
e
g
i
n
=
"
1
1
4
6
8
8
"
n
c
o
n
n
s
=
"
3
"
/
>

<
E
V
E
N
T
t
y
p
e
=
"
h
a
v
e
"
t
i
m
e
s
t
a
m
p
=
"
1
0
8
4
4
2
8
2
4
3
.
8
0
7
7
6
9
"
s
r
c
=
"
6
7
.
7
0
.
4
2
.
1
4
0
"
s
r
c
i
d
=
"
-
A
Z
2
0
8
4
-
1
l
G
4
1
a
B
m
x
d
c
r
"
p
i
e
c
e
=
"
2
3
2
5
"
n
c
o
n
n
s
=
"
3
"
/
>

<
E
V
E
N
T
t
y
p
e
=
"
p
i
e
c
e
"
t
i
m
e
s
t
a
m
p
=
"
1
0
8
4
4
2
8
2
4
6
.
7
6
2
4
1
6
"
s
r
c
=
"
2
2
0
.
2
3
3
.
6
.
1
9
"
s
r
c
i
d
=
"
-
A
Z
2
0
8
4
-
v
8
j
2
j
Y
Q
i
0
G
O
q
"
p
i
e
c
e
=
"
6
8
8
"
b
e
g
i
n
=
"
4
9
1
5
2
"
l
e
n
g
t
h
=
"
1
6
3
8
4
"
/
>

<
E
V
E
N
T
t
y
p
e
=
"
r
e
q
u
e
s
t
"
t
i
m
e
s
t
a
m
p
=
"
1
0
8
4
4
2
8
2
4
6
.
7
6
2
8
4
7
"
d
s
t
=
"
2
2
0
.
2
3
3
.
6
.
1
9
"
d
s
t
i
d
=
"
-
A
Z
2
0
8
4
-
v
8
j
2
j
Y
Q
i
0
G
O
q
"
p
i
e
c
e
=
"
6
8
8
"
b
e
g
i
n
=
"
1
3
1
0
7
2
"
n
c
o
n
n
s
=
"
3
"
/
>

<
E
V
E
N
T
t
y
p
e
=
"
h
a
v
e
"
t
i
m
e
s
t
a
m
p
=
"
1
0
8
4
4
2
8
2
5
0
.
0
3
6
5
4
8
"
s
r
c
=
"
6
7
.
7
0
.
4
2
.
1
4
0
"
s
r
c
i
d
=
"
-
A
Z
2
0
8
4
-
1
l
G
4
1
a
B
m
x
d
c
r
"
p
i
e
c
e
=
"
2
3
7
6
"
n
c
o
n
n
s
=
"
3
"
/
>

<
E
V
E
N
T
t
y
p
e
=
"
h
a
v
e
"
t
i
m
e
s
t
a
m
p
=
"
1
0
8
4
4
2
8
2
5
0
.
0
3
6
7
9
4
"
s
r
c
=
"
6
7
.
7
0
.
4
2
.
1
4
0
"
s
r
c
i
d
=
"
-
A
Z
2
0
8
4
-
1
l
G
4
1
a
B
m
x
d
c
r
"
p
i
e
c
e
=
"
2
1
8
1
"
n
c
o
n
n
s
=
"
3
"
/
>

. . . <
E
V
E
N
T
t
y
p
e
=
"
c
a
n
c
e
l
"
t
i
m
e
s
t
a
m
p
=
"
1
0
8
4
4
3
0
9
4
0
.
1
2
0
2
8
4
"
d
s
t
=
"
2
0
0
.
1
8
5
.
7
8
.
6
"
d
s
t
i
d
=
"
-
A
Z
2
0
8
4
-
a
3
Q
F
R
y
f
k
L
C
8
Q
"

p
i
e
c
e
=
"
1
7
6
2
"
n
c
o
n
n
s
=
"
1
5
"
/
>

<
E
V
E
N
T
t
y
p
e
=
"
h
a
v
e
"
d
i
r
e
c
t
i
o
n
=
"
o
u
t
"
t
i
m
e
s
t
a
m
p
=
"
1
0
8
4
4
3
0
9
4
0
.
1
2
0
4
3
3
"
p
i
e
c
e
=
"
1
7
6
2
"
n
c
o
n
n
s
=
"
1
5
"
d
o
w
n
=
"
6
6
1
1
1
0
7
8
4
"
/
>

<
E
V
E
N
T
t
y
p
e
=
"
p
i
e
c
e
"
t
i
m
e
s
t
a
m
p
=
"
1
0
8
4
4
3
0
9
4
0
.
1
2
9
5
9
9
"
s
r
c
=
"
2
1
2
.
1
0
0
.
2
2
4
.
1
0
5
"
s
r
c
i
d
=
"
\
x
0
0
\
x
0
0
\
x
0
0
\
x
0
0
\
x
0
0
\
x
0
0
\
x
0
0
\
x
0
0
\
x
0
0
\
x
0
0
\
x
0
0
\
x
0
0
\
x
d
a
\
x
e
3
.
\
x
d
b
\
x
8
b
\
x
c
f
b
\
x
a
8
"

p
i
e
c
e
=
"
1
1
7
6
"
b
e
g
i
n
=
"
4
9
1
5
2
"
l
e
n
g
t
h
=
"
1
6
3
8
4
"
/
>

<
E
V
E
N
T
t
y
p
e
=
"
a
n
n
o
u
n
c
e
"
t
i
m
e
s
t
a
m
p
=
"
1
0
8
4
4
3
0
9
4
0
.
1
3
3
8
1
6
"
u
p
l
o
a
d
e
d
=
"
2
2
1
1
8
4
0
0
"
d
o
w
n
l
o
a
d
e
d
=
"
6
6
1
1
2
7
1
6
8
"
l
e
f
t
=
"
0
"
l
a
s
t
=
"
N
o
n
e
"
t
r
a
c
k
e
r
i
d
=
"
N
o
n
e
"
e
v
e
n
t
=
"
c
o
m
p
l
e
t
e
d
"
n
u
m
w
a
n
t
=
"
5
0
"
/
>

<
E
V
E
N
T
t
y
p
e
=
"
d
o
n
e
"
t
i
m
e
s
t
a
m
p
=
"
1
0
8
4
4
3
0
9
4
0
.
1
3
4
0
9
4
"
s
r
c
=
"
2
1
2
.
1
0
0
.
2
2
4
.
1
0
5
"
s
r
c
i
d
=
"
\
x
0
0
\
x
0
0
\
x
0
0
\
x
0
0
\
x
0
0
\
x
0
0
\
x
0
0
\
x
0
0
\
x
0
0
\
x
0
0
\
x
0
0
\
x
0
0
\
x
d
a
\
x
e
3
.
\
x
d
b
\
x
8
b
\
x
c
f
b
\
x
a
8
"

p
i
e
c
e
=
"
1
1
7
6
"
r
x
t
i
m
e
=
"
0
.
6
4
5
3
7
4
"
r
x
s
t
a
r
t
=
"
1
0
8
4
4
3
0
9
3
9
.
4
8
8
7
2
0
"
n
c
o
n
n
s
=
"
1
5
"
/
>

<
E
V
E
N
T
t
y
p
e
=
"
c
a
n
c
e
l
"
t
i
m
e
s
t
a
m
p
=
"
1
0
8
4
4
3
0
9
4
0
.
1
3
4
3
0
8
"
d
s
t
=
"
2
2
0
.
2
3
3
.
6
.
1
9
"
d
s
t
i
d
=
"
-
A
Z
2
0
8
4
-
v
8
j
2
j
Y
Q
i
0
G
O
q
"

p
i
e
c
e
=
"
1
1
7
6
"
n
c
o
n
n
s
=
"
1
5
"
/
>

<
E
V
E
N
T
t
y
p
e
=
"
n
o
t
i
n
t
e
r
e
s
t
e
d
"
t
i
m
e
s
t
a
m
p
=
"
1
0
8
4
4
3
0
9
4
0
.
1
3
4
5
4
0
"
d
s
t
=
"
2
2
0
.
2
3
3
.
6
.
1
9
"
d
s
t
i
d
=
"
-
A
Z
2
0
8
4
-
v
8
j
2
j
Y
Q
i
0
G
O
q
"
n
c
o
n
n
s
=
"
1
5
"
/
>

<
E
V
E
N
T
t
y
p
e
=
"
n
o
t
i
n
t
e
r
e
s
t
e
d
"
t
i
m
e
s
t
a
m
p
=
"
1
0
8
4
4
3
0
9
4
0
.
1
3
4
6
4
0
"
d
s
t
=
"
6
7
.
7
0
.
4
2
.
1
4
0
"
d
s
t
i
d
=
"
-
A
Z
2
0
8
4
-
1
l
G
4
1
a
B
m
x
d
c
r
"
n
c
o
n
n
s
=
"
1
5
"
/
>

<

Figure 4.3: Extract from BitTorrent XML log file.

