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Abstract

The paper is focused on signaling traffic between Gnutella peers that implement the latest Gnutella protocol speci-
fications (v0.6). In particular, we provide analytically tractable statistical models at session level, message level and
IP datagram level for traffic crossing a Gnutella ultrapeer at Blekinge Institute of Technology (BTH) in Karlskrona,
Sweden. To the best of our knowledge this is the first work that provides Gnutella v0.6 statistical models at this level
of detail. These models can be implemented straightforward in network simulators such as ns2 and OmNet++.

The results show that incoming requests to open a session follow a Poisson distribution. Incoming Gnutella messages
across all established sessions can be described by a compound Poisson distribution. Mixture distribution models for

message transfer rates include a heavy-tailed component.
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1. Introduction

During the past five years peer-to-peer (P2P) file-
sharing has gradually replaced the Web as the Inter-
net “killer” application. This phenomenon is largely
due to the wide availability of communication band-
width, i.e., link capacity at the edges of the network
where end-user network equipment is located.

P2P literature tends to define P2P networking
as a fuzzy relationship among interconnected nodes
that alternate between the roles of client and server.
The exact characteristics defining a P2P network
seem quite elusive at first, since authors tend to fo-
cus on the characteristics relevant to their work.
Some attempts to settle this situation can be found
in [1-3]. In general these definitions establish that a
P2P network architecture implies a distributed net-
work with decentralized control and dynamic mem-
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bership, in which participants share resources, e.g.,
storage space, processing power bandwidth, in order
to achieve some common goal.

In the light of the growing volume of P2P traffic
on the Internet it becomes increasingly important
to gain a better understanding of the characteris-
tics associated with this type of traffic. Such under-
standing would be invaluable in the design of ana-
lytical and simulation models to control P2P traffic
or in the ability to offer value-added services on top
of P2P networks.

Our work is focused on signaling traffic in the
Gnutella network. In particular, we provide analyt-
ically tractable statistical models at session level,
message level and IP datagram level for traffic cross-
ing a Gnutella ultrapeer.

The rest of the paper is organized as follows. Sec-
tion 2 gives an overview of related work. The Gnute-
lla protocol is described in Section 3. The P2P mea-
surement infrastructure developed at BTH is pre-
sented in Section 4. In Section 5 we describe our
modeling methodology, which was used to construct



statistical models. The actual statistical models are
presented in Section 6. Conclusions and an outline
for future work are the subject of Section 7.

2. Related work

Perhaps the oldest and most cited paper is [4],
which looks into the social aspects of the Gnute-
lla network. The authors instrumented a Gnutella
client to log protocol events. The main contribution
of the paper was to show evidence for the occurrence
of free-riding in the Gnutella network.

In [5,6] the authors created crawlers for Napster
and Gnutella networks. A crawler is a special pur-
pose software agent, which discovers and records
the network topology through an automated, itera-
tive process. The authors used information from the
crawlers to measure properties of individual peers,
e.g., bandwidth and latency. The data from their
measurements indicated that both Gnutella and
Napster exhibit highly heterogeneous properties,
e.g., in terms of connectivity, speed, shared data.
Another important finding, which corroborates the
conclusions in [4], is that users are typically un-
willing to cooperate with each other, few of them
acting as servers and the remaining majority acting
as clients.

A different approach was taken in [7]. The au-
thors performed non-intrusive flow measurements at
a large ISP. Their goal was to analyze FastTrack
(a protocol used by Kazaa and Grokster), Gnute-
lla and DirectConnect networks. Flows belonging to
any of these networks were identified by well-known
port numbers. The major findings in the paper are
that all three networks showed increases in the traf-
fic volume across consecutive months, skewed dis-
tributions for traffic volume, connectivity and aver-
age bandwidth, few hosts with a long uptime, and
uniformity in terms of number of P2P nodes from
individual network address prefixes.

Measurements from a 1 Gbit/s link in the France
Telecom IP backbone network revealed that almost
80 % of traffic on the link in question was produced
by P2P applications [8]. Further, the authors showed
that flows can be partitioned into “mice” — short
flows, mostly due to signaling, and “elephants” —
long flows due to data transfers.

The P2P traffic identification methods in [9,8] as-
sume that applications use well-known ports. This
assumption rarely holds nowadays, when P2P ap-
plications use dynamic ports in order to camouflage

themselves. Karagiannis et al. [10-12] use increas-
ingly better heuristics to detect P2P traffic. Their
measurement, results showed that, if anything, P2P
traffic was not declining in volume. Further, they
showed that P2P traffic is using predominantly dy-
namic ports.

With the exception of [10-12] the related work
considered here focuses on the first version of the
Gnutella protocol, i.e., Gnutella v0.4 [13]. In the last
2 years, Gnutella developers have implemented new
functionality in Gnutellla v0.6 [14], which have dra-
matically changed the traffic characteristics. Our re-
sults are based on traffic generated by peers that im-
plement the latest protocol specifications. Further-
more, we detect and decode Gnutella traffic irrespec-
tive of the port numbers used. To the best of our
knowledge this is the first work that provides Gnu-
tella statistical models at this level of detail. These
models should be straightforward to implement in
network simulators such as ns2 and OmNet++.

3. The Gnutella protocol

Gnutella is a heavily decentralized P2P system.
Nodes! can share any type of resources, although
the currently available specification covers only com-
puter files [14].

The overlay network uses an unstructured topol-
ogy with a two-level hierarchy: ultrapeers (UPs) and
leaf nodes (LNs). UPs are faster nodes in the sense
that they are connected to high-capacity links and
have a large amount of processing power available.
LNs maintain a single connection to their UP. A UP
maintains 10-100 connections, one for each LN and
1-10 connections to other UPs [15]. The UPs per-
form signaling on behalf of the LNs, thus shielding
them from large volumes of signaling traffic. A UP
does not necessarily have LNs, in which case it works
standalone.

The activities of Gnutella peers can be divided
into two main categories: signaling and user data
transfer (further referred to as data transfer). Sig-
naling activities are concerned with peer discovery,
overlay topology maintenance, content search and
other management functions. Data transfer occurs
when a peer has localized during content search one
or more files of interest.

According to the Gnutella Development Forum
(GDF) mailing list, the Gnutella community has re-

1 A Gnutella node is also called a servent, which is a com-
bination of the words server and client.



cently adopted what is called support for high out-
degree [16]. This implies that UPs maintain at least
32 connections to other UPs and 100-300 connec-
tions to different lead nodes. LNs are recommended
to maintain approximately 4 connections to UPs.
The numbers may slightly differ between different
Gnutella vendors. The claim is that high outdegree
support allows a peer to connect to the majority of
Gnutella peers in 4 hops or less [17].

3.1. Bootstrap

A Gnutella node that attempts to join the over-
lay for the first time must bootstrap itself into the
overlay. This implies finding and connecting to one
or several peers that are already part of the over-
lay. A list of active servents can be obtained from
a Gnutella Web Cache (GWC) [18] server. A GWC
server is essentially an HT'TP server maintaining a
list of active peers with associated listening sockets.
A listening socket is the IP address and port number
that can be used to connect to the corresponding
servent. UPs update the list continuously, ensuring
that new peers can always join the overlay.

Once the node joins the overlay, additional peers
can be found through the exchange of PING and
PONG messages. The servent saves peer addresses
in a local host cache in order to avoid connecting
to a GWC server upon restart. The local host cache
is used also if the servent supports the UDP Host
Cache (UHC) protocol. The protocol works as a
distributed bootstrap system, transforming UHC-
enabled servents into GWC-like servers [19] and off-
loading the actual GWC servers.

