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To my parents

“I do not know what I may appear to the world; but to myself I seem to have
been only like a boy playing on the seashore, and diverting myself in now and
then finding a smoother pebble or a prettier shell than ordinary, whilst the great
ocean of truth lay all undiscovered before me.”

Isaac Newton (1642–1727)





Abstract

In the last few years the Internet has witnessed a tremendous growth in the area
of multimedia services. For example YouTube, used for videosharing [1] and
Skype, used for Internet telephony [2], enjoy a huge popularity, counting their
users in millions. Traditional media services, such as telephony, radio and TV,
once upon a time using dedicated networks are now deployed over the Internet
at an accelerating pace. The triple play and quadruple play business models,
which consist of combined broadband access, (fixed and mobile) telephony and
TV over a common access medium, are evidence for this development.

Multimedia services often have strict requirements on quality of service
(QoS) metrics such as available bandwidth, packet delay, delay jitter and packet
loss rate. Existing QoS architectures (e. g. , IntServ and DiffServ) are typically
used within the service provider network, but have not seen a wide Internet
deployment. Consequently, Internet applications are still forced to rely on the
Internet Protocol (IP)’s best-effort service.

Furthermore, wide availability of computing resources at the edge of the net-
work has lead to the appearance of services implemented in overlay networks.
The overlay networks are typically spawned between end-nodes that share re-
sources with each other in a peer-to-peer (P2P) fashion. Since these services
are not relying on dedicated resources provided by a third-party, they can be
deployed with little effort and low cost. On the other hand, they require mecha-
nisms for handling resource fluctuations when nodes join and leave the overlay.

This dissertation addresses the problem of unicast QoS routing implemented
in overlay networks. More precisely, we are investigating methods for providing
a QoS-aware service on top of IP’s best-effort service, with minimal changes to



existing Internet infrastructure. A framework named Overlay Routing Protocol
(ORP) was developed for this purpose. The framework is used for handling
QoS path discovery and path restoration. ORP’s performance was evaluated
through a comprehensive simulation study. The study showed that QoS paths
can be established and maintained as long as one is willing to accept a protocol
overhead of maximum 1.5 % of the network capacity.

We studied the Gnutella P2P network as an example of overlay network. An
11-days long Gnutella link-layer packet trace collected at Blekinge Institute of
Technology (BTH) was systematically decoded and analyzed. Analysis results
include various traffic characteristics and statistical models. The emphasis for
the characteristics has been on accuracy and detail, while for the traffic models
the emphasis has been on analytical tractability and ease of simulation. To the
author’s best knowledge this is the first work on Gnutella that presents statistics
down to message level. The models for Gnutella’s session arrival rate and session
duration were further used to generate churn within the ORP simulations.

Finally, another important contribution is the evaluation of GNU Linear Pro-
gramming Toolkit (GLPK)’s performance in solving linear optimization prob-
lems for flow allocation with the simplex method and the interior point method,
respectively. Based on the results of the evaluation, the simplex method was
selected to be integrated with ORP’s path restoration capability.



Acknowledgments

The five-year long journey towards completing my Ph.D. education has been
a most rewarding experience. Many of my research achievements during this
period would not have been possible without the direct or indirect support from
a number of people.

First and foremost, I would like to express my gratitude and appreciation
to Prof. Adrian Popescu from Blekinge Institute of Technology (BTH). Already
while I was a M.Sc. student, he encouraged me to pursue graduate studies. His
tenacity, enthusiasm and belief in my capacity to get the job done were key
elements in finalizing this thesis.

My colleagues and friends, David Erman and Doru Constantinescu, were
always there to challenge new ideas, ask difficult questions and encourage me
to move forward. Discussions with them over research topics often resulted in
fresh, new insights. Additionally, I am grateful for their help with carrying the
heavy furniture every time when I changed apartment.

I am indebted to Karel De Vogeleer for his invaluable help with the im-
plementation of the RDP simulator and for numerous suggestions on how to
improve the protocol.

Prof. Arne Nilsson has my gratitude for accepting me as a Ph.D. student at
the department and for being my secondary adviser.

I have benefited from several interesting discussions with Dr. Markus Fiedler.
For this, I thank him very much.

My fellow graduate students Stefan Chevul, Lennart Isaksson, Patrik Arlos
and Henric Johnson deserve acknowledgments for encouragement and many
interesting discussions.



I would like to thank our head of department, Civ. Eng. Anders Nelsson,
and our department economist, Eva-Lotta Runesson, who dealt admirably with
practical issues related to my studies, such as literature, equipment and confer-
ence travel.

Dr. Parag Pruthi, CEO of Niksun Inc., has my gratitude for helping me
with the transition from being a software engineer in his company to becoming
a Ph.D. student at BTH.

Much of my early scientific skills were trained by Dr. T. V. Kurien, now with
Microsoft Corp. He often reminded me that if I do not start graduate studies
before the age of 30, I probably never will. Looking back, I know he was right.

My dear friends, Bob & Hana Pruthi, Zohra Yermeche, Alina Tatu, Gabriela
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Chapter 1

Introduction

Multimedia services such as voice over IP (VoIP), IP Television (IPTV), video-
conferencing, and video on demand (VoD) have progressed considerably during
the last decade in replacing similar functionality offered by traditional analog
networks. These IP-based services have strict requirements on how the media
streams must be handled during transit in the network. The requirements are
typically expressed in the form of constraints on bandwidth1, packet delay, de-
lay jitter and packet loss. Consequently, multimedia traffic must be transferred
over network paths selected such that the media stream requirements are sat-
isfied. This can be done by QoS routing, which is a mechanism for optimizing
network performance by a combination of constrained-path selection and traffic
flow allocation.

This thesis is about unicast QoS routing in overlay networks. More precisely,
we are investigating methods for providing a QoS-aware service on top of IP’s
best-effort service, with minimal changes to existing Internet infrastructure.

1.1 QoS

The term QoS can be interpreted intuitively as an indication for how well a
service performs. In reality, QoS is an overloaded term and, when used outside

1In the field of computer networking, the term bandwidth is used to denote data rate or

capacity, unless specified otherwise.

1



CHAPTER 1. INTRODUCTION

a specific context, it can refer to a quantitative metric related to the “wellness”
of the network (or service) or to a mechanism or architecture aimed at improving
the well-being of the network (or service). Out of several definitions, we have
selected the following two which we consider best at capturing the notion of
QoS:

• “The capability to provide resource assurance and service differentiation
in a network is often referred to as quality of service (QoS)” [3].

• “Quality of Service (QoS) refers to the capability of a network to pro-
vide better service to selected network traffic over various technologies,
including Frame Relay, Asynchronous Transfer Mode (ATM), Ethernet
and 802.1 networks, SONET, and IP-routed networks that may use any
or all of these underlying technologies. The primary goal of QoS is to
provide priority including dedicated bandwidth, controlled jitter and la-
tency (required by some real-time and interactive traffic), and improved
loss characteristics. Also important is making sure that providing priority
for one or more flows does not make other flows fail” [4].