38

4.5. LOG FORMATS

These element types are ejected for each sent or received corresponding BitTor-
rent protocol message.

send The send-element is the equivalent of the piece-message, but for the subpieces
the local peer transmits.

done This element is ejected once a download completes fully, and should only appear
once per log file.

The various peer-related event types carry event specific information in additional attributes.
These attributes are:

src, dst These attributes indicate the source and destination IP address of the sending
or receiving peer respectively.

Valid for all event types.

srcid, dstid These attributes indicate the peer ID of the sending or receiving peer respec-
tively.

The content of these attributes are encoded using the python functions repr and
xml.saxutils.escape. The function repr returns a unique string representa-
tion of the input parameter, and the escape function returns an XML-escaped
version of its input. Recall that the peer ID is a binary 20-byte value. The
peer ID is first processed by the repr function to convert any non-printable to
its python hexadecimal representation, i.e., the characters \x followed by the
hexadecimal value. This string is then made into a valid XML attribute by the
xml.saxutil.escape function, i.e., converting XML special characters such as
& to &, with the exception of the quotation character, ", which is encoded
using the python hexadecimal encoding (\x22). For a complete list of XML
entity encodings see [75].

Valid for all event types except start_dl.

piece Denotes which piece a specific message refers to.

Valid for types piece, cancel, send, have and request.

begin Starting byte of a subpiece reference. Used together with the length parameter
to denote a specific subpiece.

Valid for types piece, cancel, send and request.

length Number of content data bytes received or sent in a single piece message.

Valid for types piece, send and cancel.

down Denotes the number of downloaded and SHA1-verified bytes.

Only valid for type have.

nconns This attribute denotes the number of currently connected peers at the time of
event ejection. This includes both locally and remotely initiated connections.

Valid for all event types.

port Indicates the TCP port of the remote peer.

Valid for type start_dl only.

direction Only valid for types have and bitfield. Used for differentiating between sent
and received messages of these types. If the attribute is present and contains
the value out, the message was sent by the measurement peer, otherwise it was
received.

39

CHAPTER 4. MEASUREMENT SOFTWARE DESCRIPTION

txtime The difference in time between the sending of the first subpiece of a piece and
the reception of the last subpiece of the piece.

rxtime The difference in time between the first request of a piece and the reception of
the last subpiece of the piece.

4.5.2 Common Log Formats

To facilitate the re-use of parsing software, it was decided as part of the measurement infrastruc-
ture, that parsed traces should be written to log files that adhere to a common format. This
format is defined as follows:

• Fields are separated by spaces (ASCII code 32).

• Fields are defined as:

1. The first field should always be the UNIX timestamp for the event.

2. The second field should contain the message type, if any.

3. Any following field may containg arbitrary information.

This is a simple and flexible logging scheme that allows us to use standard UNIX tools such as
sed, awk and perl to parse the files without resorting to writing specialized parsers for each log
file. In fact, the parsing software only assumes that the first field is a UNIX timestamp, and the
rest of the fields are arbitrary. It is however recommended that the second field is a message type.

Figure 4.4 shows a portion of a log file generated from a BitTorrent application log.

1088079499.265901 piece

1088079499.267193 request 1311 196608

1088079499.269075 have 593

1088079499.275710 piece

1088079499.282697 have 6690

Figure 4.4: Sample BitTorrent log file.

40

Chapter 5

BitTorrent

The reported measurements have been done by having instances of the BitTorrent client soft-
ware join several distribution swarms. An instrumented version of the reference BitTorrent client
has been used to avoid potentially injecting non-standard protocol messages in the swarm. The
client was instrumented to log all incoming and outgoing protocol messages together with a UNIX
timestamp. The BitTorrent client is implemented in python, an interpreted programming lan-
guage. The drawback with this is that the accuracy of the timestamps is reduced compared to
the actual arrival times of the carrying IP datagrams. By comparing the actual timestamps of
back-to-back messages at the application level with the corresponding TCP segments, we have
found that the accuracy was approximately 10 ms.

Most of the traffic reported in this publication has been collected over a three week time period
at two measurement points in Blekinge, Sweden. The first measurement point was the networking
lab at BTH, Karlskrona, which is connected to the Internet through a 100 Mbps Ethernet network.
The second measurement point was placed at a local ISP with a 5 Mbps link. Both measurement
points were running the Gentoo Linux operating system, on standard PC hardware.

For the initial measurements, a number of twelve measurement have been done, each of them with
a duration of two to seven days (Table 5.1). This first set of measurements were purely done
with the instrumented client. An additional measurement with both application logging active
and packet capturing running simultaneously has also been performed, for a total of thirteen
measurements.

For the first measurement point, no significant amount of different software was running simul-
taneously with the BitTorrent client. At the second measurement point, the BitTorrent client
was running as a normal application, together with other software such as web browsers and mail
software. The first measurement point can be viewed as a dedicated BitTorrent client, while the
second corresponds to normal desktop PC usage patterns.

5.1 Measurement details

Measurements 1 through 3 (Table 5.1) have been done with a single instance of the instrumented
BitTorrent client running. As TCP is known to be very aggressive in using the network, this has
been done to minimize the effects of several clients competing for the available bandwidth and to
establish a point of reference for the rest of client sessions. Measurements 4 through 8 were started
and done simultaneously, as were measurements 11 and 12. The other measurements were done
with some temporal overlap, as shown in Figure 5.1.

41

CHAPTER 5. BITTORRENT

Table 5.1: Measurement summary.

Number Records Start Duration Location

1 10770695 2004-05-03 2 days, 20 hours BTH

2 10653466 2004-05-06 3 days, 19 hours BTH

3 10990569 2004-05-12 4 days, 4 hours BTH

4 12567283 2004-05-17 7 days BTH

5 13691459 2004-05-17 7 days BTH

6 11754838 2004-05-17 7 days BTH

7 1943636 2004-05-17 7 days BTH

8 7321166 2004-05-17 7 days BTH

9a 687046 2004-05-13 3 days, 7 hours ISP

10 2881803 2004-05-18 5 days, 23 hours ISP

11 9252170 2004-05-22 7 days ISP

12 5599997 2004-05-22 7 days ISP

13 14803678 2004-06-26 7 days BTH

aUnfortunately, the original data for this measurement was lost due to hardware failure. Thus, most analysis is
not performed on this data, and only summary statistics are provided.

4–8321

9 10

11–12

May 1 May 8 May 15 May 22 May 29

Figure 5.1: Temporal structure of measurements.

An important issue regarding traffic measurements in P2P networks is the copyright. The most
popular content in these networks is usually copyrighted material. To circumvent this problem,
we joined BitTorrent swarms distributing several popular Linux operating system distributions.
Notably, we joined both the RedHat Fedora Core 2 (FC2) test and release versions. The FC2
’Tettnang’ version was released on May 18th, while the rest of the content was available at the
start of the measurements. This gave us a unique opportunity to study the dynamic nature of the
FC2 swarms. The contents of the measured swarms are reported in Table 5.2. Two of the swarms
have been measured from both measurement points to allow for comparisons, one with temporal
overlap, and another without overlap.

5.2 Aggregate results

In this section we report some of the more salient results obtained from our measurements. We
first summarise the download times and rates in table 5.3. It is observed that the time before our
peer went into seeding mode varies from roughly 20 minutes up to 6.5 hours. As the content sizes
vary with each measurement, we also provide the average download rate for the entire content,
i.e., the size/time ratio. The download rates also show large disparity, with rates ranging from just
over 129 kB to over 1.3 MB, with the three first measurements clearly being the most demanding

42

5.2. AGGREGATE RESULTS

Table 5.2: Content summary.