3.2. Peer connections

Peer signaling occurs over TCP connections. Once
a TCP connection has been setup, the peers at each
end of the TCP connection perform a three-way
Gnutella handshake. The Gnutella handshake allows
the negotiation of a common set of capabilities to be
used during the session. The type of capabilities ne-
gotiated are UP - LN relationship, support for high
outdegree, traffic compression, etc.

If the handshake fails the TCP connections is
teared down. Otherwise, the client and the server
start exchanging binary Gnutella messages over the
existing TCP connection. The connection lasts until
one of the peers decides to terminate the session. At
that point the node ending the connection can op-
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Fig. 1. The Gnutella header

tionally send a BYE message to notify its peer of its
departure. The TCP connection will then be closed.

If the capability set used by the peers includes
stream compression [20], then all data on the TCP
connection is compressed, with the exception of the
initial Gnutella handshake. The type of compression
algorithm can be selected during the handshake, but
the currently supported algorithm is deflate, which
is implemented in z1ib [21].

3.3. Gnutella message headers

Each Gnutella message starts with a generic
header that contains the fields shown in Figure 1
(the numbers in the figure denote bytes):

— Message ID using a Globally Unique Identifier
(GUID) to uniquely identify messages on the Gnu-
tella network [22].

— Payload type code, denoted by P in Figure 1,
that identifies the type of Gnutella message. The
currently supported messages are: PING, PONG,
BYE, QRP, VEND, STDVEND, PUSH, QUERY,
QUERY_HIT and HSEP.

— Time-To-Live (TTL), to limit the signaling radius
and its adverse impact on the network. Messages
with TTL > 15 are dropped?. This field is de-
noted by T in Figure 1.

— Hop count to inform receiving peers how far the
message has traveled, denoted by H in Figure 1.

— Payload length in bytes to describe the length of
the message, not including the header. The pay-
load length indicates where in the byte stream
the next Gnutella generic message header can be
found.

The generic Gnutella header is followed by the ac-
tual message, which may have its own headers. Also,
the message may contain vendor extensions. Vendor
extensions are used when a specific type of servent
wants to implement experimental functionality not
covered by the standard specifications.

2 Nodes that support high outdegree drop messages with
TTL > 4.



3.4. Peer discovery

Each successfully connected servent sends PING
messages periodically to its neighbors. The receiver
of a PING message decrements the TTL in the Gnu-
tella header. If the TTL is greater than zero the node
increments the hop counter in the message header
and then forwards the message to all its directly
connected peers, with the exception of the one from
where the message came. PING messages do not
carry any user data (not even the sender’s listening
socket). This means that the payload length field in
the Gnutella header is set to zero.

PONG messages are sent only in response to
PING messages. More than one PONG message
can be sent in response to one PING. The PONG
message travels in the reverse direction on the
path used by the corresponding PING message.
Each PONG message contains detailed information
about one active Gnutella peer. It also contains the
same GUID as the PING message that triggered it.

UPs use the same scheme, however they do not
forward PINGs and PONGs to and from the LNs
attached to them.

Gnutella peers are required to implement some
form of flow control in an effort to prevent PING-
PONG traffic generated by malfunctioning servents
from swamping the network. A simple flow control
mechanism is specified in [23].

The BYE message is an optional message used
when a peer wants to inform its neighbors that it will
close the signaling connection. The message is sent
only to hosts that have indicated during handshake
that they support BYE messages.

3.5. Resource discovery

Gnutella peers use QUERY messages to search for
files. The message payload consists of a text string,
information about the minimum speed, i.e., upload
rate of servents that should respond to this message,
and in some cases additional extensions that are not
within the scope of this work. The most important
part of the query is the text string, which is used to
match files on the nodes receiving the message.

Gnutella v0.6 sends QUERY messages through
a form of selective forwarding called dynamic
query [16]. A dynamic query first probes how pop-
ular the targeted content is. This is done by using
a low TTL value in the QUERY message that is
sent to a small set of directly connected peers. A

large number of replies indicate popular content,
whereas a low number of replies imply rare content.
For rare content, the QUERY TTL value and the
number of directly connected peers receiving the
message are gradually increased. This procedure is
repeated until enough results are received or until
an upper bound on the number of QUERY receivers
is reached. This form of resource discovery requires
all LNs to rely on UPs for their queries, i.e., LNs do
not perform dynamic queries.

If a peer that has received the QUERY mes-
sage is able to serve the resource, it responds
with a QUERY_HIT message. The GUID for the
QUERY _HIT message must be the same as the one
in the QUERY message that triggered the response.
The QUERY _HIT message lists all file names that
match the text string from the QUERY message,
their size in bytes and some other information [14].
In addition, the QUERY _HIT messages contain the
listening socket to be used by the message receiver
when it wants to download the matched files. The
Gnutella specification discourages the use of mes-
sages with size greater than 4 KB. Consequently,
several QUERY_HIT messages may be issued by
the same servent in response to a single QUERY
message.

3.6. Query Routing Protocol (QRP)

QRP was introduced in order to mitigate the ad-
verse effects of flooding used by the Gnutella file
queries [24]. QRP is based on a modified version of
Bloom filters [25]. The idea is to break a query into
individual keywords and have a hash function ap-
plied to each keyword. Given a keyword, the hash
function returns an index to an element in a fi-
nite discrete vector. Each entry in the vector is the
minimum distance, i.e., number of hops to a peer
holding a resource that matches the keyword in the
query. Queries are forwarded only to leaf nodes that
have resources that match all the keywords. This
substantially limits the bandwidth used by queries.
Peers run the hash algorithm over the resources they
share and exchange the routing tables, i.e., hop vec-
tors at regular intervals.

LNs send route table updates only to UPs, i.e.,
not to any other LNs. UPs propagate these tables
only to directly connected UPs [26].



3.7. Content distribution

Data exchange takes place over a direct HTTP
connection initiated by the receiver of a QUERY _HIT
message. Both HTTP 1.0 and HTTP 1.1 are sup-
ported but use of HTTP 1.1 is strongly recom-
mended [14].

PUSH messages can be used when the file owner is
protected by a firewall that does not allow incoming
TCP connections or if the host is behind a Network
Address Translator (NAT) device. In that specific
case, the file requester opens a listening socket and
puts information about the socket in a PUSH mes-
sage. The PUSH message is sent across the signaling
path to the file owner who, upon message receival, is
able to open a TCP connection to the file requester.
At that point the HTTP transfer can be performed.

The PUSH message does not help if both peers
are protected by firewalls or NAT devices that block
incoming TCP connections.

3.8. Horizon Size Estimation Protocol (HSEP)

The Horizon Size Estimation Protocol (HSEP) [27]
is used to obtain estimates on the number of reach-
able resources i.e., nodes, shared files and shared
kilobytes of data. Hosts that support HSEP an-
nounce this as part of the capability set exchange
during the Gnutella handshake. If the hosts on
each side of a connection support HSEP, they start
exchanging HSEP message approximately every
30 seconds. The HSEP message consists of n_max
triples. Each triple describes the number of nodes,
files and kilobytes of data estimated at the corre-
sponding number of hops from the node sending
the message. The n_max values is the maximum
number of hops supported by the protocol. The
recommended value is 10 hops [27].

The horizon size estimation can be used to quan-
tify the quality of a connection, e.g., the higher the
number of reachable resources, the higher the qual-
ity of the connection.