Consider the following scenario that attempts to illustrate the necessity to
implement QoS support in networks and services. Two nodes engage in a voice
conversation over a computer network. At each node the continuous voice signal
is sampled into a digital signal. The digital signal is compressed and encoded
by a codec into a sequence of packets that are sent over the network. In a
packet-switched network, individual packets may reach the destination over dif-
ferent paths, within different time durations, possibly arriving out-of-order or
not at all. The receiver attempts to cope with these limitations by using for
example a playback buffer and error correcting codes. However, each codec has
a number of requirements, e. g. , bitrate, delay, delay jitter, that must be met if
the signal is to be decoded successfully. Additionally, if the packet delay grows
too large it gravely affects the interactivity between the speakers, thus render-
ing the conversation useless. When the network load increases from medium
to high, packet queues start building up. This increases the packet delay and
also the number of Transmission Control Protocol (TCP) retransmissions, and
nodes where the queues reach critical length start dropping packets. Clearly,
in this scenario it becomes difficult to guarantee that codec requirements are

2



1.1. QOS

maintained, unless care is taken to prevent multimedia flows from being affected
by these conditions.

Pure IP-based networks offer the weakest form of QoS, namely best-effort
service. In best-effort service no guarantees are provided. The network tries to
transport the data to the destination, but sometimes may fail to do even that.
Perhaps “poor-effort service” is a more accurate name, but the terminology is
too entrenched to be changed.

With the increased popularity of multimedia services, the ability to provide
better than best-effort service gained importance. In this context, work begun
on architectures for QoS.

The first proposed QoS architectures used on top of IP is called Integrated
Services (IntServ) [5]. In IntServ, resources are allocated along the path by using
the Resource Reservation Protocol (RSVP) [6, 7]. IntServ performs per-flow
resource management. This has led to skepticism towards IntServ’s ability to
scale, since core routers in the Internet must handle several hundred thousands
flows simultaneously [8]. A newer report [9] corroborates this number. However,
the authors of the report argue that per-flow management is feasible in these
conditions due to advances in network processors, which allow over a million
concurrent flows to be handled simultaneously.

A new architecture called Differentiated Services (DiffServ) [10] was devel-
oped, due to concerns about IntServ’s scalability. DiffServ attempts to solve
the scalability problem by dividing the traffic into separate forwarding classes.
Each forwarding class is allocated resources as stipulated in the service level
agreement (SLA) between provider and customer. Packets are classified and
mapped to a specific forwarding class at the edge of the network. Inside the core,
routers handle the packets according to their forwarding class. Since routers do
not have to store state information for every flow, but only have to inspect
certain fields in the packet header, it is expected that DiffServ scales much bet-
ter than IntServ. A major problem with the DiffServ architecture has to do
with end-to-end QoS provisioning over multiple DiffServ domains. Premium
services cannot be offered unless bilateral SLAs exist between peering domains
over the entire end-to-end path. Currently, technical difficulties coupled with
the providers’ lack of incentive to engage in bilateral SLAs has prevented wide-
spread deployment of DiffServ [3, 11].
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Generally, a QoS architecture must address two issues: resource allocation
and performance optimization.

Resource allocation is responsible for the reservation and maintenance of QoS
resources, foremost bandwidth, but in some cases also host memory buffers and
CPU utilization. In IntServ this is achieved by RSVP, while DiffServ relies on
bandwidth provisioning.

Efficient resource allocation is important in order to minimize the costs to run
the network. By minimizing costs we do not mean solely lowering the monetary
value, but also reducing the number of flows for which no QoS commitments
can be made because of wasted resources. This is the goal of performance
optimization. Optimizing the performance of a network implies taking control
over how individual flows are allocated to paths in the network. This is the
problem of QoS routing [3].

Routing is the process of finding a path between two hosts in a network. In
QoS routing, the path must be selected such that QoS metrics of interest will
stay within specific bounds. Such a path is called a feasible path. A network
that has the ability to keep the QoS metrics within bounds is said to be able
to provide QoS guarantees. In the case when the guarantees are of statistical
nature (i. e. , for brief periods of time the bounds do not hold) it is said that
the system provides soft QoS. If the bounds hold at all time, then the system
is said to provide hard QoS.

1.2 Motivation

The predominant form of Internet routing is a combination of shortest-path
routing for intradomain environments coupled with policy-based routing for
interdomain communication. For the past ten years it has been argued that
Internet routing must incorporate elements of QoS in order for the Internet
to be used as platform for multimedia distribution. This argument is in part
motivated by difficulties in providing a pleasant user experience with multimedia
services when relying solely on a best-effort datagram service.

The term quality of experience (QoE) is used to capture the notion of sub-
jective user experience. A typical way to quantify the QoE is through the use of
mean opinion scores (MOSs) [12–15]. Contrary to QoE, the QoS term denotes
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an objective performance level based on various metrics at the network layer,
e. g. , bit rate, jitter, packet loss. Lately, QoS has been extended to include
application-layer metrics related to call signaling and media handling [16]. QoE
is related to QoS in the sense that a desired QoE level can be used to determine
values for end-to-end QoS parameters.

Large network operators configure their networks to supply a specific QoS
level in order to achieve good QoE and consequently high customer satisfaction.
The configuration aspect incorporates techniques such as service prioritization,
packet marking, rate control, load balancing and path protection and restora-
tion. Network operators can also choose to implement their services on top
of a specific QoS architecture such as IntServ or DiffServ [5, 7, 10]. However,
these approaches are of benefit to services and users located in the same network
(e. g. , the corporate network), but fail to address a more heterogeneous scenario,
where the service provider and users are scattered across the Internet. The main
reason for this situation is because of the lack of interaction between network
providers or difficulties to align premium services to a common denominator
among the providers [17–19].

QoS is one of the most debated topics in the areas of computer network
engineering and research. It is generally understood that a network providing
QoS has the ability to allocate resources for the purpose of implementing services
better than best-effort. The major source of debate is on how to provide QoS
in IP-based networks [3, 20].

The debate is characterized by two opposing camps. One of them argues
that no new mechanisms are required to provide QoS in the Internet, and simply
increasing the amount of available bandwidth will suffice. The members of the
other camp express their doubts over the idea that bandwidth over-provisioning
alone can take care of QoS issues such as packet loss and delay. History has
shown that whenever bandwidth has been added to the networks, new “killer”
applications were developed to use most of it. Furthermore, over-provisioning
may not be an economically viable solution for developing countries and in the
long run it may prove to be very expensive even for developed countries. It is
also well worth considering the case of mobile networks, e. g. , ad-hoc networks
or the Universal Mobile Telecommunications System (UMTS), where not only
bandwidth is a scarce resource, but additional challenges in the form of power
consumption, mobility prediction and handover must be considered.
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From a hierarchical point of view, Internet consists of several autonomous
systems (ASs). Each AS consists of a number of interconnected networks ad-
ministered by the same authority. Within an AS routing is performed by using
intradomain routing protocols such as Routing Information Protocol (RIP) [21]
and Open Shortest Path First (OSPF) [22]. Interconnected ASs exchange rout-
ing information using Border Gateway Protocol (BGP) [23]. An AS connects
to other ASs through peering agreements. A peering agreement is typically a
business contract stipulating the cost of routing traffic across an AS along with
other policies to be maintained. When there are several routes to a destination
the peering agreements force an AS to prefer certain routes over others. For
example, given two paths to a destination where the first one is shorter (in terms
of hops) and the second one is cheaper, the AS will tend to select the cheaper
path. This is called policy routing and is one of the reasons for suboptimal
routing [24, 25]. With the commercialization of the Internet it is unlikely that
problems related to policy routing will disappear in the near future.