Content Pieces Size Measurement

RedHat Fedora Core 2 test3 CD Images 8465 2.2GB 1–3

RedHat Fedora Core 2 test3 DVD Image 16708 4.3GB 6, 10

Slackware Linux Install Disk 1 2501 650MB 4

Slackware Linux Install Disk 2 2627 670MB 5

Dynebolic Linux 1.3 2522 650MB 7, 9

Knoppix Linux 3.4 2753 700MB 8

RedHat Fedora Core 2 ‘Tettnang‘ CD Images 8719 2.2GB 12,13

RedHat Fedora Core 2 ‘Tettnang‘ DVD Image 16673 4.3GB 11

in terms of bandwidth utilization.

Table 5.3: Download time and average download rate summary.

Download

Time (s) Rate (bps)

1 1930 1149520

2 1932 1147908

3 1681 1319445

4 2607 251424

5 3397 202644

6 23000 190416

7 1237 534282

8 6005 120153

9 2723 242776

10 23475 186570

11 19431 224927

12 9106 250989

13 2951 774420

A summary of session sizes and durations is reported in table 5.4. We also provide the number of
sessions, unique peer IPs and peer client IDs.

Measurement 6 clearly stands out here, both with regards to mean session size and session length.
Also, the maximum session size for this measurement is over twice that of any of the other mea-
surements. The mean session size is also about twice that of the corresponding measurement of
the same content (measurement 10). As measurements 6 and 10 have the top two session sizes, it
is probable that the session size is related to the total content size (4.3 GB).

The minimum session lengths are all set to 0, indicating that they are all shorter than the accuracy
provided for by the application logs. These very short sessions are also indicated in the minimum
session sizes, and correspond to a session containing only a handshake or an interrupted handshake.

Another pertinent feature is the ratio of the number of unique IPs to the number of unique peers
for measurement 8. The ratio for that measurement is slightly above 0.25, while none of the other

43

CHAPTER 5. BITTORRENT

measurements are below 0.5. This might indicate either users stopping and restarting their clients
several times, or users sharing IPs, such as peers subject to NAT.

Table 5.4: Session and peer summary.

Sessions Session length (s) Session size (MB) Peersa

Mean Max Min Std Mean Max Minb Std ID IP

1 29712 343 98991 0 2741 27.49 647.26 73 70.65 2024 1314

2 46022 233 117605 0 2316 27.15 646.03 73 64.05 1876 1394

3 28687 465 171074 0 3614 28.54 539.20 73 61.70 1913 1319

4 13493 750 143707 0 3942 49.88 671.99 73 100.65 1813 1143

5 12354 910 180298 0 4504 57.08 668.53 73 116.10 1747 962

6 10685 1207 223235 0 7016 74.25 3117.79 73 247.74 1033 619

7 4444 218 46478 0 1642 49.96 431.13 78 76.48 279 184

8 17287 231 87026 0 1972 33.11 695.94 73 109.31 1656 406

9 3043 294 29163 0 1719 21.62 408.05 78 42.27 193 166

10 9701 652 267497 0 5907 37.78 1499.85 73 109.08 444 305

11 43939 448 141509 0 3791 17.22 475.86 73 52.73 1841 1067

12 68288 197 292241 0 2580 8.31 987.89 73 30.63 2177 1152

13 52833 465 483996 0 4036 32.2 1652.83 73 99.4 3930 2440

aUnique peer client IDs and IP addresses
bThis column measured in bytes.

Table 5.5 summarises the number of messages received on a per-message basis. In addition, column
5 shows the number of incoming connection requests collected in our measurements.

The request and have messages clearly dominate in terms of number of messages sent, while the
interested and not interested messages are the least common. This is valid for all the measurements,
except for measurement 2, which has almost 5 times more incoming interested messages than the
measurement with the second highest number of interested messages.

The high number of request and have messages found in our measurements is expected, as the peer
is acting as a seed for most of the time spent in the swarm. When seeding, a peer never receives
piece messages, and downloading peer must request data by the request message, thus explaining
their high number. The have messages are accounted for by the fact that every completed piece
download results in such a message being transmitted.

Table 5.5: Downstream protocol message summary.

request not int. piece new conn. bitfield unchoke have int. choke cancel

1 3316470 504 135615 29746 28024 27120 3651835 2905 26314 6500

2 3044768 489 135797 46047 45054 19117 3984881 14602 18061 9059

3 3276644 493 135682 28714 27092 40705 3941658 2430 39955 7628

4 5596270 406 40167 13502 12935 29628 1206000 2041 28640 14643

5 6163605 401 42176 12364 11827 32325 1197813 2059 31452 11508

6 4501907 191 277261 10688 9659 24239 2090892 2147 23639 6244

7 810019 52 40371 4445 4370 290 198885 230 122 1255

8 3347256 766 44328 17292 16623 9270 404038 2012 8579 18999

9 217336 37 40426 3045 2996 1114 139472 259 956 3061

10 838379 79 268429 9703 9181 13015 570367 692 11936 9085

11 1835910 470 268575 43957 42848 54090 4713440 2573 52458 17313

12 1118110 348 139943 68297 67373 37925 2619333 3242 36872 25047

13 8113100 711 139702 52865 50304 60524 6293438 9477 58925 24632

The summary of the outgoing messages in table 5.6 again shows the very low number of interested
and not interested messages. The major bulk of the outgoing messages is however accounted for by

44

5.3. SWARM SIZE DYNAMICITY

the piece messages. This is again an expected result, as request messages generate a piece message
in response. The absence of transmitted choke messages for measurement 7 indicate that there
has been a continuous exchange of data between peers. As for the request and have messages,
these are tightly coupled to the number of pieces present in the content. The higher number of
request messages is because these messages correspond to only a single subpiece.

Table 5.6: Upstream protocol message summary.

request piece not int. unchoke bitfield int. have choke cancel

1 137007 3251948 63 11792 29714 68 8465 9553 970

2 137271 2964836 63 17471 46020 70 8465 13301 894

3 136738 3189175 62 16545 28682 64 8465 14085 1011

4 42709 5468908 76 25476 13489 86 2501 22740 855

5 44862 6032599 146 25759 12353 157 2627 23749 725

6 291200 4394389 91 23166 10661 197 16708 18943 555

7 40497 808844 18 4445 4444 18 2522 0 140

8 47413 3296616 100 19380 17281 136 2753 8672 423

9 40906 213693 16 3192 3042 19 2522 193 220

10 285650 753074 71 21304 9673 214 16708 15222 611

11 281921 1660868 67 35698 43927 157 16673 31279 812

12 145517 960802 76 49093 68271 125 8719 34570 701

13 141316 7940342 80 27332 52830 97 8719 23527 807

5.3 Swarm size dynamicity

After having downloaded all the data for a given torrent, the peer disconnects all connected seeds,
and starts acting as a seed itself.

It is interesting to compare the seed phases of measurements 6, 10 and 11. The data in the first
two was the test release of the RedHat Fedora Core 2 linux distribution, while the data in the last
swarm was the final release of the same version. The final version was released on May 18. This
event can be clearly seen at around 12:00 in Fig 5.2(b), at which time peers start disconnecting,
most likely due to the new version of the distribution being released. The decrease in connected
peers can also be seen in Fig 5.3(b).

 0

 10

 20

 30

 40

 50

 60

10:0010:0010:0010:0010:0010:0010:0010:0010:0010:0010:0010:00 11:0011:0011:0011:0011:0011:0011:0011:0011:0011:0011:0011:00 12:0012:0012:0012:0012:0012:0012:0012:0012:0012:0012:0012:00 13:0013:0013:0013:0013:0013:0013:0013:0013:0013:0013:0013:00 14:0014:0014:0014:0014:0014:0014:0014:0014:0014:0014:0014:00 15:0015:0015:0015:0015:0015:0015:0015:0015:0015:0015:0015:00 16:0016:0016:0016:0016:0016:00N
u

m
b

e
r

o
f

c
o

n
n

e
c
ti
o

n
s

Time

(a) Leeching phase

 0

 10

 20

 30

 40

 50

 60

19:00 07:00 19:00 06:00 18:00 06:00 17:00 05:00 17:00 04:00 16:00 04:00 15:00 03:00

May 17 May 18 May 19 May 20 May 21 May 22 May 23 May 24 May 25

N
u

m
b

e
r

o
f

c
o

n
n

e
c
ti
o

n
s

Time

(b) Seeding phase

Figure 5.2: Swarm size for measurement 6.