4. Measurement infrastructure

Network traffic measurements can be generally
divided into active and passive measurements. The
main difference between the two is that in active
measurements specific patterns of traffic are injected
into the network and analyzed when they exit the
network. Changes on the injected traffic pattern are

used to draw inferences about various properties of
the network. In the case of passive measurements,
traffic flows seen at specific nodes are observed or
recorded, without sending any additional traffic in
the network. In general, when the focus is on the
characteristics of traffic crossing a single network el-
ement, the passive method is more appropriate [28].
This was our choice as well, since we were interested
only in the traffic crossing the BTH ultrapeer.

There are two main approaches to perform passive
application layer measurements: application logging
or link-layer packet capture with application flow re-
assembly [29]. A large advantage of link-layer packet
capture is that it allows for traffic analysis at any
layer in the TCP /IP stack. This enables a more accu-
rate view of how the application affects the network
and vice-versa. Another advantage is that packet
timestamping is performed in the kernel and not in
user space as is the case of application logging [30].
This means that packet timestamps are less affected
by, for example, process preemption due to schedul-
ing in the OS and queuing and scheduling in the
TCP/IP stack. Link-layer packet capture with ap-
plication flow reassembly is the approach used here.

A measurement infrastructure dedicated to P2P
measurement has been developed at BTH [31]. It
consists of peer nodes and protocol decoding soft-
ware. Tcpdump [32] and tcptrace [33] are used for
traffic recording and protocol decoding. Although
the infrastructure is currently geared towards P2P
protocols, it can be easily extended to measure other
protocols running over TCP. The measurement in-
frastructure has been successfully used for Gnute-
lla [34,29] and BitTorrent measurements [35,36].

The BTH measurement nodes run the Gentoo
Linux 1.4 operating system, with kernel version
2.6.5. Each node is equipped with an Intel Celeron
2.4 GHz processor, 1 GB RAM, 120 GB hard drive,
and 10/100Mbit/s Ethernet network interface.
The network interface is connected to a 100 Mbit/s
switch in the lab at the Department of Telecom-
munication Systems, which is further connected
through a router to the GigaSUNET backbone as
shown in Figure 2.

Figure 3 shows the measurement process flow,
which consists of six stages. The data enters each
stage sequentially, from top to bottom.

Each measurement node has tcpdump 3.8.3 in-
stalled on it. When the node is running measure-
ments, tcpdump is started before the Gnutella ser-
vent in order to avoid missing any connections.
Tcpdump collects Ethernet frames from the switch
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port where the ultrapeer node is connected. The
collected data is saved in PCAP format [32]. Since
P2P applications tend to use dynamic ports, all
traffic reaching the switch port must be collected.
In addition, Ethernet frames cannot be truncated
since we need the entire payload in order to decode
the signaling traffic.

During the first stage of the measurement process,
we use tcptrace to extract TCP segments from the

Ethernet frames.

The TCP segments are then sent to the next stage,
whose task is to reassemble them to a flow of or-
dered bytes. The TCP reassembly module developed
at BTH [29] builds on the TCP engine available
in tcptrace and is similar to the one used by the
FreeBSD TCP/IP stack as described in [37]. The re-
assembly engine is capable of handling out-of-order
segments as well as forward and backward overlap-
ping between segments.

When a new Gnutella connection is found, the ap-
plication reassembly module first waits for the hand-
shake phase to begin. If the handshake fails, the con-
nection is marked invalid and it is eventually dis-
carded by the memory manager.

If the handshake is successful, the application re-
assembly module scans the capability lists sent by
the nodes involved in the TCP connection. If the
nodes have agreed to compress the data, the con-
nection is marked as compressed. Further segments
received from the TCP reassembly module for this
connection are first sent to the decompresser, before
being appended to previous data that has not been
consumed yet.

The decompresser uses z1ib’s inflate() function
to decompress the data available in the new seg-
ment [21]. Upon successful decompression the de-
compressed data is appended to the data buffer.

Immediately after the handshake phase, the ap-
plication reassembly module attempts to find the
Gnutella message header of the first message. Us-
ing the payload length field, it is able to discover
the beginning of the following message. This is the
only way to discover message boundaries in the
Gnutella protocol and thus track application state
changes [29]. Based on the message type field in
the message header, the corresponding decoding
function is called, which outputs a message record
to the log file. The message records follow a specific
format required by the post-processing stage [29)].

Since the logs can grow quite large, they can be
processed through an optional stage of data com-
pression. The compression is achieved by using the
on-the-fly deflate compression offered by zlib.
Additional data reduction can be achieved if the
user is willing to sacrifice some detail by aggregating
data over time.

The data analysis module interprets the (option-
ally compressed) log data and it is able to demulti-
plex it based on different types of constraints: mes-
sage type, IP address, port number, etc. The data
output format of this stage is suitable for input to



numerical computation software such as MATLAB
and standard UNIX text processing software such
as sed, awk and perl.

5. Methodology for statistical modeling

The measurement infrastructure described in the
previous section was used to collect Gnutella traf-
fic crossing the BTH ultrapeer. By decoding the
recorded traffic data, flows were recreated at sev-
eral layers in the TCP/IP stack. The flows con-
sist of discrete protocol data units: IP datagrams
at the network layer, TCP segments at the trans-
port layer, and finally, Gnutella messages at the ap-
plication layer. The Gnutella messages are logically
grouped in peer sessions. The time when the proto-
col data units reached the link layer was recorded
together with their size. For peer sessions, the ses-
sion duration was recorded as well. Due to the com-
plexity of the protocol we have used a statistical ap-
proach [36,29] to describe the quantities of interest,
which is similar to the methodology introduced by
Paxson in [38].

5.1. Model construction

Each quantity of interest is modeled by a random
variable X that changes its value whenever a new
protocol data unit (or session) is considered. The
actual values taken by X are denoted by the small
letter . The random variable X is assumed to have
a theoretical cumulative distribution function (cdf)
Fx(z;0), where 6 is a set of one or more parame-
ters that control the distribution function, e.g., 8 =
{u, o} in the case of the normal distribution.

For each quantity of interest, the set of values ex-
tracted from the recorded traffic is considered to be
a random sample from the population of the random
variable X. The elements of the random sample are
denoted by X;, Xo,..., X, and the actual recorded
values (data sample) by x1,x2,...,2,. The index n
is the number of available values from the measure-
ment.

The first step in our modeling methodology is
to identify a distribution family Fx(z;6). This is
done through an Exploratory Data Analysis (EDA)
approach that combines graphs of the data, e.g.,
histograms and distribution plots, and summary
statistics e.g., mean, median and standard devia-
tion [39,40].

We then proceed to obtain point estimates for
the parameters 6 of the distribution family. This
is done by using the Maximum Likelihood (ML)
method [41,42]. At this stage a member of the dis-
tribution family has been selected and the model is
complete.

5.2. Fitness assessment

After a probability distribution has been fitted to
the data as described in the previous section, the
next step in our methodology is to estimate the qual-
ity of the fit. A variety of goodness-of-fit tests e.g.,
the x2, Kolmogorov-Smirnov and Anderson-Darling
tests, can be used for this purpose. Their common
denominator is the test of the null hypothesis:

Hy: The random sample X; ... X, is drawn from
the distribution F(z, f)

Unfortunately, these tests tend to erroneously re-
ject the null hypothesis when the number of samples
is large (Type 1 error) [43-45]. Therefore, a differ-
ent approach is used where the hypothesis test is
avoided.

A goodness-of-fit measure called error-percentage
measure (Ey) was introduced in [35] and used later
in [36,46]. The method is based on the Probability
Integral Transform (PIT) [44,45]. The PIT method
works as follows. Given a continuous random vari-
able R with cdf Fx(z), then

Fx(R)=P[X <R] =Y (1)
with P[Y < y] < U|0, 1], where U0, 1] denotes the

uniform distribution between zero and one?3. The
algorithm to compute Fy, is shown below.