There seems to be little hope for wide Internet deployment of QoS at network
layer, at least in the near future. To cope with this problem several researchers
have investigated the possibility to deploy QoS in overlay networks on top of
IP [26–30]. This is also the direction chosen for the research presented in this
thesis.

At BTH, we are working towards an architecture for multimedia distribution
in overlay networks. The work includes evaluation and enhancement of various
parts required by the targeted architecture. An important such part is QoS
routing in overlay networks. Under the Routing in Overlay Networks (ROVER)
project we are developing a platform to facilitate development, testing, evalu-
ation and performance analysis of different solutions for overlay routing, while
requiring minimal changes to the applications making use of the platform [31].
The project aims to do this by implementing a middleware system, and expos-
ing two set of application programming interfaces (APIs) – one for application
writers, and one for interfacing various overlay solutions.

Overlay routing frameworks have been been the subject of much research in
recent years. Systems such as Chord [32], i3 [33], and Kademlia [34] have been
proposed and studied from various aspects. The similarities in the functionality
of these and other structured overlay routing systems have resulted in a sug-
gestion for a common API for structured overlays [35]. The ROVER research
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ROVER Middleware

Gnutella Kademlia

TCP/IP TCP/IP
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Multicast/QoS
ORP 

Unicast/QoS

Figure 1.1: ROVER architecture.

group uses this API as a starting point for the development of the ROVER
middleware.

The common API is designed to abstract structured overlays, which are over-
lays with topologies that follow a specific geometry imposed by the distributed
hash table (DHT) they use. These overlays are in contrast with unstructured
overlays, in which there is no internal structure, and the system can be viewed
as emergent. An important goal of the ROVER middleware is to abstract both
structured and unstructured overlays.

The ROVER architecture is shown in Fig. 1.1. The top layer represents var-
ious protocols and applications using the ROVER API. The middle layer is the
ROVER middleware with associated API. Finally, the bottom layer represents
various transport protocols that can be used by the ROVER middleware. Only
the left box, denoted ORP, in the top layer in the figure is within the scope of
this thesis. ORP is a framework that allows us to study specific problems and
solutions related to unicast QoS routing [31]. The details of ORP are presented
in Chapter 5.

The long term goal is to combine ORP together with additional QoS mech-
anisms, such as resource reservation and admission control, into a QoS layer.
User applications that use the QoS layer can thus obtain soft QoS guarantees.
These applications run on end-hosts without any specific privileges such as the
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ability to control the internals of TCP/IP stack, the operating system, or other
applications that do not use the QoS layer. In terms of the OSI protocol stack,
the QoS layer is a sub-layer of the application layer. Applications may choose
to use it or to bypass it.

We consider that a QoS routing application based on the architecture de-
scribed here can be deployed efficiently since it requires no changes to existing
IP routers and it relies solely on resource management on end-nodes.

1.3 Related Work

In this section we discuss related work in the area of measurement and mod-
eling of Gnutella traffic and in the area of overlay-based QoS routing. The
selection criteria for related work is that it should either have produced strong
contributions or influenced our own work, preferably both.

1.3.1 Gnutella Traffic Measurements and Models

Perhaps the oldest and most cited paper on Gnutella measurements is [36], which
looks into the social aspects of the Gnutella network. The authors instrumented
a Gnutella client to log protocol events. The main contribution of the paper was
to show that only a few peers contribute with hosting or adding new content
to the Gnutella network, whereas the majority of nodes would retrieve content
without sharing any. The authors used the term free-riding to describe this
behavior and showed that it was just another form of the tragedy of the commons
phenomenon described more than three decades earlier [37]. The conclusion of
the paper was that the common belief in Gnutella network being more resilient
to shutdowns due to distributed control does not hold very well when only few
nodes host the majority of content.

A dooms-day prediction was made by [38]. Through mathematical anal-
ysis, the author argued that due to its architectural design, in particular the
volume of signaling traffic, the Gnutella network will not be able to scale to
more than a few hundred users. Enhancements in message caching, flow control
and dynamic hierarchical routing implemented by major Gnutella vendors have
however rendered most of the conclusions in [38] obsolete.
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In [39] the authors created crawlers for Napster and Gnutella networks. A
crawler is a special purpose software agent, which discovers and records the
network topology through an automated, iterative process. The authors used
information from crawlers to measure properties of individual peers (e. g. , band-
width and latency). The data from their measurements indicated that both
Gnutella and Napster exhibit highly heterogeneous properties, e. g. , in connec-
tivity, speed, shared data. This is contrary to the design assumptions used when
those systems were built. Another important finding is that users are typically
unwilling to cooperate with each other, few of them acting as servers and the
remaining majority acting as clients.

A different approach was taken in [40]. The authors performed non-intrusive
flow measurements at a large Internet service provider (ISP) instead of using a
crawler. The goal was to analyze FastTrack2, Gnutella and DirectConnect net-
works. Flows belonging to any of these networks were identified by well-known
port numbers. The major findings in the paper are that all three networks
showed increases in the traffic volume across consecutive months, skewed distri-
butions for traffic volume, connectivity and average bandwidth, few hosts with
a long uptime, and uniformity in terms of number of P2P nodes from individual
network address prefixes.

Measurements from a 1 Gbps link in the France Telecom IP backbone [41]
network revealed that almost 80 % of traffic on the link in question was produced
by P2P applications. Further, the authors showed that flows were partitioned
into “mice” — short flows, mostly due to signaling, and “elephants” — long
flows due to data transfers.

The P2P traffic identification in [40, 41] assumes that applications use well-
known ports. This assumption rarely holds nowadays, when P2P applications
use dynamic ports in order to camouflage themselves. Karagiannis et al. [42–
44] used better heuristics to detect P2P traffic. Their measurement results
showed that, if anything, P2P traffic was not declining in volume. Further, they
showed that P2P traffic is predominantly using dynamic ports. Applications
that currently use or will use encrypted connections would make the P2P flow
identification task even harder, if not impossible.

2FastTrack is a protocol used by Kazaa and Grokster.
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Figure 1.2: Overlay network.

1.3.2 Overlay Networks for QoS

An overlay network utilizes the services of an existing network in an attempt
to implement new or better services. An example of an overlay network is
shown in Figure 1.2. The physical interconnections of three ASs are depicted
at the bottom of the figure. The grey circles denote nodes that use the physical
interconnections to construct virtual paths used by the overlay network at the
top of the figure.

The nodes participating in the overlay network perform active measurements
to discover the QoS metrics associated with the virtual paths. Assume that an
overlay node in AS1 wishes to communicate with another overlay node in AS2.
Assume further that AS1 always routes packets to AS2 by using the direct link
between them, due to some policy or performance metric. The overlay node in
AS1 may discover through active measurements that the path crossing AS3 can
actually provide better QoS (e. g. , smaller delay), than the direct link to AS2.
In this specific case, the AS1 node forwards its traffic to the AS3 node, which in
turn forwards the traffic to the destination node (or to the next node on the path
if multiple hops are necessary). This is the basic idea behind QoS routing in
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overlays. Examples of such overlays are the Resilient Overlay Network (RON),
OverQoS, the QoS-aware routing protocol for overlay networks (QRON) and
the QoS overlay network (QSON).