45

CHAPTER 5. BITTORRENT

 0

 10

 20

 30

 40

 50

 60

16:0016:0016:0016:0016:0016:0016:0016:0016:0016:0016:0016:00 17:0017:0017:0017:0017:0017:0017:0017:0017:0017:0017:0017:00 18:0018:0018:0018:0018:0018:0018:0018:0018:0018:0018:0018:00 19:0019:0019:0019:0019:0019:0019:0019:0019:0019:0019:0019:00 20:0020:0020:0020:0020:0020:0020:0020:0020:0020:0020:0020:00 21:0021:0021:0021:0021:0021:0021:0021:0021:0021:0021:0021:00 22:0022:0022:0022:0022:00N
u

m
b

e
r

o
f

c
o

n
n

e
c
ti
o

n
s

Time

(a) Leeching phase

 0
 5

 10
 15
 20
 25
 30
 35
 40

06:00 18:00 06:00 17:00 05:00 17:00 04:00 16:00 04:00 15:00 03:00

May 18 May 19 May 20 May 21 May 22 May 23 May 24 May 25

N
u

m
b

e
r

o
f

c
o

n
n

e
c
ti
o

n
s

Time

(b) Seeding phase

Figure 5.3: Swarm size for measurement 10.

46

Chapter 6

Gnutella

Two sets of Gnutella measurements were performed at BTH. The first set was done in the early
development phase of the measurement infrastructure (spring 2004), while the second set of mea-
surements was performed one year later. During that year the Gnet has undergone major changes
in terms of new protocol features. Functionality such as dynamic query, download mesh, PFS and
UDP file transfers were adopted by a majority of servents, thus profoundly changing the charac-
teristics of Gnutella network traffic. The research group at BTH has therefore decided to focus
the analysis efforts on the more recent measurements since they were deemed to better reflect
the current and future directions of Gnutella traffic characteristics. As a consequence, this report
presents the recent set of measurements.

All results presented here were obtained from a 11-day long link-layer packet trace collected at
BTH with the measurement infrastructure presented in Chapter 4.2. The Gnutella application
flow reassembly was performed as described in Chapter 4.3.

The gtk-gnutella open source servent was configured to run as ultrapeer and to maintain 32–40
connections to other ultrapeers and 100 connections to leaf nodes. The number of connections
is the vendor preconfigured value, which is close to the suggested values in [48, 47]. Although
gtk-gnutella is capable of operation over UDP, this functionality was turned off. Consequently,
the ultrapeer used only TCP for its traffic. No other applications, with the exception of an
SSH daemon, were running on the ultrapeer for the duration of the measurements. One SSH
connection was used to regularly check on the status of the measurements and the amount of free
disk space. The SSH connection was idle for most of the time. The firewall was turned off during
the measurements.

6.1 Session Statistics

A Gnutella session is defined here as the set of Gnutella messages exchanged over a TCP connection
between two directly connected peers that have successfully completed the Gnutella handshake.
The session lasts until the TCP connection is closed by either FIN or RST TCP segments. The
session duration is computed as the time duration between the instant when the first handshake
message (CLI HSK) is recorded (at the link layer) until the measured time of the last Gnutella
message on the same TCP connection. The session is not considered closed until both sides have
sent FIN (or RST) segments.

An incoming session is defined as a session for which the CLI HSK message was received by the
ultrapeer at BTH. Outgoing sessions are sessions for which the CLI HSK messages was sent by

47

CHAPTER 6. GNUTELLA

the ultrapeer at BTH. Table 6.1 and Table 6.2 show the duration (in seconds), the number of
exchanged messages and bytes for incoming and outgoing sessions, respectively. Table 6.3 show
the same statistics when no distinction is made between incoming and outgoing sessions.

In the column denoted “Samples” the first number shows the number of valid Gnutella sessions
that is used to compute the statistics. A Gnutella session is considered valid (in the sense that
is used to compute session statistics) if the Gnutella handshake was completed successfully and
at least one Gnutella message was transferred between the two hosts participating in the session.
The number in paranthesis is the total number of observed sessions, valid and invalid. In this case,
only 30 % of the all sessions were valid (31.5 % and 13.4 % when considering only incoming and
outgoing sessions, respectively).

Table 6.1: Incoming session statistics.

Type Max Min Mean Median Std Samples

Duration (s) 767553 (8.9 days) 0.03 517.30 0.86 6780.99 173711 (551168)

Messages 7561532 (7.6M) 4 585.18 11 22580.99 173711 (551168)

Bytes 535336627 (535.3M) 780 53059 1356 2034418 173711 (551168)

Table 6.2: Outgoing session statistics.

Type Max Min Mean Median Std Samples

Duration (s) 470422 (5.4 days) 0.12 3949.86 2459.10 11170.80 7094 (52904)

Messages 2644660 (2.6M) 6 23145.15 15716.50 58627.75 7094 (52904)

Bytes 182279191 (182.3M) 1574 2173564 1457360 4458468 7094 (52904)

Table 6.3: Incoming + Outgoing session statistics.

Type Max Min Mean Median Std Samples

Duration (s) 767553 (8.9 days) 0.03 651.98 0.87 7036.85 180805 (604072)

Messages 7561532 (7.6M) 4 1470.34 11 25375.64 180805 (604072)

Bytes 535336627 (535.3M) 780 136258 1357 2219411 180805 (604072)

The tables show that outgoing sessions transfer about 40 times more data than incoming sessions.
Furthermore, it appears that for incoming sessions, few sessions transfer the majority of data. This
can be seen by comparing the mean and median values for messages and bytes. The explanation
can be found by comparing the mean and median duration values for incoming sessions. It can
observed that most incoming sessions have very short duration (< 1 second). Currently, no good
reason could be found for this behavior. Most connections were terminated with a BYE message
with code 200 Node Bumped.

6.2 Message Statistics

Table 6.4 displays the message size statistics for each Gnutella message type. The type UN-
KNOWN denotes messages with a valid Gnutella header, but with unrecognized message type.
The messages are either experimental or corrupted. The type ALL is used for statistics computed
over all messages, irrespective of type.

It can be observed that on average QUERY HIT and QRP messages have the largest size. They
are tightly followed by handshake messages, where the capability headers accounts for most of the
data. It is interesting to notice that the maximum size of QUERY HIT messages is 39 kB, which
is an order of magnitude greater than the 4 kB specified by [46].

48

6.2. MESSAGE STATISTICS

Table 6.4: Message size statistics.

Type Max Min Mean Median Std Samples

CLI HSK 696 22 336.91 328 65.69 604072

SER HSK 2835 23 386.83 369 145.69 597896

FIN HSK 505 23 107.92 76 88.55 212162

PING 34 23 25.48 23 3.88 4151799

PONG 464 37 74.96 61 38.68 43727188

QUERY 376 26 70.17 55 46.40 129078986

QUERY HIT 39161 58 590.28 358 1223.58 13242329

QRP 4124 29 608.60 540 596.70 1158596

HSEP 191 47 70.39 71 28.15 538834

PUSH 49 49 49.00 49 0.00 63040718

BYE 148 35 40.02 37 15.84 167726

VENDOR 177 31 36.45 33 19.51 10195389

UNKNOWN 43 23 23.53 23 3.24 38

ALL 39161 22 93.45 49 303.26 266715733

The message duration statistic can be useful to infer waiting times at application layer when a
message is divided across two or more TCP segments. The statistic is defined as the time difference
between the first and last TCP segments that were used to transport the message. When a message
uses only one TCP segment the time duration for that message is zero.

Table 6.5: Message duration statistics in seconds (100µs resolution).

Type Max Min Mean Median Std Samples

CLI HSK 349.3015 0 0.0308 0 1.0412 604072

SER HSK 52.2645 0 0.0032 0 0.1350 597896

FIN HSK 68.6295 0 0.0057 0 0.2838 212162

PING 251.2914 0 0.0273 0 0.6309 4151799

PONG 2355.8650 0 0.0077 0 0.5881 43727188

QUERY 2355.8650 0 0.0035 0 1.3271 129078986

QUERY HIT 480.8159 0 0.0243 0 1.0260 13242329

QRP 753.1904 0 0.1883 0 1.6019 1158596

HSEP 74.0482 0 0.0017 0 0.2186 538834

PUSH 135.5155 0 0.0023 0 0.2017 63040718

BYE 148.7292 0 0.0386 0 0.5194 167726

VENDOR 391.3439 0 0.0117 0 0.2451 10195389

UNKNOWN 1.0418 0 0.2995 0 0.4294 38

ALL 2355.8650 0 0.0065 0 0.9968 266715733

From the median column in Table 6.5 it can be observed that at least 50% of the messages require
just one TCP segment. The PONG and QUERY HIT message rows contain extreme values for
maximum duration, 2355.9 seconds (approximately 39 minutes). These values are probably the
result of malfunctioning or experimental Gnutella servents.