Algorithm 1 Calculate Error Percentage

Fit a distribution Fx (x;0) to the random sample
X, Xo,..., X,

Obtain the order statistics X (1), X(2), ..., X(n)
Transform the random sample with PIT: Ui =

Fx(X(i);é), i:1,...,TL
Z?:l UZ - UZ d
Ey = 100 , where U; = =
N Epas n
U0, 1]

return Foy

If the distribution F' is a perfect fit, then the
PIT transforms the random sample to a uniform

d e e
3 The symbol = denotes equality in distribution.
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Fig. 4. Error in random sample transformed with the PIT

distribution, U0, 1]. However, since perfect fittings
rarely occur in reality, the transformed distribution,
U, only approximates the uniform distribution. The
discrepancies between U and U are computed and
their average is normalized to the highest possible
error Ey,q, for the distribution UJ0, 1] [36] where,

Epar = /sup {U(x),1-U(x)} dz

i 1 (2)
:/[1—U(m)] dx+/U(x) dx:g
0 1/2

Figure 4 and Figure 5 provide additional visual
clues on how the Eg-method works. Figure 4 shows
a hypothetical edf for a random sample transformed
with the PIT, i.e., the diagonal straight line. The
blue shaded area represents the error (discrepancy)
when the edf is compared to the ideal U]0, 1] distri-
bution. The size of that area is the Fy score. The
size of the shaded area in Figure 5 is the maximum
error F,,., that can occur when the PIT is applied
to a random sample. This is the value that is used
to normalize the Fg, score.

FE, is expressed in the form of a percentage. The
criteria used here to accept a candidate distribution
is that Ey, < 6. We call this value the accepted er-
ror percentage. The accepted error percentage was
decided experimentally by observing that most dis-
tributions that provide a visually acceptable fit in
both body and tail have Fo < 6. Table 1 presents a
mapping between various Eg, ranges and qualitative
statements about the fit.

The main disadvantage of the Fg-method is that
it cannot be used with discrete distributions. The
reason is that when the PIT method is applied to a

U(x)

0 1

Fig. 5. Maximum error for a PIT transformation
Table 1
Quality-of-fit mapping
0< By <22< By <dd< By <6 Hy>6 |

‘Range

‘Quality‘ Excellent ‘ Good ‘Acceptable ‘Unacceptable‘

discontinuous distribution, the transformed variable
is not uniformly distributed [47].

5.3. Mizture distributions

Sometimes a single cdf cannot accurately describe
the distribution of the random variables of interest,
i.e., the Ey-method yields an unacceptable score. A
more accurate model may be constructed by using
a mixture of two distributions or more. In the case
of a mixture of two distributions one component of
the mixture accounts for the main body of the em-
pirical distribution and a different one describes the
behavior in the tail. In the case of more than two
components, each cdf accounts for specific modality
found in the data. The crux of the problem becomes
to find a way to combine the two distributions in a
meaningful way. The method used here is based on
finite mixture distributions as described in [48].

A mixture distribution F'x (x) with n components
has the following distribution function:

Fx(z) = Zm Gi(x) m+me+ -4, =1 (3)
i=1

where G;(z) is the ith distribution in the mixture
and each 7; is a constant called mizing weight. The
mixing weight 7; is selected such that 0 < m; < 1
and it decides how much each component is allowed
to influence the distribution Fx (z).

The first step in building a mixture distribution
with two components is to identify a distribution



family G1(-) that matches the body of the data,
preferably the tail as well. This is done using the
EDA approach, as explained in Section 5.1. The
parameters of the distribution are then estimated,
yielding a specific distribution function Gl(:zz;él).
G1(x;60,) is then visually compared to the true dis-
tribution to asses the fit in the tail. If the fit appears
good, then the goodness-of-fit measure Fy, is com-
puted as explained in Section 5.2. Otherwise, it is
necessary to find the cutoff point x. and the corre-
sponding cutoff quantile q., where Gy diverges from
the true distribution. The probability mass between
ge and 1 is used to identify the distribution family
Go(+) that matches the tail. The parameters of the
new distribution must be estimated as well, yielding
ég. Then, a finite mixture distribution is assembled:

F(z;:0) = 7Gy(z;0,) + (1 — m)Golx;0,)  (4)

where m = ¢.. Since the single distributions, Gy and
Go, are now combined in a finite mixture, the param-
eters #; and 6 must be recomputed 4 . Their original
values may be used as a starting point. An optimal
value for m must be computed as well. The parame-
ter set 0 in F(x; é) is the set containing the parame-
ters for both distributions and 7, i.e., § = {él, 0, 7}
Numerical methods for computing the set of optimal
parameters 6 are presented in Section 5.5.

It is often the case that a mixture distribution
(in particular one with only two components) still
cannot describe the data accurately enough. This
may be further improved by increasing the number
of components in the mixture distribution at the
expense of an increase in the number of parameters.
However, a different approach was used here.

Typically, the major discrepancies between the
estimated distribution and the true one appear ei-
ther in the body or in the tail. If, for example, the
discrepancies appear in the tail, one can attempt to
improve the model accuracy by adjusting the values
of the distribution parameters. However, our expe-
rience was that this is likely to decrease the accu-
racy of the model in the body. Similarly, attempts
to increase the accuracy in the body may lead to
(higher) discrepancies in the tail. Thus, a trade-off
is required, accuracy in the body versus accuracy in
the tail [29]. Accordingly, a decision must be taken
on which part of the distribution (body or tail) is
more important to model accurately.

4 Recall that G1 was estimated using the entire probability
mass.

For example, in the case of transfer rates the tail of
the distribution models high rates of traffic (bursts)
that occur rarely. On the other hand, the body of the
distribution models the “average” size of transfer
rates. For message/packet size the body accounts for
small packets and the tail for large ones. In the case
of interarrival and interdeparture times the body
accounts for “dense” traffic and the tail for “sparse”
traffic. In our models, when a trade-off was required,
we have favored to model accurately bursty, dense
traffic with large packets/messages.

5.4. Methodology review

The goal of this section is to present a formal
process for the modeling methodology discussed in
the previous sections. The process assumes that the
variable of interest has been measured (sampled) n
times. The values x1, s, ..., x, resulting from the
n measurements are assumed to be the result of a
random sample X1, X5, ..., X,. The complete pro-
cess for building the statistical models is presented
in Algorithm 2.

Step 15-16 in Algorithm 2 may be confusing since
no criteria has been provided on how to decide to
either select a different quantile or to start over. In
our work, the quantile was changed in increments of
0.05 to either sides of the original value. If that did
not result in any improvement, the decision was to
start over.

5.5. Numerical software and methods

The process presented here was implemented by
using the statistical software package R [49]. R is an
interpreted computer language with syntax similar
to S and S-PLUS. The software package contains in
addition to the language, a run-time environment
with graphics, a debugger and a large library of func-
tions.

As mentioned in Section 5.3, the Ey-method re-
lies on numerical optimization for finding a mini-
mum. ML-estimation requires also numerical opti-
mization in many cases where no closed form ML
estimators exist. In our work we have used the R-
functions optimize() and optim() for numerical
optimization.

The function optimize () performs optimization
in one dimension. The underlaying algorithm is a
combination of golden section search and successive
parabolic interpolation [49,50].