In RONs [26], strategically placed nodes in the Internet are organized in
an application-layer overlay. Nodes belonging to the overlay aid each other in
routing packets in such a way as to avoid path failures in the Internet. Each
RON node carefully monitors the quality of Internet paths to his neighbours
through active measurements. In order to discover the RON topology, RON-
nodes exchange routing tables and various quality metrics, e. g. , latency, packet
loss rate, throughput, using a link-state routing protocol. The path selection
is done at the source, which signals to nodes downstream the chosen path.
Nodes along the path signal to the source nodes information about link failures
pertaining to the selected path. Results involving thirteen sites scattered widely
over Internet showed the feasibility of this solution. RON’s routing mechanism
was able to detect and route around all 32 outages that occurred during the time
frame for the experiment, 1 % of the transfers doubled their TCP throughput
and 5 % had their loss rate reduced with 5 %.

Following the success of RONs, the authors of [30] propose OverQoS, an
overlay-based QoS architecture for enhancing Internet QoS. The key part of
the architecture is the controlled-loss virtual link (CLVL) abstraction, which
provides statistical loss guarantees to a traffic aggregate between two overlay
nodes in the presence of changing traffic dynamics. They demonstrate that
their architecture can supply the following QoS enhancements with as little
as 5 % bandwidth overhead: smoothing losses, packet prioritization, as well as
statistical bandwidth and loss guarantees.

Another approach involving strategically placed nodes in the Internet is pre-
sented in [29]. The authors propose an architecture where each AS has one or
more overlay brokers. The overlay brokers are organized into clusters that inter-
connect with each other to form an overlay service network that runs a QRON.
The purpose of QRON is to find an overlay path satisfying a bandwidth con-
straint. QRON nodes use source routing and a number of backup paths to cope
with bandwidth fluctuations. The authors were able to show that the QRON
algorithms perform well under a variety of traffic loads while balancing the load
among overlay brokers.
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In a similar spirit, the QSON architecture [45] advocates a backbone overlay
network for QoS routing. This architecture relies on well-established business
relationships of two kinds. The first type of business relationships is defined
by end-users who purchase QoS services from the QSON provider. The QSON
provider is able to supply these services by engaging in SLAs with several ISPs.
This is the second kind of business relationships. The QSON overlay is spanned
by QSON proxies located between ISP domains. Each proxy stores a list of paths
to the other proxies. The proxies use probes to reserve bandwidth and to inform
each other about changes in available bandwidth. Simulation results have shown
that QSON is able to provide bandwidth reservation with low control overhead.

1.4 Main Contributions

In this thesis we investigate the possibility of providing QoS-aware routing for
end-users on top of IP’s best-effort service. We focus on bandwidth manage-
ment, but our framework is applicable to other QoS parameters as well. Our
solution is based on using an overlay network for QoS routing that combines
constrained-path discovery with flow allocation. In this context we present the
following contributions:

• Highly detailed statistical models and characteristics for Gnutella traffic
crossing an ultrapeer.

• The Route Discovery Protocol (RDP), which is used for constrained-path
discovery by selective diffusion.

• The Route Management Protocol (RMP), which is used to handle node
churn in the overlay.

• A software library based on the GLPK for solving network flow problems.

• A performance testbed for network flow algorithms utilizing the solver
library above.

• Performance results for the simplex method and the interior point method
on linear problems of network flow allocation.

• A flexible software library for P2P traffic decoding, based on tcptrace.
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1.5 Thesis Outline

The thesis is organized as follows. In the current chapter we described the
motivation for this thesis. Additionally, we presented related research work and
an outline of our own main research results.

In the next chapter we lay the theoretical ground for the reminder of the
thesis. In particular, we define notation and terminology for elements of graph
theory and discuss algorithms and complexity. This is followed by a brief pre-
sentation of shortest-path algorithms, which are used by ORP.

Chapter 3 begins with a short overview of notation and terminology for
linear optimization problems involving network flows. This is followed by a
presentation of our performance testbed for algorithms used in solving network
flow problems. The remainder of the chapter describes performance results for
the simplex method and the interior point method. Based on these results we
selected the simplex method for solving the optimization problems in Chapter 5.

The Gnutella P2P protocol is presented in Chapter 4. In addition, we de-
scribe the measurement infrastructure used to capture Gnutella traffic and our
software library for P2P traffic decoding. The chapter reports on the models
and characteristics obtained from the recorded traffic. The statistical models
for session duration and session interarrival time are further used to generate
churn for our ORP simulations presented in Chapter 5.

The subject of Chapter 5 is the ORP framework, which is composed of two
protocols: Route Discovery Protocol (RDP) and Route Management Protocol
(RMP). We describe their design and implementation and present performance
results based on simulations.

In Chapter 6 we share our conclusions and ideas for future work.
There are a number of appendixes at the end of the thesis. In Appendix A

we provide a list with acronyms encountered throughout the text. The next
appendix summarizes the notation used in preceding chapters. Appendix C
outlines the probability distributions relevant for this work.
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Chapter 2

Graph Algorithms

The goal of this chapter is to introduce theoretical elements, terminology and
notation that will be used in the reminder of the thesis. In the first part of the
chapter we focus on graph theory and graph algorithms. QoS with emphasis on
QoS routing is the subject of the second part of the chapter.

2.1 Definitions and Notation

Routing and network flow problems can be defined rigorously using graph theory
notation. This allows in turn concise, non-ambiguous specification of algorithms
that can solve such problems. We use therefore this opportunity to introduce
basic graph theory definitions.

Definition 2.1 (Undirected graph). An undirected graph G(V, E) consists of
a nonempty set V of vertices (also called nodes) and a collection E of pairs of
distinct vertices from the set V. The elements of E are called edges, links or
arcs. In an undirected graph the edge (u, v) between node u and node v is
indistinguishable from the edge (v, u).

Sometimes, in the interest of brevity we write G instead of G(V, E). We
denote by the V number of vertices in G and similarly we denote by E the
number of graph edges.

Definition 2.2 (Directed graph). In the case of a directed graph (also called
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digraph) the edges (u, v) and (v, u) are distinct [48–50]. For the directed edge
(u, v) we say that the edge is outgoing from the perspective of node u and
incoming for node v.

In a computer network vertices represent hosts, also called nodes, while edges
represent communication links connecting two hosts. Since various network
traffic characteristics are dependent upon the direction in which the traffic flows,
we focus exclusively on digraphs. An undirected graph can be converted to a
digraph by replacing each undirected link with a pair of directed links, each of
them pointing in the opposite direction of the other.

If (u, v) is an edge in G(V, E) then we say that edge (u, v) is incident to node
u and v. Additionally, we say that u and v are adjacent nodes (or neighbors).