Table 6.6 shows interarrival times for messages received by the BTH ultrapeer and Table 6.7 shows
interdeparture times for messages sent by the BTH ultrapeer.

Summing over the number of samples for each message type does not add up to the value shown
in the number of samples for message type ALL. The reason is that the analysis software ignores
messages that generate negative interarrival/interdeparture times. Such negative times appear
because the application flow reassembly handles several (typically more than one hundred) con-
nections at the same time. On each connection the timestamp for arriving packets is monotonically
increasing. However, the interarrival/interdeparture statistics presented here are computed across

49

CHAPTER 6. GNUTELLA

all connections. To ensure monotonically increasing timestamps even in this case, new mesages
from arbitrary connections are stored in a buffer which is sorted by timestamp. The size of the
buffer is limited to 500000 entries due to memory management issues. Table 6.20 shows that on
average there are 280 incoming and outgoing messages. This means that the buffer can store about
30 minutes of average traffic and much less during traffic bursts. If there are messages that are
delayed (see Table 6.5) due to TCP retransmissions or other events, they will reach the buffer too
late and will be discarded.

Table 6.6: Message interarrival time statistics (100µs resolution).

Type Max Min Mean Median Std Samples

CLI HSK 28.4591 0.0001 1.7246 1.1256 1.8644 551148

SER HSK 5185.0490 0.0001 19.6294 0.2090 92.1849 48432

FIN HSK 1118.9920 0.0001 5.3165 2.1942 19.4800 178783

PING 13.5871 0.0001 0.2762 0.1931 0.2726 3457169

PONG 2.2624 0.0001 0.1404 0.0979 0.1383 9086918

QUERY 1.4514 0.0001 0.0343 0.0240 0.0340 59010007

QUERY HIT 19.2778 0.0001 0.1842 0.0976 0.2661 6932327

QRP 50.0632 0.0001 2.0475 1.0534 2.8707 478451

HSEP 1780.4420 0.0003 6.1560 4.3834 8.4758 154742

PUSH 40.1396 0.0001 0.0677 0.0405 0.1157 24934450

BYE 1119.5930 0.0001 5.9160 2.3591 22.3494 160695

VENDOR 30.8037 0.0001 0.4346 0.2207 0.5993 9669915

UNKNOWN 51576.8600 3.0680 2075.3190 6.9379 9298.3600 35

ALL 9.8299 0.0001 0.02436 0.0169 0.0243 114663084

Table 6.7: Message interdeparture time statistics (100µs resolution).

Type Max Min Mean Median Std Samples

CLI HSK 5189.2340 0.0002 17.9655 0.1273 88.8506 52902

SER HSK 28.4595 0.0003 1.7298 1.1287 1.8712 549456

FIN HSK 5185.5150 0.0006 28.4784 0.3305 110.2372 33373

PING 20.5910 0.0001 1.3773 0.5077 2.1342 694550

PONG 2.7215 0.0001 0.1573 0.1012 0.1682 34639367

QUERY 12.1151 0.0001 0.0295 0.0003 0.0541 70066326

QUERY HIT 19.2818 0.0001 0.2188 0.1285 0.2885 6309719

QRP 603.3599 0.0001 2.6350 0.0004 19.8572 680103

HSEP 358.3067 0.0001 2.5020 1.4089 5.8293 384084

PUSH 76.5303 0.0001 0.0429 0.0003 0.1713 38105019

BYE 3849.4550 0.0001 134.8121 77.2090 187.7784 7033

VENDOR 64.6689 0.0001 1.8253 1.1124 2.4838 525269

UNKNOWN N/A N/A N/A N/A N/A 1

ALL 1.5450 0.0001 0.0178 0.0003 0.0353 152047214

The large interarrival and interdeparture times in handshake messages happen because once a ser-
vent reaches the preset amount of connections it will no longer accept or attempt new connections
until one or more of the existing connections is closed. This behavior would also explain the large
interarrival and interdeparture times for BYE messages.

50

6.3. TRANSFER RATE STATISTICS

6.3 Transfer Rate Statistics

This section present transfer rates in bytes/second and in messages/second for all Gnutella mes-
sage types considered in this report. Each statistic is computed from 950568 samples, which is
equivalent to approximately 11 days.

Table 6.8: Handshake message rate statistics.

Type Dir Max Min Mean Median Std

CLI HSK IN 12 0 0.58 0 0.79

CLI HSK OUT 30 0 0.06 0 0.56

SER HSK IN 20 0 0.05 0 0.48

SER HSK OUT 12 0 0.58 0 0.79

FIN HSK IN 9 0 0.19 0 0.46

FIN HSK OUT 18 0 0.04 0 0.34

Table 6.9: Handshake byte rate statistics.

Type Dir Max Min Mean Median Std

CLI HSK IN 4126 0 187 0 258

CLI HSK OUT 14519 0 27 0 273

SER HSK IN 12507 0 31 0 289

SER HSK OUT 4001 0 212 0 306

FIN HSK IN 982 0 15 0 42

FIN HSK OUT 4474 0 9 0 94

Table 6.10: PING–PONG message rate statistics.

Type Dir Max Min Mean Median Std

PING IN 72 0 3.64 3 1.94

PING OUT 17 0 0.73 0 1.56

PONG IN 130 0 9.56 9 4.33

PONG OUT 433 0 36.44 36 19.12

Table 6.11: PING–PONG byte rate statistics.

Type Dir Max Min Mean Median Std

PING IN 1665 0 92 92 50

PING OUT 503 0 19 0 45

PONG IN 17043 0 1213 1173 541

PONG OUT 26050 0 2235 2162 1179

Table 6.12: QUERY–QUERY HIT message rate statistics.

Type Dir Max Min Mean Median Std

QUERY IN 347 0 62.08 60 19.64

QUERY OUT 875 0 73.71 69 34.08

QUERY HIT IN 531 0 7.29 5 9.82

QUERY HIT OUT 272 0 6.64 5 7.39

51

CHAPTER 6. GNUTELLA

Table 6.13: QUERY–QUERY HIT byte rate statistics.

Type Dir Max Min Mean Median Std

QUERY IN 24101 0 4441 4317 1426

QUERY OUT 46424 0 5088 4702 2511

QUERY HIT IN 1736791 0 4868 1912 23917

QUERY HIT OUT 360235 0 3355 1837 5229

Table 6.14: QRP and HSEP message rate statistics.

Type Dir Max Min Mean Median Std

QRP IN 45 0 0.50 0 0.98

QRP OUT 283 0 0.72 0 7.18

HSEP IN 20 0 0.16 0 0.41

HSEP OUT 23 0 0.40 0 0.68

Table 6.15: QRP and HSEP byte rate statistics.

Type Dir Max Min Mean Median Std

QRP IN 47340 0 389 0 1408

QRP OUT 152820 0 353 0 3660

HSEP IN 940 0 8 0 21

HSEP OUT 2185 0 32 0 58

Table 6.16: PUSH and BYE message rate statistics.

Type Dir Max Min Mean Median Std

PUSH IN 1068 0 26.23 23 19.34

PUSH OUT 4091 0 40.09 32 37.32

BYE IN 40 0 0.17 0 0.43

BYE OUT 118 0 0.01 0 0.15

Table 6.17: PUSH and BYE byte rate statistics.

Type Dir Max Min Mean Median Std

PUSH IN 52332 0 1285 1127 948

PUSH OUT 200459 0 1964 1568 1829

BYE IN 1720 0 6 0 16

BYE OUT 4956 0 1 0 11

52

6.3. TRANSFER RATE STATISTICS

Table 6.18: VENDOR and UNKNOWN message rate statistics.

Type Dir Max Min Mean Median Std

VENDOR IN 6385 0 10.17 1 76.17

VENDOR OUT 24 0 0.55 0 0.80

UNKNOWN IN 1 0 0.00 0 0.01

UNKNOWN OUT 1 0 0.00 0 0.00

Table 6.19: VENDOR and UNKNOWN byte rate statistics.