Algorithm 2 Methodology for statistical modeling

1: Use EDA visual tools, i.e., histogram, edf and
cedf plots, to explore the data. The summary
statistics provide hints about range, skewness
and spread

2: Select a distribution family G, which appears
to provide a good fit

3: Estimate the unknown parameters 6, using ML-
estimation to obtain a candidate distribution
Gix(z,6h)

4: Compare the plots of gy (z;6), Gyx(x;6,),
and dlx(x; 91) to the histogram, edf, and cedf
plots obtained in Step 1

5: if high visual discrepancy then

6:  Go back to Step 1

7: end if

8. Compute  Fy  for Gy (z; 01) using
L1y L2503y Ty

9: if Ey, < 6 then

10:  return Ey, and Gy x(x,0;)

11: end if

12: Identify the cutoff quantile ¢,

13: Fit a distribution G3(-) to the probability mass
(1 — ¢.) as outlined in Step 1-8

14: if Ey > 6 then

15:  Either go back to Step 12 and select a different
quantile ¢, or,

16:  Go back to Step 1. This is equivalent to start-
ing over. Try using a different distribution
family G (-)

17: end if

18: Assemble the mixture distribution F(-) =
7 Gr() + (1 - ) Ga()

19: Estimate the unknown parameters 6 =
{61, 02, 7} using Ey;, method. Use the estimated
values from previous steps as initial values

20: if Ey < 6 then

21:  return Ey and Fx(z;0)

22: else

23:  Go back to step 1

24: end if

General purpose multi-dimensional optimization
is performed by the optim() function. The func-
tion has support for several optimization algorithms.
In our methodology the default algorithm, Nelder-
Mead [50-52], is used primarily. The algorithm does
not require any derivatives, being quite stable al-
though not extremely efficient in terms of number
of iterations.

When the Nelder-Mead algorithm fails to con-

verge to a solution, the L-BFGS-B [53] algorithm is
used instead. This algorithm requires a lower and an
upper bound for each variable. The thumb rule used
to provide the bounds is to allow variables with ini-
tial values my > 1 a range of 0.2 m( between the up-
per and lower bound. For variables with initial val-
ues mo < 1 the range between bounds was 0.1 my.
This thumb rule was designed empirically and is by
no means optimal in any way. In fact, the bounds
needed often additional adjustment to obtain con-
vergence.

6. Statistical models

In order to keep the mathematical formulas brief
we use the following conventions. Cdfs are denoted
by capital letters and pdfs by lower case letters, as
shown in Table 2. The parameters are as follows: p
and o are the mean and standard deviation, while
a, # and k are the shape, scale and location param-
eters. For the uniform distribution, a and b are the
lower and upper boundary, respectively, of the range
of z-values for which the distribution is valid. In par-
ticular, the parameter a is equivalent to a location
parameter, while (b — a) is equivalent to a scale pa-
rameter [44]. All logarithmic empirical distribution
plots (edfs) use log;,-transformations for both axes.

Table 2

Model notation

Uniform ux (z;a,b) Ux (z;a,b)
Poisson pox (x; ) POx (z; p)
Exponential exp x (z; p) EXP x (z; 1)
Normal nx (z; p, o) Nx(z;p,0)
Log-normal Inx (z; o, B) LNx (z; c, B)
Generalized Pareto|gpax (z; a, k, 8)|GPA x (z; o, K, B)

The generalized Pareto distribution [54] and the
corresponding density function are defined as

Fesann =1~ 1229

(i) = & |1+ “(xﬁ_ﬂ)}_i_l (©

where a # 0 is the shape parameter, x < x is the lo-
cation parameter, and 8 > 0 is the scale parameter.



6.1. Ultrapeer settings and packet-trace statistics

The results reported here were obtained from
an 11-days long link-layer packet trace collected
from the BTH network with the methods described
in Section 4. The gtk-gnutella servent at BTH
was configured to run as ultrapeer and to maintain
32-40 connections to other ultrapeers and approxi-
mately 100 connections to leaf nodes. The number of
connections is a vendor preconfigured value, which
is close to the suggested values [15,16]. Although
gtk-gnutella is capable of operation over UDP,
this functionality was turned off. Consequently, the
ultrapeer used only TCP for its traffic. No other
applications, with the exception of an SSH daemon,
were running on the ultrapeer for the duration of
the measurements. One SSH connection was used to
remotely check on the status of the measurements
and the amount of free disk space. The SSH con-
nection was idle for most of the time. The firewall
was turned off during the measurements.

The total amount of PCAP data collected with
tcpdump is approximately 33 GB. The PCAP
data generated approximately 45 GB log files. The
recorded traffic contains 234 million IP datagrams.
The log files show 604 thousand Gnutella sessions
that were used to exchange 267 million Gnutella
messages. A total of 423 thousand sessions (70%)
were unable to perform a successful Gnutella hand-
shake. The main reasons for the unsuccessful hand-
shakes are filled-up connection queues® and refusal
to accept uncompressed connections. The remain-
ing sessions consist of 181, 805 sessions where both
peers used compression, 22 where one of the peers
used compression and 10 uncompressed sessions.

6.2. Session characteristics

A Gnutella session is defined to be the set of Gnu-
tella messages exchanged over a TCP connection be-
tween two directly connected peers that have suc-
cessfully completed the Gnutella handshake. The
session lasts until the TCP connection is closed by
either FIN or RST TCP segments.

To describe the Gnutella handshake we have
created three pseudo-message types: CLI_HSK,
SER_HSK, and FIN_HSK. The CLI_HSK message
is the first part of the handshake and it is sent by
the peer that opened the TCP connection, i.e., the

5 Code 409: “Vendor would exceed 60% of our slots”.
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Table 3
Incoming session statistics

Max‘Min‘ Mean‘Median‘ Stddev‘

Type ‘

Duration (s) 767553]0.03|517.30 0.86| 6780.99

Messages 7561532 4/585.18 11|22580.99
Bytes 535336627 780| 53059 1356| 2034418
Table 4

Outgoing session statistics

Type ‘ Max‘ Min‘ Mean‘ Median‘ Stddev‘
Duration (s) 470422] 0.12| 3949.86| 2459.10(11170.80
Messages 2644660 6]23145.15|15716.50|58627.75
Bytes  [182279191|1574| 2173564| 1457360| 4458468

Table 5
Incoming and outgoing session statistics

Max‘Min Mean‘Median‘ Stddev‘

Type ‘

Duration (s) 767553|0.03| 651.98/  0.87| 7036.85

Messages

Bytes 535336627| 780| 136258  1357| 2219411

7561532|  4|1470.34 11‘25375.64

client. The SER_HSK message is the reply from the
peer that received the CLI_HSK, i.e., the server.
The FIN_HSK message, which is sent by the client,
is the final part of the handshake.

The session duration is computed as the time du-
ration between the instant when the CLI_HSK mes-
sage is recorded (at link layer) until the recorded
time for the last Gnutella message on the same TCP
connection.

An incoming session is defined as being a session
for which the CLI_HSK message was received by the
ultrapeer at BTH. Outgoing sessions are sessions for
which the CLI_HSK message was sent by the ul-
trapeer at BTH. Tables 3 and 4 show duration (in
seconds), number of exchanged messages and bytes
for incoming and outgoing sessions, respectively. Ta-
ble 5 shows the same statistics when no distinction
is made between incoming and outgoing sessions.

A Gnutella session is considered valid (in the sense
that it is used to compute session statistics) if the
Gnutella handshake was successfully completed and
at least one Gnutella message was transfered be-
tween the two hosts participating in the session. Our
data contains 173,711 valid incoming sessions and
7094 valid outgoing sessions.