The number of outgoing edges (u, v) is called the outdegree of node u. Sim-
ilarly, the indegree of node v is defined as the number of incoming edges at v
from various nodes u. When edge direction is not relevant, the term degree
denotes the number di of links associated with a node u.

A graph has two basic forms of representation. Adjacency-list representation
consists of an array of elements Adj[v], one for each vertex v in the graph. Each
element Adj[v] is a list consisting of nodes adjacent to v. In adjacency-matrix
representation the graph is represented by a V ×V matrix A, where each element
au,v is equal to one if the nodes u and v are adjacent (i. e. , the edge (u, v) ∈ E)
and zero otherwise. The adjacency list representation is preferred when the
graph is sparse (i. e. , when having a graph where V 2 � E) since it requires less
memory than the adjacency-matrix representation. For a dense graph (i. e. , a
graph where V 2 ≈ E) the adjacency-matrix representation tends to be more
computationally efficient when searching for the existence of an edge (u, v) in
the graph, but has higher memory requirements [51].

Definition 2.3 (Weighted graph). In a weighted graph G(V, E) all edges have
an associated number w ∈ R called the weight, which represents a metric of
interest, e. g. , cost, bandwidth, delay. Clearly, if we consider n > 1 metrics
simultaneously, the weight is a vector w = [w1, . . . wn]. The link weights in a
weighted graph can be represented by a symmetric matrix W =

[
wu,v

]
, where

wu,v is set to a suitable value (e. g. , 0 or ∞) if there is no edge (u, v) in E.

We use the terms graph and topology to denote the same thing, which is
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a complete network description that includes nodes and links along with addi-
tional properties.

Definition 2.4 (Path). A path P (v1, vk) in a directed graph G(V, E) is a se-
quence of vertices (v1, v2, . . . , vk) with k ≥ 2. This definition is equivalent to
saying that the path P is a sequence of (k−1) links (e1, . . . , ek−1). The number
of edges in a path P defines the length of the path, which is (k − 1) in this
case.

A graph G(V, E) is said to be connected if, for each pair of vertices u, v ∈ V
and u 6= v, there is a path P (u, v). If each vertex pair is connected also by a
path P (v, u), the graph is said to be strongly connected.

In a path P (v1, vk), the node v1 is called the source or origin node and vk
is called the destination node. For a node vi in P , all nodes {vj : 1 ≤ j < i}
(if any) are called upstream nodes and all nodes {vm : i < m ≤ k} (if any) are
called downstream nodes.

A simple path P (v1, vk) is a path without loops (cycles), meaning that each
element in the sequence (v1, v2, . . . , vk) is distinct.

We denote a path by a single italic letter P when the node sequence is
implicitly defined or when it is irrelevant to the context.

Definition 2.5 (Characteristic path length). The characteristic path length, L,
of the graph G is the number of edges in the shortest path between two nodes,
averaged1 over all pairs of nodes in the graph [53, 54].

Definition 2.6 (Clustering coefficient). Let a node i have k neighbours. These
neighbours share at most k(k − 1)/2 links. Denote by Ci the fraction of links
that actually exist. The clustering coefficient, C, of the graph G is the average
value of Ci taken over all nodes with degree larger than one [53, 54].

Definition 2.7 (Node rank). The rank ri of a node v is the index of the node
v in a node list sorted by node degree in decreasing order.

1In [52], L is defined as the median of the means of the shortest paths from each node to

the other nodes in the graph.
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2.2 Network Models

A network model is a set of rules describing network properties such as vertex
degree, edge length, clustering factor and growth. Typically, the purpose of
a network model is to mimic characteristics from existing networks. However,
a good network model may also lead to a better understanding of processes
responsible for the formation and development of the network.

Some of the early efforts to create realistic network are based on random
graphs following the Erdös-Rény model [55]. In its simplest form, the model
specifies that two nodes in a undirected graph G are connected with a probability
p. Thus, such a graph has on average pV (V−1)

2 edges, where V is the number of
vertices [55]. In Waxman graphs [56] the probability p is inversely proportional
to the Euclidean distance λ between the two nodes, such that

p(λ) ∝ β exp−
λ

Λα (2.1)

where Λ denotes the maximum distance between two nodes in the graph and
0 < α, β ≤ 1.

Although appealing for their simplicity, models based on random graphs are
unable to capture non-random structural characteristics observed in the Inter-
net, such as routing locality and hierarchy. The phenomenon of routing locality
appears because the path between two nodes in a routing domain is confined
entirely to that domain. Routing domains are either stub domains or transit
domains, which imposes a two-level hierarchy on the nodes in the graph [57].
The desire to incorporate these characteristics into generated topologies led to
the development of structural topology generators, as for example the Georgia
Tech - Internetwork Topology Models (GT-ITM) generator [58].

More recent research [59–61] on Internet topologies concludes that some
specific topological elements are better described by power-law distributions,
also known as heavy-tail distributions. For example, results from this research
indicate that the degree dv of a node v is proportional to its rank rv to the
power of a constant R:

dv ∝ rRv (2.2)

Similarly, the total number of pairs of nodes P(h) within h hops is proportional
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to the power of a constant H:

P(h) ∝ hH , h� δ (2.3)

where δ is the diameter of the graph.
Barabási and Albert [62] showed that two generic mechanisms can be hold

responsible for the appearance of power-law distributions: incremental growth
and preferential connectivity. Incremental growth refers to continuous expansion
of the network by adding new nodes to existing ones. This is in sharp contrast
to Erdös-Rény and Waxman networks, where the number of nodes is kept un-
changed and new links are added or old links are rewired. On the other hand,
preferential connectivity denotes the tendency of new nodes to be connected to
existing high-degree nodes [60].

Incremental growth and preferential connectivity together lead to the ap-
pearance of what is called small-world networks [53]. These networks are char-
acterized by short paths lengths between arbitrary pairs of nodes and by strong
clustering behavior. Compared to random graphs, small-world graphs tend to
have shorter characteristic path length and a much larger clustering coefficient
(see Def. 2.5 and Def. 2.6 in Section 2.1) [54].

We have used the BRITE [63] software to generate network models according
to the Barabási-Albert model. BRITE is a topology generator developed at
Boston University, designed to be flexible, extensible, interoperable, portable
and user friendly. We have chosen BRITE because:

i) it has supports for realistic topology models based on power-law distribu-
tions,

ii) it can generate router level topologies,

iii) it is supported under OMNeT++, and

iv) the source code is freely available.

Each BRITE topology is embedded on a two-dimensional Euclidean plane
divided into HS ×HS high-level squares, where HS is a configurable BRITE
parameter. Each high-level square is divided into LS × LS low-level squares,
where LS is also configurable. A low-level square can be occupied by at most
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one node. BRITE has two modes of laying out nodes: random and heavy-
tailed. In random mode, BRITE assigns each node to a random low-level square
while avoiding collisions. In heavy-tailed mode, BRITE selects the number of
nodes in a high-level square according to the bounded Pareto probability density
function [60]

f(x) =
aκx−a−1

1− (κ/P )a
. (2.4)

These nodes are then distributed randomly within the high-level square, such
that each node occupies exactly one low-level square.