Type Dir Max Min Mean Median Std

VENDOR IN 210702 0 347 33 2514

VENDOR OUT 2197 0 44 0 81

UNKNOWN IN 23 0 0 0 0.1

UNKNOWN OUT 43 0 0 0 0.1

Table 6.20: Gnutella (all type) message rate statistics.

Dir Max Min Mean Median Std

IN 6471 0 120.63 111 84

OUT 4164 0 159.96 153 61

Table 6.21 shows the aggregate transfer rates for all messages types. Table 6.22 provides the
summary statistics for the IP byte rates. It is interesting to note that the mean and median IP
byte rates are very similar to the corresponding Gnutella byte rates shown in Table 6.21. These
values alone would indicate that the compression of Gnutella messages does not yield large gains.
However, if one takes into consideration the maximum and standard deviation values it can be
observed that compression removes much of the burstiness from the application layer, leading to
smoother traffic patterns. This effect can be also seen if one compares Figure 6.1 to Figure 6.2.

Table 6.21: Gnutella (all type) byte rate statistics.

Dir Max Min Mean Median Std

IN 1745341 0 12883 10113 24287

OUT 370825 0 13338 12062 7624

Table 6.22: IP Byte rate statistics.

Dir Max Min Mean Median Std

IN 249522 0 11536 10961 4075

OUT 176986 0 12668 12037 5722

53

CHAPTER 6. GNUTELLA

0.0
200.0 k
400.0 k
600.0 k
800.0 k

1.0 M
1.2 M
1.4 M
1.6 M
1.8 M

12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00

Jul 01 Jul 02 Jul 03 Jul 04 Jul 05 Jul 06 Jul 07 Jul 08 Jul 09 Jul 10 Jul 11 Jul 12 Jul 13

B
y
te

s
 p

e
r

s
e

c
o

n
d

Time

(a) Incoming Gnutella Byte Rate

0.0
50.0 k

100.0 k
150.0 k
200.0 k
250.0 k
300.0 k
350.0 k
400.0 k

12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00

Jul 01 Jul 02 Jul 03 Jul 04 Jul 05 Jul 06 Jul 07 Jul 08 Jul 09 Jul 10 Jul 11 Jul 12 Jul 13

B
y
te

s
 p

e
r

s
e

c
o

n
d

Time

(b) Outgoing Gnutella Byte Rate

0.0
200.0 k
400.0 k
600.0 k
800.0 k

1.0 M
1.2 M
1.4 M
1.6 M
1.8 M

12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00

Jul 01 Jul 02 Jul 03 Jul 04 Jul 05 Jul 06 Jul 07 Jul 08 Jul 09 Jul 10 Jul 11 Jul 12 Jul 13

B
y
te

s
 p

e
r

s
e

c
o

n
d

Time

(c) Incoming + Outgoing Gnutella Byte Rate

Figure 6.1: Gnutella Transfer Rates.

0.0

50.0 k

100.0 k

150.0 k

200.0 k

250.0 k

12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00

Jul 01 Jul 02 Jul 03 Jul 04 Jul 05 Jul 06 Jul 07 Jul 08 Jul 09 Jul 10 Jul 11 Jul 12 Jul 13

B
y
te

s
 p

e
r

s
e

c
o

n
d

Time

(a) Incoming IP Byte Rate

0.0
20.0 k
40.0 k
60.0 k
80.0 k

100.0 k
120.0 k
140.0 k
160.0 k
180.0 k

12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00

Jul 01 Jul 02 Jul 03 Jul 04 Jul 05 Jul 06 Jul 07 Jul 08 Jul 09 Jul 10 Jul 11 Jul 12 Jul 13

B
y
te

s
 p

e
r

s
e

c
o

n
d

Time

(b) Outgoing IP Byte Rate

0.0

50.0 k

100.0 k

150.0 k

200.0 k

250.0 k

300.0 k

12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00

Jul 01 Jul 02 Jul 03 Jul 04 Jul 05 Jul 06 Jul 07 Jul 08 Jul 09 Jul 10 Jul 11 Jul 12 Jul 13

B
y
te

s
 p

e
r

s
e

c
o

n
d

Time

(c) Incoming + Outgoing IP Byte Rate

Figure 6.2: Gnutella Transfer Rates at IP layer.

54

Appendix A

BitTorrent Application Log DTD

<!ELEMENT EVENTLIST (#PCDATA | EVENT)*>
<!ATTLIST EVENTLIST start_timestamp CDATA #IMPLIED>
<!ATTLIST EVENTLIST peertype CDATA #IMPLIED>
<!ATTLIST EVENTLIST version CDATA #IMPLIED>
<!ATTLIST EVENTLIST bound_ip CDATA #IMPLIED>
<!ATTLIST EVENTLIST bound_port CDATA #IMPLIED>
<!ATTLIST EVENTLIST tracker_ip CDATA #IMPLIED>
<!ATTLIST EVENTLIST tracker_port CDATA #IMPLIED>
<!ATTLIST EVENTLIST peer_id CDATA #IMPLIED>
<!ATTLIST EVENTLIST pieces CDATA #IMPLIED>
<!ATTLIST EVENTLIST piecesize CDATA #IMPLIED>
<!ATTLIST EVENTLIST nfiles CDATA #IMPLIED>
<!ATTLIST EVENTLIST totlen CDATA #IMPLIED>
<!ATTLIST EVENTLIST max_slice_length CDATA #IMPLIED>
<!ATTLIST EVENTLIST rarest_first_cutoff CDATA #IMPLIED>
<!ATTLIST EVENTLIST ip CDATA #IMPLIED>
<!ATTLIST EVENTLIST download_slice_size CDATA #IMPLIED>
<!ATTLIST EVENTLIST snub_time CDATA #IMPLIED>
<!ATTLIST EVENTLIST rerequest_interval CDATA #IMPLIED>
<!ATTLIST EVENTLIST max_uploads CDATA #IMPLIED>
<!ATTLIST EVENTLIST saveas CDATA #IMPLIED>
<!ATTLIST EVENTLIST min_uploads CDATA #IMPLIED>
<!ATTLIST EVENTLIST spew CDATA #IMPLIED>
<!ATTLIST EVENTLIST max_upload_rate CDATA #IMPLIED>
<!ATTLIST EVENTLIST minport CDATA #IMPLIED>
<!ATTLIST EVENTLIST http_timeout CDATA #IMPLIED>
<!ATTLIST EVENTLIST timeout_check_interval CDATA #IMPLIED>
<!ATTLIST EVENTLIST display_interval CDATA #IMPLIED>
<!ATTLIST EVENTLIST max_initiate CDATA #IMPLIED>
<!ATTLIST EVENTLIST max_message_length CDATA #IMPLIED>
<!ATTLIST EVENTLIST upload_rate_fudge CDATA #IMPLIED>
<!ATTLIST EVENTLIST check_hashes CDATA #IMPLIED>
<!ATTLIST EVENTLIST min_peers CDATA #IMPLIED>
<!ATTLIST EVENTLIST keepalive_interval CDATA #IMPLIED>
<!ATTLIST EVENTLIST maxport CDATA #IMPLIED>
<!ATTLIST EVENTLIST request_backlog CDATA #IMPLIED>
<!ATTLIST EVENTLIST bind CDATA #IMPLIED>
<!ATTLIST EVENTLIST max_rate_period CDATA #IMPLIED>
<!ATTLIST EVENTLIST url CDATA #IMPLIED>
<!ATTLIST EVENTLIST statfile CDATA #IMPLIED>
<!ATTLIST EVENTLIST report_hash_failures CDATA #IMPLIED>
<!ATTLIST EVENTLIST timeout CDATA #IMPLIED>
<!ATTLIST EVENTLIST responsefile CDATA #IMPLIED>
<!ATTLIST EVENTLIST max_allow_in CDATA #IMPLIED>
<!ELEMENT EVENT (#PCDATA)>
<!ATTLIST EVENT uploaded CDATA #IMPLIED>
<!ATTLIST EVENT downloaded CDATA #IMPLIED>
<!ATTLIST EVENT left CDATA #IMPLIED>
<!ATTLIST EVENT last CDATA #IMPLIED>
<!ATTLIST EVENT trackerid CDATA #IMPLIED>
<!ATTLIST EVENT event CDATA #IMPLIED>
<!ATTLIST EVENT numwant CDATA #IMPLIED>
<!ATTLIST EVENT port CDATA #IMPLIED>
<!ATTLIST EVENT txtime CDATA #IMPLIED>
<!ATTLIST EVENT rxtime CDATA #IMPLIED>