The tables show that outgoing sessions transfer
about 40 times more data than incoming sessions.
Furthermore, by comparing the mean and median
values for messages and bytes it can be observed that



a few sessions transfer the majority of data. This can
be partly accounted for by the hierarchy inherent in
Gnutella: UPs are bound to transfer more data than
their LNs. In addition, most incoming sessions have
very short duration (< 1 second), which can be ob-
served by comparing the mean and median duration
values for incoming sessions. This translates in little
data being exchanged.

These observations confirm earlier results already
reported in [5,9,8]. Following the taxonomy used
in [8,55], we observe that, although we analyze only
signaling traffic without considering data transfers,
the sessions can be divided into “mice” i.e., sessions
carrying small amounts of data, and “elephants” i.e.,
sessions responsible for large volumes of traffic.

The same type of heterogeneity appears when we
consider session duration. We observe both “dragon-
flies”, which are very short sessions and “tortoises”,
which are sessions with very long duration.

6.2.1. Session interarrival and interdeparture times

The statistics and models for session interarrival
and interdeparture times are shown in Table 6 and
Table 7. It is observed that interarrival times can
be modeled by the lognormal distribution, which is
subexponential. In contrast, session interdeparture
times require a mixture distribution with a heavy-
tailed component, i.e., the Pareto distribution, to
provide an acceptable fit.

A possible explanation for the appearance of the
the heavy-tailed component is given by the connec-
tion cap described in Section 6.1. When a Gnute-
lla peer reaches the preset number of connections it
does not attempt to establish more connections un-
til existing connections are terminated. This leads to
large session interdeparture times that have a non-
negligible probability of occurrence.

The absence of the heavy-tailed component from
the session interarrival times distribution can be ex-
plained as follows. We have noticed that many of the
short duration (< 1 second) incoming sessions pre-
sented in Section 6.2 transfer one BYE message and
are then terminated. This behavior cannot be traced
to any of the Gnutella specifications. We assume
that the behavior is due to the gtk-gnutella im-
plementation, but further study is required to con-
firm. It appears that gtk-gnutella discovers that
the connection cap has been reached after the hand-
shake has completed. It then sends the BYE message
to terminate the connection, when normally this
connection should have been aborted during hand-
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shake. Nonetheless, since these sessions are consid-
ered valid according to our criteria, the session in-
terarrival times are shorter and we can model them
without introducing a heavy-tailed component.

Table 6
Session interarrival and interdeparture times statistics (s)

’DIR‘ Max‘ Min Mean‘Median‘Stddev‘

IN |1119.01|4.05e-6| 5.47 2.20| 20.38
OUT|5192.62|0.20e-3|133.99| 71.78| 210.34
Table 7
Models for session interarrival and interdeparture times (s)
’DIR ‘Model ‘ Eq,
IN |LNx(x;0.71,1.08) 3.0%

OUT|0.77 EXP x (x; 0.01) + 0.23 GPA x (¢;0.7,0, 132.9)|3.3%

An interesting characteristic was observed when
all session interarrival times were considered, that
is even those for invalid sessions. This is equivalent
to interarrival times for incoming requests to open a
session, i.e., incoming CLI_HSK messages. It turns
out that the set of all interarrival times is exponen-
tially distributed with parameter A = 0.58, as shown
in Figure 6 and Table 8. The session arrival rate was
analyzed to verify that this is not a measurement er-
ror. It is well-known that exponentially distributed
interarrival times imply a Poisson arrival rate [56].
As it can be observed in Figure 7, a Poisson distribu-
tion POx (x;0.58) fits well, at least visually. Unfor-
tunately, no Ey measure can be provided since the
method does not work with discrete distributions.
However, the edf of the data should leave little doubt
that the data is indeed Poisson distributed. The edf
is plotted without log-scaled axes, since most of the
data, 99.9% of the probability mass, is clustered

around the values 0,1,...,4.

Table 8

Gnutella (valid and invalid) session interarrival times
Statistic Model ‘ Ey

EXPX(:U;O.SS)‘IJ%
Rate (session/second)POx (z;0.58) ‘N/A

Interarrival times (s)

The same relation does not hold for outgoing traf-
fic, which is well modeled by a mixture distribution
0.88LNx(z;—2.32,1.41) + 0.12EXPx(x;0.008)
with 1.1% error.

The appearance of the Poisson distribution can be
explained by the mixture of arriving CLI_HSK mes-
sage from different sources. If one assumes that these
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Fig. 7. Incoming session rate (sessions/s)

arrivals are generated by a number of point pro-
cesses, then the superposition of point processes con-
verges, under some mild assumptions, to a Poisson
distribution as the number of sources increases [57—
59].

This hypothesis does however not apply to out-
going CLI_HSK due to the connection cap. Once
gtk-gnutella reaches the preset amount of connec-
tions it does not attempt to establish new ones.
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Table 9

Session size and duration models
’Statistic Model ‘ Eo
Session size (bytes) |0.69 N x (x; 1356, 5.9)+

0.31LNx (2;9.0,3.17) |4.7%
Session duration (s)|0.57 Nx (x;0.85,0.07)+

0.33 LN x (2;0.37,0.96)+

0.10 Ux (z; 18.45,2460) [2.3%
Session duration, |GPAx(1.1,1800,1870.4 (2.4%
upper 5% (s)
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Fig. 8. Gnutella session duration (s)

6.2.2. Session size and duration

The session size and duration models are reported
in Table 9 and Figure 8. It is observed that the
session duration statistic has a very complex ccdf,
which cannot be modeled with only two distribu-
tions. This is the only model reported here that uses
a mixture of three distributions. Alternatively, the
upper 5% of the tail can be modeled with a Pareto
distribution.

Most of the observed session sizes (64.8%) lie in
the range 1300-1400 bytes, 9.6% are smaller than
1300 bytes and 25.6% are larger than 1400 bytes.

6.3. Message characteristics

In this section message statistics are reported for
each Gnutella message type. The message type UN-
KNOWN denotes messages with a valid Gnutella



header, but with unrecognized message type. These
messages are either experimental or corrupted. The
message type ALL is used for statistics computed
over all messages, irrespective of type. Only mod-
els for the aggregated message streams, i.e., mes-
sage type ALL, are presented. The tables for mes-
sage statistics do not contain any information on
the number of samples used to compute the statis-
tics for each message type. However, this informa-
tion is fully available in [29]. We have observed 114.7
million incoming messages and 152 million outgoing
messages.

Table 10 shows interarrival times for messages re-
ceived by the BTH ultrapeer and Table 11 shows
interdeparture times for messages sent by the BTH
ultrapeer. Although the PCAP timestamps have mi-
crosecond resolution [30], the times presented here
have only 100 us precision. This is due to memory
limitations in the postprocessing software.

Summing over the number of samples for each
message type does not add up to the value shown
in the number of samples for message type ALL.
The reason is the analysis software which ig-
nores messages that generate negative interar-
rival /interdeparture times. Negative times appear
because the application flow reassembly handles
several (typically more than a hundred) connec-
tions at the same time. On each connection the
timestamp for arriving packets is monotonically in-
creasing. However, the interarrival/interdeparture
statistics presented here are computed across all
connections. To ensure monotonically increasing
timestamps even in this case, new messages from
arbitrary connections are stored in a buffer, where
they are sorted by timestamp. The size of the
buffer is limited to 500,000 entries due to memory
management issues. We have observed on average
280 messages per second [29]. This means that the
buffer can store about 30 minutes of average traf-
fic and much less during traffic bursts. If there are
delayed messages due to TCP retransmissions or
other events, they reach the buffer too late and are
discarded.