We have configured BRITE to use both incremental growth and preferential
connectivity. With this configuration, BRITE starts with an initial set of m0

randomly connected nodes2. The remaining nodes are added to the graph, one
by one. Each of these nodes selects an existing node u with probability

du∑
v∈C dv

(2.5)

where C is the set of nodes already added to the network and di and dv are the
outdegree of node u and v, respectively. This process is repeated m times to
connect node u to m other nodes. The parameter m is configurable.

2.3 Algorithms

Many problems can be converted to analytical expressions suitable for direct
calculation. However, a significant amount of problems are either too large or
too complex to be solved analytically. In this case it is more reasonable to
attempt a computer-based algorithmic approach to find the solution.

Definition 2.8 (Algorithm). An algorithm is a well-defined step-by-step pro-
cedure to solve a problem [51, 64, 65].

We differentiate between a problem and a problem instance. The first case
denotes a general inquiry with some parameters left unspecified (e. g. , “What is
the shortest path between two nodes in a graph?”). An instance of this problem
requires complete specification of the nodes, edges and edge weights contained

2In BRITE’s source code m0 = m.

22



2.3. ALGORITHMS

in the graph as well as specification of the two nodes we are interested in. An
algorithm can solve either all instances of a problem or only some subset of
them. For example, Dijkstra’s shortest path algorithm can solve only problem
instances where all edge weights are non-negative.

For computer algorithms, the problem instance must be encoded into a string
ω that serves as input to the algorithm. In the case of problem instances with
parameters defined on a continuous space, the encoding process involves input
conversion to a discrete space. In some cases the conversion can introduce an
error called discretization error. It may be possible to reduce the discretiza-
tion error by making the conversion more “fine-grained”, albeit at an increased
computational cost.

The general form of an algorithm is

x = f (ω) (2.6)

where f denotes the algorithm and x is the result.
Algorithms can often be classified either as direct methods or as iterative

methods. A direct method finds the solution in a finite number of steps whereas
an iterative method converges asymptotically to the solution. Typically, an
iterative method searches some space X defined by ω in order to find the solu-
tion. The simplex algorithm and Newton’s method for unconstrained optimiza-
tion [66] are examples of a direct and a iterative method, respectively.

An iterative method can be specified as

xk+1 = f (xk) for xk ∈ X (2.7)

where X is the space to be explored by the algorithm, xk denotes the position
in the search space at step k and the algorithm f is a mapping from X to X .
When applied to a vector x ∈ X , f produces another vector y ∈ X .

Another way to classify algorithms is to place them in one of the following
four classes:

i) numerical methods,

ii) exact algorithms,

iii) heuristics,
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iv) meta-heuristics.

Numerical methods solve problems by using function approximation, finite
differential calculus or a combination thereof [67, 68]. For example, Newton’s
method for unconstrained optimization approximates a function g in the neigh-
bourhood of a point x with the polynomial generated by the second-degree
Taylor series [66]. The first and second order derivatives from the series allow
Newton’s method to estimate the direction towards the optimum. Numerical
methods require that certain conditions apply to functions involved in solving
the problem or else the methods may not converge to the solution [69]. They are
susceptible to round-off and truncation errors and to stability problems related
to the feedback loop in Equation 2.7 [67]. It is worth noting that algorithms in
the remaining three classes may be susceptible to these problems as well. The
steepest descent and Newton’s method are examples of numerical methods for
unconstrained optimization [66].

Exact algorithms are iterative procedures that always find the correct so-
lution, provided there is one. They are different from numerical methods in
the sense that they do not require function approximation or finite differential
calculus, but rely instead on properties specific to the problem they solve. For
example, the Bellman-Ford shortest path algorithm and Dijkstra’s shortest path
algorithm, both described in Section 2.5, are exact algorithms that rely on the
property that sub-paths of shortest paths in one dimension are also shortest
paths [55].

If numerical methods or exact algorithms do not work well on the problem
at hand, it may be possible to apply a heuristic [69]. Heuristics are algorithms
that explore the search space in an intelligent way, albeit without guarantees
for convergence to the correct solution. Often, they involve a trade-off between
computation time and accuracy: fast heuristics sometimes cannot find the op-
timal solution and accurate heuristics always find the optimal solution, but for
some problem instances they can take an unreasonable amount of time to finish.
Local search [50, 70] is an example of optimization heuristic.

Metaheurstics are algorithms that combine various heuristics in an effort to
obtain an approximate solution even in the case of difficult problem instances
[69, 71]. They often employ a probabilistic element in order to avoid being
trapped in a local minimum. The particle swarm optimization (PSO) method
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described in [72] is an example of metaheuristic.
Direct methods find the solution to a problem instance in a finite number

of steps, but iterative algorithms require some form of convergence criteria.
Intuitively, we say that an algorithm has converged when xk+1 = xk or when
f (xk+1) = f (xk). However, this may not happen at all when the algorithm is
executed on a computer. Since computers are finite-state machines, they have
finite precision in representing real numbers i. e. , they allocate a finite number
of bits to represent numbers. This implies that numbers are rounded off, which
leads to round-off errors. In practice, it means that the solution found by the
algorithm approaches the true solution x∗ in an ε-neighborhood dictated by the
unit round-off (machine precision) for floating-point numbers. Therefore, the
convergence criteria should be of one of the formulas shown below [72]:

1. f (xk+1)− f (xk) < ε(1 + |f (xk+1) |),

2. ‖xk − xk+1‖ <
√
ε(1 + ‖xk+1‖),

3. ‖∇f (xk+1)‖ < ε1/3(1 + |f (xk+1) |.

The unit round-off is defined as the difference between 1 and the least value
greater than 1 on a specific computer architecture. On a 32-bit Pentium/Athlon
architecture a float data type uses 32 bits with 1.19209× 10−7 unit round-off,
while a double uses 64 bits with 2.22045× 10−16 unit round-off.

The use of the name iterative methods (algorithms) is perhaps unfortunate
since direct methods can rely on iterations as well. The difference is that direct
methods find the exact solution, whereas iterative methods find the solution in
the limit. Nonetheless, the name is well established and we will continue using
it.

Algorithms require also a stopping condition. Obviously if the algorithm con-
verges according to one of the criteria above, then it can stop. Otherwise, one
needs an upper bound ζ on the number of steps k performed by the algorithm.
If the k = ζ the algorithm stops. Clearly, the choice of ζ is very important since
setting the value too low causes the algorithm to stop prematurely when prob-
lems do actually have a solution, whereas if the value is too high the algorithms
will run for a long time, even when no solution exists.
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2.4 Algorithm Efficiency

A critical aspect in using algorithms is understanding how efficient they are at
finding the solution for the problem at hand. Information about their efficiency
helps not only in estimating the computational resources required, but can also
be used as a decision factor in selecting one out of several algorithms that can
solve the same problem.

For direct methods the efficiency is typically expressed as a function of the
input size and it is called computational complexity. The complexity refers
either to the space (e. g. , memory) required to store the input data, to the
time required to run the algorithm until a solution is found3, or, in the case
of a distributed system, to the communication volume required by the system
to perform its function. In the reminder of this thesis we will focus on time
complexity. The word “complexity” will therefore refer to “time complexity”
unless stated otherwise.