55

APPENDIX A. BITTORRENT APPLICATION LOG DTD

<!ATTLIST EVENT rxstart CDATA #IMPLIED>
<!ATTLIST EVENT direction CDATA #IMPLIED>
<!ATTLIST EVENT down CDATA #IMPLIED>
<!ATTLIST EVENT dst CDATA #IMPLIED>
<!ATTLIST EVENT dstid CDATA #IMPLIED>
<!ATTLIST EVENT nconns CDATA #IMPLIED>
<!ATTLIST EVENT type CDATA #IMPLIED>
<!ATTLIST EVENT timestamp CDATA #IMPLIED>
<!ATTLIST EVENT src CDATA #IMPLIED>
<!ATTLIST EVENT srcid CDATA #IMPLIED>
<!ATTLIST EVENT piece CDATA #IMPLIED>
<!ATTLIST EVENT begin CDATA #IMPLIED>
<!ATTLIST EVENT length CDATA #IMPLIED>

56

Appendix B

Acronyms

AD Anderson-Darling

AP Access Point

BTH Blekinge Institute of Technology

BSS Basic Structure Service

CCDF Complementary Cumulative
Distribution Function

CDN Content Delivery Network

CGI Common Gateway Interface

CS Client-Server

CVM Cramér-von Mises

DHT Distributed Hash Table

DNS Domain Name System

DTD Document Type Definition

DOM Document Object Model

EDF Empirical Distribution Function

EPDF Experimental Probability Density
Function

ESS Extended Service Set

F2F Firewall-to-Firewall

FTP File Transfer Protocol

GGEP Gnutella Generic Extension Protocol

GWC Gnutella Web Cache

HSEP Horizon Size Estimation Protocol

HTTP HyperText Transfer Protocol

HUGE Hash/URN Gnutella Extensions

HSEP Horizon Size Estimation Protocol

IID Independent and Identically
Distributed

ISP Internet Service Provider

KS Kolmogorov-Smirnov

LN Leaf Node

LRD Long-Range Dependence

MLE Maximum Likelihood Estimation

ML Maximum-Likelihood

MPAA Motion Picture Association of America

NAT Network Address Translation

NFS Network Filesystem

NNTP Network News Transfer Protocol

OS Operating System

P2P Peer-to-Peer

PARQ Passive/Active Remote Queueing

PDF Probability Density Function

PFS Partial File Sharing

PIT Probability Integral Transform

PSTN Public Switched Telephone Network

QQ Quantile-Quantile

QoS Quality of Service

57

APPENDIX B. ACRONYMS

QRP Query Routing Protocol

RIAA Recording Industry Association of
America

RMON Remote Monitoring

SAX Simple API for XML

SHA-1 Secure Hash Algorithm One

SMTP Simple Mail Transfer Protocol

SNMP Simple Network Management Protocol

SRD Short-Range Dependence

TCP Transport Control Protocol

TTL Time-To-Live

UDP User Datagram Protocol

UHC UDP Host Cache

UP Ultrapeer

URI Uniform Resource Indicator

URL Universal Resource Locator

URN Uniform Resource Names

UUCP Unix to Unix Copy Protocol

VoIP Voice over IP

WWW World-Wide Web

58

Bibliography

[1] Cachelogic. P2P in 2005.
http://cachelogic.com/research/p2p2005.php, 2005.

[2] Adrian Popescu. Routing on overlay networks: Developments and challenges. IEEE Commu-
nications Magazine, Vol. 43(8):22–23, August 2005.

[3] Wikipedia Encyclopedia. Peer-to-peer.
http://en.wikipedia.org/wiki/P2p, August 2005.

[4] Clip2. The Annotated Gnutella Protocol Specification v0.4. The Gnutella Developer Fo-
rum (GDF), 1.8th edition, July 2003. http://groups.yahoo.com/group/the gdf/files/Deve-
lopment/.

[5] Jordan Ritter. Why Gnutella can’t scale. No, really., February 2001.
http://www.darkridge.com-/˜jpr5-/doc-/gnutella.html.

[6] Rüdiger Schollmeier. A definition of peer-to-peer networking for the classification of peer-to-
peer architectures and applications. In Proceedings of the First International Conference on
Peer-to-Peer Computing. IEEE, 2001.

[7] Akamai.
http://www.akamai.com, August 2005.

[8] Ion Stoica, Robert Morris, David Liben-Nowell, David R. Karger, M. Frans Kaashoek, Frank
Dabek, and Hari Balakrishnan. Chord: A scalable peer-to-peer lookup protocol for internet
applications. IEEE/ACM Transactions on Networking, Volume 11(Number 1):17–32, February
2003.

[9] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott Shenker. A scalable
content-addressable network. In Proceedings of ACM SIGCOMM 2001, pages 161–172, San
Diego, CA, August 2001. ACM Press.

[10] Krishna P. Gummadi, Ramakrishna Gummadi, Steven D. Gribble, Sylvia Ratnasamy, Scott
Shenker, and Ion Stoica. The impact of DHT routing geometry on resilience and proximity. In
Proceedings of the ACM SIGCOMM 2003, pages 381–394, Karlsruhe, Germany, August 2003.
ACM Press.

[11] Yatin Chawathe, Sylvia Ratnasamy, and Lee Breslau. Making gnutella-like P2P systems
scalable. In Proc. ACM SIGCOMM ’03, August 2003.

[12] Miguel Castro, Manuel Costa, and Antony Rowstron. Peer-to-peer overlays: structured, un-
structured, or both? Technical report, Microsoft Research, Cambridge, UK, July 2004.

[13] Pablo Brenner. A Technical Tutorial on the 802.11 Protocol. BreezeCOM Wireless Commu-
nications, 1997.

59

BIBLIOGRAPHY

[14] Xiaoyan Hong, Kaixin Xu, and Mario Gerla. Scalable routing protocols for mobile ad hoc
networks. IEEE Network, pages 11–21, August 2002.

[15] ICQ.
http://www.icq.com, August 2005.

[16] Yahoo! messenger.
http://messenger.yahoo.com, August 2005.

[17] Msn messenger.
http://messenger.msn.com, August 2005.

[18] The SETI@Home Project. SETI@Home – the search for extraterrestrial intelligence.
http://setiathome.ssl.berkeley.edu/, February 2005.

[19] distributed.net. distributed.net.
http://distributed.net, February 2005.

[20] ZetaGrid. ZetaGrid.
http://www.zetagrid.net/, February 2005.

[21] Beowulf. http://www.beowulf.org, December 2005.

[22] Ian Foster and Carl Kesselman. Globus: A metacomputing infrastructure toolkit. The Inter-
national Journal of Supercomputer Applications and High Performance Computing, 11(2):115–
128, 1997.

[23] Ian Foster and Carl Kesselman. The Globus project: A status report. In Proceedings of the
Seventh Heterogeneous Computing Workshop, pages 4–18, March 1998.

[24] David P. Anderson. BOINC: A system for public-resource computing and storage. In Fifth
IEEE/ACM International Workshop on Grid Computing, pages 4–10, November 2004.

[25] Electricsheep. http://electricsheep.org, December 2005.

[26] Ian Foster and Adriana Iamnitchi. On death, taxes, and the convergence of peer-to-peer
and grid computing. In 2nd International Workshop on Peer-to-Peer Systems (IPTPS’03),
Berkeley, CA, USA, February 2003.

[27] Jonathan Ledlie, Jeff Schneidman, Margo Seltzer, and John Huth. Scooped, again. In Pro-
ceedings of 2nd International Workshop on Peer-to-Peer Systems (IPTPS ’03), Berkeley, CA,
USA, February 2003.

[28] Ian F. Akyildiz, Weilian Su, Yogesh Sankarusubramaniam, and Erdal Cayirici. A survey on
sensor networks. In IEEE Communication Magazine, pages 102–114. August 2002.

[29] Deborah Estrin, Ramesh Govindan, John S. Heidemann, and Satish Kumar. Next century
challenges: Scalable coordination in sensor networks. In Proceedings of the ACM/IEEE In-
ternational Conference on Mobile Computing and Networking, pages 263–270, Seattle, WA,
USA, August 1999. ACM.