The large interarrival and interdeparture times
in handshake messages (CLI_HSK, SER_HSK,
FIN_HSK) observed in Table 10 and Table 11 occur
because once a servent reaches the preset amount
of connections, it no longer accepts or attempts
to open new connections until one or more of the
existing connections is closed. This behavior also
explains the large interarrival and interdeparture
times for BYE messages.
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Table 10
Message interarrival time statistics (s)

Type ‘ Max‘ Min Mean‘Median‘ Stddev‘
CLI_HSK 28.4591(0.0001 1.7246| 1.1256 1.8644
SER_HSK | 5185.0490(|0.0001| 19.6294| 0.2090| 92.1849
FIN_HSK | 1118.9920|0.0001 5.3165| 2.1942| 19.4800

PING 13.5871|0.0001 0.2762| 0.1931 0.2726

PONG 2.2624(0.0001 0.1404| 0.0979| 0.1383
QUERY 1.4514/0.0001 0.0343| 0.0240|  0.0340
QUERY_HIT 19.2778(0.0001 0.1842| 0.0976|  0.2661

QRP 50.0632|0.0001 2.0475| 1.0534| 2.8707

HSEP 1780.4420(0.0003|  6.1560| 4.3834|  8.4758

PUSH 40.1396|0.0001 0.0677| 0.0405 0.1157

BYE 1119.5930(0.0001 5.9160| 2.3591| 22.3494
VENDOR 30.8037|0.0001 0.4346| 0.2207|  0.5993

UNKNOWN |51576.8600(3.0680(2075.3190| 6.9379(9298.3600

ALL 9.8299|0.0001| 0.02436| 0.0169 0.0243

Table 11

Message interdeparture time statistics (s)

Type ‘ Max‘ Min Mean‘Median‘ Stddev‘
CLI_HSK [5189.2340|0.0002| 17.9655| 0.1273| 88.8506
SER_HSK 28.4595|0.0003| 1.7298| 1.1287| 1.8712
FIN_HSK |5185.5150(0.0006| 28.4784| 0.3305/110.2372

PING 20.5910(0.0001| 1.3773| 0.5077| 2.1342

PONG 2.7215/0.0001| 0.1573| 0.1012| 0.1682
QUERY 12.1151(0.0001| 0.0295| 0.0003| 0.0541

QUERY_HIT| 19.2818]0.0001| 0.2188| 0.1285| 0.2885

QRP 603.3599(0.0001| 2.6350| 0.0004| 19.8572

HSEP 358.3067|0.0001| 2.5020| 1.4089| 5.8293

PUSH 76.5303|0.0001| 0.0429| 0.0003| 0.1713

BYE 3849.4550(0.0001|134.8121(77.2090|187.7784
VENDOR 64.6689(0.0001| 1.8253| 1.1124| 2.4838

UNKNOWN N/A| N/A N/A| N/A N/A

ALL 1.5450(0.0001| 0.0178| 0.0003| 0.0353

It is interesting to see that interarrival times are
exponentially distributed as shown in Table 12 and
Figure 9. Analysis of the arrival process reveals that
this is is not a pure Poisson process, but rather a
compound Poisson process [60,61,56] since simulta-
neous message arrivals do occur. To understand why
this happens, recall that before the messages can
be extracted from the TCP flows, these flows pass



Table 12
Models for message interarrival and interdeparture times (s)

DIR ‘Message‘Model ‘ Ey,
IN ALL EXP x (x;40.96) 0.16%
ouT ALL 0.261 EXP x (x; 20.23) 3.8%

(upper 26.1%) (see Table 13 for the body)

Table 13
Probability mass points for message interdeparture times (s)

’Interdeparture times‘0.000l‘0.0002‘0.0003‘0.0004 0.0005‘

’Probability ‘ 0.024 ‘ 0.515 ‘ 0.155 ‘ 0.033 ‘ 0.012 ‘
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Fig. 9. Message interarrival times (s)

through a decompression layer. Typically, a single
TCP segment carries several Gnutella messages. All
of them receive the same timestamp, since they trav-
eled in bulk all the way from the source to the des-
tination. Models for the bulk-size distributions are
provided in Table 15 and Table 16

The appearance of the Poisson distribution can be
explained by arguments similar to those considered
in Section 6.2.1.

Message interdeparture times have an interesting
distribution. As it can be observed in Table 13, ap-
proximately 73.9% of the probability mass is clus-
tered around the values 0.0001-0.0005. The remain-
ing 26.1% of the probability mass can be modeled by
an exponential distribution (A = 20.23) with 3.8%
error.

Table 14 shows the message size statistics for each
Gnutella message type. In contrast to the other ta-
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Table 14
Message size statistics (bytes)

Type ‘ Max Min‘ Mean‘Median‘ Stddev‘
CLI_HSK 696| 22|336.91 328 65.69
SER_HSK | 2835| 23|386.83 369| 145.69
FIN_HSK 505 23|107.92 76| 88.55

PING 34| 23| 25.48 23|  3.88

PONG 464| 37| 74.96 61| 38.68
QUERY 376| 26| 70.17 55| 46.40
QUERY_HIT|39161| 58|590.28 358(1223.58

QRP 4124 29(608.60 540| 596.70

HSEP 191| 47| 70.39 71| 28.15

PUSH 49| 49| 49.00 49| 0.00

BYE 148| 35| 40.02 37| 15.84
VENDOR 177| 31| 36.45 33| 19.51

UNKNOWN 43| 23| 23.53 23 3.24

ALL 39161 22| 93.45 49| 303.26

bles, messages are not classified by direction (incom-
ing or outgoing). The rationale is that the message
size is independent of message direction. It can be
observed that, on average, QUERY_HIT and QRP
messages have the largest size. They are closely fol-
lowed by handshake messages, where the capability
headers account for most of the data. It is interest-
ing to notice that the maximum size of QUERY _HIT
messages is 39 KB, which is an order of magnitude



Table 15
Message size (bytes) and bulk size distribution

‘ DIR ‘Message ‘Model ‘E%

IN/OUT|ALL 0.81 LNy (2;3.94,0.23)+  [4.3%
0.19 LN x (2;5.14,1.24)

IN/OUT|Bulk size|0.003 GPA x (;0.42,15,9.6)|5.0%

Table 16
Probability mass points for message bulk size

Bulk size (messages)| 1 2 3 4 5

Probability 0.586|0.173|0.082(0.049|0.031

Bulk size (messages)| 6 7 8 9 10

Probability 0.020]0.012|0.008|0.005|0.003

Bulk size (messages)| 11 | 12 | 13 | 14 | 15

Probability 0.019]0.005|0.002(0.001{0.001

larger than the 4 KB specified in [14].

The model for the message bulk size is reported
in Table 15 and Table 16. Bulks of size 1-15 use
99.7% of the probability mass. The remaining 0.3%
of the probability mass is modeled with a Pareto
distribution.

6.4. Transfer rate characteristics

This section reports on transfer rates in bytes/second

and in messages/second for each Gnutella message
types. All statistics are computed over 950,568 sam-
ples. The number of samples is equal to the time
duration expressed in seconds (approximately 11
days) for the available measurement data. Models
are reported only for aggregate message flows, i.e.,
type ALL messages. As it can be observed in Ta-
ble 18 both incoming and outgoing transfer rates
are heavy-tailed. In terms of specific message types,
QUERY and QUERY_HIT messages dominate in-
coming and outgoing streams, both in terms of
average message rate as well as average byte rates.
This was expected since the Gnutella system is used
primarily for searching for files.