The goal is to obtain a complexity estimate, which is unaffected by variations
in underlying hardware and software (i. e. , the computer and operating system
running the algorithm) or by variations in the contents of the input. This is
achieved by assuming that the algorithm runs inside a mathematical model of
a computer instead of a real computer. The mathematical model is typically a
Turing machine or a random-access machine [51, 65, 73]. The details of these
mathematical models are not directly significant for this thesis. It is sufficient
to say that there are several variants of Turing machines, the most important
ones being the deterministic Turing machine and the non-deterministic Turing
machine. All computers in use today work according to the principles of a de-
terministic Turing machine or of a random-access machine. Non-deterministic
Turing machines have the ability to clone themselves into multiple copies run-
ning simultaneously.

We are foremost interested in worst-case complexity, which is an asymptotic
upper bound on the number of elementary operations required by the algorithm
to complete. In general, the elementary operations include arithmetic opera-
tions, comparisons, jumps and subroutine calls. The asymptotic upper bound
is a function of the size of the input ω. It is customary to make the simplifying

3We assume ζ = ∞ in this case.
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assumption that each elementary instruction, with the exception of subroutine
calls, requires unit time for execution [50]. The time required by a subroutine
call depends on the elementary instructions inside the subroutine.

Definition 2.9 (Asymptotic upper bound O (·) for worst-case run time). Given
a function f(n) that estimates the run time of an algorithm, where n is the size of
the input ω, f(n) has an asymptotic upper bound O (g(n)) if 0 ≤ f(n) ≤ cg(n)
for all n ≥ n0 and provided that the positive constants c and n0 exist [51]. In
practice, g(n) is obtained by removing from f(n) the low order terms and the
preceding constant of the high order term.

If the algorithm scales as a constant, then it means that the algorithm is
independent of the size of the input, and we write O (1). Polynomial-time algo-
rithms are denoted by O (nx), where x is an integer constant. These algorithms
are considered tractable methods to solve the problem. On the other hand, al-
gorithms belonging to the family of exponential time complexity (e. g. ,, O (n!)
and O (kn) for k ∈ Z) are generally regarded as intractable since they tend to re-
quire prohibitive amounts of computation resources [50]. In Figure 2.1 we have
plotted several types of asymptotic growth functions. The common element
between Figure 2.1(a) and Figure 2.1(b) is the linear function O(n), which acts
as a border between the regions of sublinear complexity and superlinear com-
plexity. Note that we intentionally use a logarithmic y-axis in Figure 2.1(b) in
order to emphasize the growth explosion occurring with superlinear complexity.

Many problems can be rephrased in the form of a decision problem, that is a
problem which has a “yes” or “no” answer. Most graph optimization problems
are of this type. The set of decision problems can be divided into two classes, P
and NP. The class P contains decision problems that can be solved in polyno-
mial time on a deterministic Turing machine. Similarly, the class NP contains
decision problems that can be solved in polynomial time on a non-deterministic
Turing machine using a non-deterministic algorithm [70]. An alternative defi-
nition states that the class NP contains decision problems, whose solution can
be verified in polynomial time [50, 73]. Problems belonging to the class NP are
generally regarded as intractable (i. e. , it is expected that algorithms solving
them will have exponential worst-case complexity). One of the most interesting
open questions in computer science is whether P = NP or not. In the absence
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Figure 2.1: Asymptotic worst-case complexity.

of a proof, the empirical evidence seems to indicate that this is not the case and
that instead P ⊆ NP, as shown in Figure 2.2.

NP

NPC
P

Figure 2.2: Complexity classes.

Some problems in NP are called NP-complete (NPC) because they hold a
special status. If a polynomial-time algorithm is found to solve one of these
problems, the theory states that all problems in the class NP will be solvable in
polynomial time. Should this occur, it would constitute proof that our current
view of the complexity classes is wrong, and in fact P = NP . The interested
reader can find more information in [65, 74].
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In terms of the problems described in Chapter 3, the multi-constrained path
(MCP) and multi-constrained optimal path (MCOP) problems are NP-complete
[75]. However, Kuipers and Van Mieghem have shown [76] that NP-complete
behavior is unlikely to occur in realistic communication networks.

The concept of computational complexity is not easily applied to iterative
methods [48]. In particular, the computational complexity can be strongly in-
fluenced by the convergence criteria used. Some results are provided in [77]
for the case of optimization algorithms, although they require strict technical
conditions (e. g. , Lipschitz-continuity) to apply to the objective function. For
iterative algorithms it can be more interesting to examine the rate of conver-
gence.

Definition 2.10 (Rate of convergence). For an algorithm that converges through
a series of intermediate steps xk ∈ R to a point x∗ ∈ R in the search space, the
algorithm’s rate of convergence is given by

lim
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖p

= α (2.8)

provided the number p exists and α 6= 0. The number p is called order of
convergence. When p = 1 the algorithm is said to have linear convergence [66,
78]. Sometimes linear convergence is also called geometric convergence. In
general, the case p > 1 denotes superlinear convergence, whereas the specific
case p = 2 is called quadratic convergence.

2.5 Shortest-Path Algorithms

In this section we review various shortest-path algorithms. The selection is
based on algorithms developed and used in the context of the ORP framework.
More specifically, we describe Bellman-Ford and Dijkstra’s shortest path algo-
rithms, breadth-first-search (BFS) and Yen’s K shortest paths (KSP). Most of
the material and notation presented here is based on [51]. In some cases [64]
was consulted as well. The description of Yen’s KSP is based entirely on his
article [79].

Definition 2.11 (Shortest-path problem). Let G(V, E) be a weighted graph,
where the scalar w(u, v) denotes the weight of the link connecting node u and
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node v. If there is no link connecting node u and v, then w(u, v) = ∞. Given
a pair of nodes s, d ∈ V , solving the shortest-path problem requires finding a
path P ∗ with the path weight

w(P ∗) =
∑

(u,v)∈P∗

w(u, v) (2.9)

such that w(P ∗) ≤ w(P ), for all possible paths P . The path weight w(P ) is
sometimes referred to as the distance between node s and node d over the path
P .

The algorithmic approaches for solving shortest-path problems can be di-
vided into two categories: label-setting algorithms and label-correcting algo-
rithms. The label denotes an estimated distance assigned to a node at some
step in the algorithm. A label-setting algorithm assigns one label at each iter-
ation and does not change it afterwards. This is the same as saying that the
algorithm finds the shortest-path to a node at each iteration. A label-correcting
algorithm can change assigned labels several times before the algorithm finishes.
Dijkstra’s shortest-path algorithm is a label-setting algorithm. The Bellman-
Ford algorithm and BFS are label-correcting algorithms.

Yen’s KSP algorithm does not belong to any labeling class. This algorithm
belongs instead to a class of deviation algorithms used to solve ranking problems
[80]. Solutions produced by deviation algorithms take the form of a tree where
the root is the source node. Each branch of the tree constitutes a path from
the source node to the destination node, obtained by a deviation in one of the
previous paths, e. g. , the initial path used to bootstrap the algorithm. Yen’s
KSP relies internally on a shortest-path algorithm. Our implementation uses
Dijkstra’s shortest path algorithm.