[30] Chalermek Intanagonwiwat, Ramesh Govindan, Deborah Estrin, John Heidenmann, and Fabio
Silva. Directed diffusion for wireless sensor networking. IEEE/ACM Transactions on Network-
ing, 11(1):2–16, February 2003.

[31] Joanna Kulik, Wendi Heinzelman, and Balakrishnan Hari. Negotiation-based protocols for
disseminating information in wireless sensor networks. Wireless Networks, 8(2/3):169–185,
2002.

[32] Bram Cohen. BitTorrent. http://www.bittorrent.com/, March 2006.

60

BIBLIOGRAPHY

[33] BitTorrent specification.
http://wiki.theory.org/BitTorrentSpecification, February 2005.

[34] eDonkey.
http://www.edonkey.com, February 2005.

[35] NeoModus. DirectConnect.
http://www.neo-modus.com, February 2005.

[36] Sharman Networks. KaZaA.
http://www.kazaa.com, February 2005.

[37] National Institute of Standards and Technology. Specifications for secure hash standard.
http://www.itl.nist.gov/fipspubs/fip180-1.htm, April 1995. FIPS PUB 180-1.

[38] D. Eastlake 3rd and P. Jones. US Secure Hash Algorithm 1 (SHA1), September 2001. RFC
3174.

[39] T. Berners-Lee, L. Masinter, and M. McCahill. Uniform Resource Locators (URL), December
1994. RFC 1738.

[40] T. Berners-Lee, R. Fielding, and L. Masinter. Uniform Resource Identifiers (URI): Generic
Syntax, August 1998. RFC 2396.

[41] Bram Cohen. BitTorrent protocol specification.
http://www.bitconjurer.org/BitTorrent/protocol.html, February 2005.

[42] Olaf van der Spek. BitTorrent udp-tracker protocol extension.
http://libtorrent.sourceforge.net/udp tracker protocol.html, February 2005.

[43] J.A. Pouwelse, P. Garbacki, D.H.J. Epema, and H.J. Sips. The BitTorrent P2P file-sharing
system: Measurements and analysis. 4th International Workshop on Peer-to-Peer Systems
(IPTPS’05), February 2005.

[44] Azureus.
http://azureus.sourceforge.net/, August 2005.

[45] J. Chapweske. Tree hash exchange format.
http://open-content.net/specs/draft-jchapweske-thex-02.html, February 2005.

[46] Tor Klingberg and Raphael Manfredi. Gnutella 0.6. The Gnutella Developer Forum (GDF),
200206-draft edition, June 2002.
http://groups.yahoo.com/group/the gdf/files/Development/.

[47] Anurag Singla and Christopher Rohrs. Ultrapeers: Another Step To-
wards Gnutella Scalability. Lime Wire LLC, 1.0 edition, November 2002.
http://groups.yahoo.com/group/the gdf/files/Development/.

[48] Adam A. Fisk. Gnutella Dynamic Query Protocol. LimeWire LLC, 0.1 edition, May
2003. http://groups.yahoo.com/group/the gdf/files/Proposals/Working Proposals/search/-
Dynamic Querying.

[49] Stefan Saroiu, P. Krishna Gummadi, and Steven D. Gribble. A measurement study of peer-
to-peer file sharing systems. In Proceedings of the Multimedia Computing and Networking
(MMCN), January 2002.

[50] Gnutella protocol development.
http://www.the-gdf.org, December 2005.

61

BIBLIOGRAPHY

[51] Raphael Manfredi. Gnutella Traffic Compression. The Gnutella Developer Forum (GDF),
January 2003. http://groups.yahoo.com/group/the gdf/files/Development/.

[52] Jean-loup Gailly and Mark Adler. zlib. http://www.gzip.org/zlib, August 2005.

[53] P. Leach, M. Mealling, and R. Salz. A Universally Unique IDentifier (UUID) URN Namespace,
July 2005. RFC 4122.

[54] Jason Thomas. Gnutella generic extension protocol (GGEP).
http://rfc-gnutella.sourceforge.net/src/GnutellaGenericExtensionProtocol.0.51.html, Febru-
ary 2002.

[55] Sumeet Thadani. Metadata extension.
http://www.the-gdf.org/wiki/index.php?title=Metadata Extension, 2001.

[56] Christopher Rohrs. Query Routing for the Gnutella Network. Lime Wire LLC, 1.0 edition,
May 2002. http://groups.yahoo.com/group/the gdf/files/Development/.

[57] Burton H. Bloom. Space/time trade-offs in hash coding with allowable errors. Communication
of the ACM, Volume 13(Number 7):422–426, July 1970. ISSN:0001-0782.

[58] Adam A. Fisk. Gnutella Ultrapeer Query Routing. Lime Wire LLC, 0.1 edi-
tion, May 2003. http://groups.yahoo.com/group/the gdf/files/Proposals/ Working Propos-
als/search/Ultrapeer QRP/.

[59] Thomas Schürger. Horizon size estimation on the Gnutella network v0.2, March 2004.
http://www.menden.org/gnutella/hsep.html.

[60] G. Mohr. Hash/URN gnutella extensions (HUGE) v0.94. http://groups.yahoo.com/group/-
the gdf/files/Proposals/Working Proposals/HUGE/, April 2002.

[61] Raphael Manfredi. Passive/active remote queueing (parq).
http://groups.yahoo.com/group/the gdf/files/Proposals/Working Proposals/QUEUE/, May
2003. Version 1.0.a.

[62] Reliable udp (rudp) file transfer spec 1.0.
http://groups.yahoo.com/group/the gdf/files/Proposals/Pending Proposals/F2F/, February
2005.

[63] Pyda Srisuresh, Bryan Ford, and Dan Kegel. State of Peer-to-Peer (P2P) communication
across Network Address Translators (NATs). Internet Draft, October 2005. draft-srisuresh-
behave-p2p-state-01.txt.

[64] Sam Berlin, Andrew Mickish, Julian Qian, and Sam Darwin. Multicast in Gnutella. Document
Revision 2, November 2004.
http://groups.yahoo.com/group/the gdf/files/Proposals/Working Proposals/LAN Multi-
cast/.

[65] Conny Palm. Intensitätsschwankungen im Fernsprechverkehr. PhD thesis, Royal Institute of
Technology, 1943.

[66] Carey Williamson. Internet traffic measurement. 2001.

[67] ”B. Claise”. ”Cisco Systems NetFlow Services Export Version 9”. Cisco Systems, October 2004.
RFC3954.

[68] Van Jacobsen, C. Leres, and S. McCanne. Tcpdump. http://www.tcpdump.org, August 2005.

[69] Gerald Combs and contributors. Ethereal: A network protocol analyzer.
http://www.ethereal.com, November 2005.

62

BIBLIOGRAPHY

[70] Thomas H. Ptacek and Timothy N. Newsham. Insertion, evasion, and denial of service: Elud-
ing network intrusion detection. Technical report, Secure Networks, Inc., January 1998.

[71] Mark Handley and Vern Paxon. Network intrusion detection: Evasion, traffic normalization,
and end-to-end protocol semantics. In Proceeding of the 10th USENIX Security Symposium,
Washington, D.C., USA, August 2001. USENIX Association.

[72] Shawn Ostermann. Tcptrace. http://www.tcptrace.org, August 2005.

[73] Gary R. Wright and W. Richard Stevens. TCP/IP Illustrated: The Implementation, volume 2.
Addison-Wesley, 1995. ISBN: 0-201-63354-X.

[74] Guido van Rossum et al. Python. Online at http://www.python.org, August 2005.

[75] W3C. Extensible Markup Language (XML) 1.0, 2004.

63

	Introduction
	Motivation

	Peer--to--Peer Protocols
	P2P Evolution
	P2P Definitions
	Distributed Hash Tables
	P2P and Ad-Hoc Networks
	P2P and File Sharing
	P2P and the Grid
	P2P and Sensor Networks

	Protocol Descriptions
	BitTorrent
	Gnutella

	Measurement Software Description
	Passive measurements
	Network infrastructure
	TCP Reassembly Framework
	Application Logging
	Log Formats

	BitTorrent
	Measurement details
	Aggregate results
	Swarm size dynamicity

	Gnutella
	Session Statistics
	Message Statistics
	Transfer Rate Statistics

	BitTorrent Application Log DTD
	Acronyms
	Bibliography