6.5. Traffic characteristics at IP layer

Table 19 provides the summary statistics for the
IP byte rates. It is interesting to note that the mean
and median IP byte rates are very similar to the cor-
responding statistics for Gnutella byte rates shown
in Table 17. These values alone indicate that the
compression of Gnutella messages does not yield
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Table 17
Message byte rate (bytes/s) statistics
Type ‘ DIR‘ Max‘Min‘Mean‘Median‘Stddev‘
CLILHSK | IN 4126| 0 187 0 258
CLI.HSK |OUT| 14519 0| 27 0 273
SER_HSK | IN 12507 O 31 0 289
SER_HSK [OUT 4001 0] 212 0 306
FIN_.HSK | IN 982| 0| 15 0 42
FIN_.HSK |OUT| 4474 O 9 0 94
PING IN 1665 0] 92 92 50
PING ouT 503 0] 19 0 45
PONG IN 17043] 0] 1213 1173 541
PONG |OUT| 26050/ 0| 2235| 2162| 1179
QUERY IN 24101| O 4441 4317 1426
QUERY |OUT| 46424| 0| 5088| 4702 2511
QUERY_HIT| IN [1736791| O] 4868| 1912| 23917
QUERY_HIT|OUT| 360235 0| 3355| 1837| 5229
QRP IN | 47340 O 389 0| 1408
QRP OUT| 152820, 0| 353 0] 3660
HSEP IN 940 O 8 0 21
HSEP ouT| 2185 0 32 0 58
PUSH IN 52332| 0| 1285 1127| 948
PUSH |OUT| 200459 0| 1964| 1568 1829
BYE IN 1720f O 6 0 16
BYE ouT 4956| 0 1 0 11
VENDOR | IN | 210702 0| 347 33| 2514
VENDOR |OUT| 2197 0| 44 0 81
UNKNOWN/| IN 23| 0 0 0 0.1
UNKNOWN |OUT 43| 0 0 0 0.1
ALL IN |1745341| 0[12883| 10113| 24287
ALL OUT| 370825 0|13338| 12062 7624
Table 18
Gnutella (ALL) byte rate (bytes/s) modeling results
’DIR‘Model ‘ Eq,
IN |0.76 LN x (x;9.26,0.37)+ |5.2%
0.23 GPA x (x;1.06,0,4003)
OUT|0.81 LN x (;9.43,0.39)+ [5.3%
0.19 GPA x (x;0.63, 0, 3704)
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large gains. However, if one takes into consideration
the maximum and standard deviation values it can
be observed that the compression removes much of
the burstiness from the application layer, leading to
smoother traffic patterns. This effect is visible if one
compares Figure 11(a) to Figure 11(b).

In Table 19 it can be observed that the incoming
and outgoing IP byte rates are quite similar. The
statistical models shown in Table 20 are further ev-
idence to that. It is observed that a heavy-tailed
component is present in each model.

The upper 52% of the IP datagram size distribu-
tion can be modeled by a Pareto distribution de-
fined in Table 21. The ccdf plot for it is shown in
Figure 11. The probability mass points for the data-
gram sizes corresponding to the lower 48% of the dis-
tribution are shown in Table 22. It can be observed
that 46.7% of the probability mass is accounted for
by IP datagrams with size 40 bytes and 52 bytes,
respectively. The 40-bytes datagrams correspond to
TCP segments with no data and no options.

The interarrival and interdeparture times statis-
tics are reported in Table 23 and the corresponding
models are provided in Table 24. It is interesting
to note that interarrival times for IP datagrams fol-
low an exponential distribution. This is similar to
the case of interarrival times for valid and invalid
sessions as well as to the case of interarrival times
for Gnutella messages (type ALL). Just as in those
cases, it is conjectured that the superposition of
point processes is responsible for this phenomenon.

Table 19
IP layer byte rate (bytes/s) statistics

’ DIR ‘ Max‘Min‘ Mean‘Median‘Stddev‘

IN |249522| 0]|11536| 10961| 4075

OUT|176986| 0|12668| 12037| 5722
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Table 20
Models for IP layer byte rates (bytes/s)

DIR Model ‘ Ey
IN 0.89 LNx (2;9.33,0.26)+ |3.5%
0.11 GPA x (x;0.32,0,2774)
IN (upper 30%)|GPA x (z;0.27, 12812, 2180)|2.2%
ouT 0.86 LN x (x;9.45,0.27)+ |2.3%
0.14 GPA x (x;0.87, 0, 1662)
Table 21
Model for IP datagram size (bytes)
’DIR Model ‘ Eo

’IN/OUT‘O.52 GPAx (2;0.53, 60, 50.55)\3.3%

(=}
—— Empirical
- - - Pareto (upper 52%, 3.3% error)
'_I' —
=
Al
o)
A
g
a |
I
T T
2 3
log x
Fig. 11. IP datagram size (bytes)
Table 22
Probability mass points for IP datagram size (bytes)
Datagram size|0-39| 40 | 41 | 42 | 43 | 44

Probability  |0.000(0.209|0.000{0.001|0.000{0.000

Datagram size| 45 | 46 | 47 | 48 | 49 | 50

Probability  {0.000(0.000{0.008(0.006|0.000{0.000

51 | 52 | 53 | 54

0.000]0.258|0.003(0.001|0.000

Datagram size 55

Probability

7. Conclusions

The work presented here is focused on characteris-
tics and statistical models for Gnutella network traf-
fic. New traffic characteristics are reported for Gnu-



Table 23
IP datagram interarrival and interdeparture times statistics

(s)
’DIR‘ Max‘Min‘ Mean‘Median‘ Stddev‘

IN |11.36(3e-6/8.85e-3|5.75e-3| 9.72e-3

OUT|22.05|7e-6(8.24¢e-3| 0.49¢-3|14.22¢-3

Table 24
Interarrival and interdeparture times models for IP data-
grams (s)

’ DIR ‘Message

Model

E

IN 0.8%
OUT|IP datagrams|0.5 LN x (x; —8.45,0.26)+(1.2%

0.5 EXP x (; 61.29)

IP datagrams|EXP x (z;118.76)

tella traffic at various layers in the TCP/IP stack:
IP level, Gnutella session level and Gnutella message
level. Additionally, we provide statistical models for
interarrival times, interdeparture times, and size at
each level. For Gnutella sessions we model also the
session duration.

Another contribution of this work is the design
and implementation of a modular measurement in-
frastructure for P2P traffic. Using the measurement
infrastructure developed at BTH, Gnutella traffic
from the BTH network was recorded as a link-layer
packet trace. Decoding and analysis of the packet
trace yielded statistical characteristics and models
for sessions, flows and messages, which are the ma-
jor contributions of this paper.

Although the packet trace provided much insight
in the patterns of Gnutella network traffic, there are
several other questions that warrant further inves-
tigation. Foremost, analysis of the degree of long-
range dependence is necessary in order to determine
the amount of correlation that occurs in the traffic.
This issue is relevant in the light of results presented
in [58,59], which indicate that certain types of traf-
fic aggregations tend towards a Poisson distribution
when the number of sources increases. A Gnutella ul-
trapeer can be viewed as an application layer router
that aggregates traffic flows from many peers. If the
results from [58,59] hold in the case of a Gnutella
ultrapeer, then it follows that statistical multiplex-
ing gains may occur. It would be very interesting to
measure the extent to which that happens, if any.

The models developed here will be used to gen-
erate synthetic traffic in a simulator. The idea is to
tweak some of the Gnutella messages to carry QoS
information about peer connections, e.g., through-
put, RTT, packet loss. Thus, a QoS overlay net-
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work will be built on top of Gnutella. We plan to
use the overlay network to perform QoS routing,
which would enable high-quality interactive multi-
media services. The real challenge is to ensure that
the QoS routing runs smoothly, with little overhead
compared to the payload data.
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