Both Dijkstra’s algorithm and the Bellman-Ford algorithm manage a list π
with predecessor nodes and a second list d with distances to various vertices
in the graph. Each list, when indexed by a node name (or other form of node
identification), allows retrieval of or changes to the entry corresponding to the
node. The purpose of the subroutine Initialize shown in Algorithm 1 is to
initialize these lists. The subroutine requires as input the graph corresponding
to the problem instance, a source node s where from the shortest-path begins
and the two (uninitialized) lists, π and d. Initialize sets each entry in the
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distance list to infinity, with the exception of the entry for the source node,
which is set to zero. The predecessor list is cleared such that each element in it
is marked unused (NIL).

Algorithm 1 Initialize.
Require: Graph G(V, E), source node s, distance list d, predecessor list π

1: for each vertex v ∈ V do
2: d[v]←∞
3: π[v]← NIL
4: end for
5: d[s]← 0

Algorithm 2 Relax.
Require: Link (u, v), link weight w(u, v), distance list d, predecessor list π

1: if d[v] > d[u] + w(u, v) then
2: d[v]← d[u] + w(u, v)
3: π[v]← u

4: end if

In addition to the Initialize subroutine, Bellman-Ford and Dijkstra’s al-
gorithm share a Relax subroutine shown in Algorithm 2. This subroutine
implements a technique called edge relaxation. The purpose of edge relaxation
is to test if the distance to a node decreases by inclusion of the link (u, v) into
the path. If that is the case, the algorithm updates the distance and predecessor
list, respectively. The performance of Dijkstra’s and Bellman-Ford algorithms
is directly related to how often they perform edge relaxation.

2.5.1 The Bellman-Ford Algorithm

The Bellman-Ford algorithm shown in Algorithm 3 was devised independently
by Richard Bellman and Lestor R. Ford Jr, using different methods [81, 82].
Bellman solved the problem using dynamic programming, while Ford used a
system of inequality equations.

The input to the algorithm consists of a graph G(V, E) and a source node s.
The algorithm computes the shortest-path from the source node to every other
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node i ∈ V. It begins by initializing the predecessor and distance lists according
to Algorithm 1. Then, for each node in the graph, it loops through all edges
calling Algorithm 2 to perform edge relaxation.

When the algorithm reaches line 8 the distance list contains a shortest-path
weight entry for each node. The actual path can be obtained by recursive index-
ing of the predecessor list. For example, for a shortest path v0, v1, . . . , vk−1vk,
π[vk] returns the node vk−1, and π[π[vk]] = π[vk−1] supplies the vertex vk−2.
The recursion continues until the predecessor list returns node v0, thus pro-
viding the complete path, or NIL in the case that no path between v0 and vk
exists.

Algorithm 3 The Bellman-Ford algorithm.
Require: Graph G(V, E), source node s

1: Initialize(G, s, d, π)
2: V ← |V|
3: for i ∈ V do
4: for each link (u, v) ∈ E do
5: Relax((u, v), w(u, v), d, π)
6: end for
7: end for
8: for each link (u, v) ∈ E do
9: if d[v] > d[u] + w(u, v) then

10: ERROR: Negative-weight cycle discovered
11: end if
12: end for

The Bellman-Ford algorithm is capable of handling graphs with negative
weights and positive-weight cycles. The purpose of the algorithm’s last for-
loop is to check that, indeed, the graph contains no negative-weight cycles. The
entries in the distance list are shortest-path weights or ∞ in the case no path
exists. Therefore, the condition on line 9 must be false when no negative-weight
cycle exists (c. f. , line 1 in Algorithm 2). The only situation in which the
condition on line 9 holds is when negative-weight cycles do exist (see [51] for a
formal proof).

The computational complexity of the Bellman-Ford is determined by the
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number of vertices and edges in the graph and is in fact O (V E).

2.5.2 Dijkstra’s Algorithm

Dijkstra’s algorithm [83] is a different method for finding the shortest-path from
a node s to the remaining nodes in the graph. It is less general than the Bellman-
Ford algorithm since it requires non-negative weights for all edges of the graph.
On the other hand it has better run-time performance when the number of edges
in the graph is larger than the number of nodes.

The key element in the algorithm is the min-priority queue Q. The queue is
used to store nodes indexed by their corresponding value in the distance list d,
such that the node with the shortest distance value can be quickly retrieved.

Algorithm 4 Dijkstra’s algorithm.
Require: Graph G(V, E), source node s

1: Initialize(G, s, d, π)
2: Enqueue(Q,V)
3: while Q 6= ∅ do
4: u← Extract-Min-Distance(Q)
5: for each vertex v ∈ Adj[u] do
6: Relax((u, v), w(u, v), d, π)
7: end for
8: end while

After the initialisation step on line 1, the algorithm adds all vertices from V
to the queue Q. Then, the algorithm enters the while loop where it repeatedly
removes from Q the vertex with minimum distance, until the queue becomes
empty. For each extracted vertex it obtains the set of adjacent nodes Adj[u],
and performs edge relaxation for the edges connecting u to the nodes in Adj[u]4.

Upon completion, the distances from vertex s to the other nodes in the graph
are stored in the distance list d. The actual path can be obtained by recursive
indexing of the predecessor list, as it was shown in the case of the Bellman-Ford

4The algorithm, as presented here, assumes the graph is represented using an adjacency

list. In the case of an adjacency matrix, Adj[u] can be easily computed by selecting the

non-zero elements from row u of the matrix.
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algorithm. Dijkstra’s algorithm has O
(
V 2
)

computational complexity. It is
possible to achieve a O (V log2 V + E) complexity if the algorithm is modified
to use a more sophisticated min-priority queue based on Fibonacci heaps [84].
However, our implementation follows the original algorithm.

2.5.3 Breadth-First Search (BFS)

BFS is typically presented as a method to explore graphs rather than a tradi-
tional shortest-path algorithm. This is because BFS implicitly assumes that all
links have equal weights, which can be seen on line 14 in Algorithm 5. There-
fore, this method can be used only in the case where our interpretation of a
shortest-path is that of a path with minimum number of hops (i. e. , a path
with minimum length according to Definition 2.4 on page 19).

Algorithm 5 Breadth-first search (BFS).
Require: Graph G(V, E), source node s

1: for each vertex v ∈ V do
2: c[v]← WHITE
3: d[v]←∞
4: π[v]← NIL
5: end for
6: c[s]← GREY
7: d[s]← 0
8: Enqueue(Q, s)
9: while Q 6= ∅ do

10: u← Dequeue(Q)
11: for each v ∈ Adj[u] do
12: if c[v] = WHITE then
13: c[v]← GREY
14: d[v]← d[u] + 1
15: π[v]← u

16: Enqueue(Q,n)
17: end if
18: end for
19: end while
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In addition to predecessor and distance lists, BFS manages a color list as
well. When the algorithm starts, all nodes are labeled WHITE, as it can be
observed on line 2. WHITE nodes are nodes that have not been visited yet
by the algorithm. When a node is visited, its label changes to GREY. BFS
uses a queue Q also, but compared to the min-priority queue used by Dijkstra’s
algorithm, this is a regular first in first out (FIFO) queue. The Extract-Min-

Distance operation is therefore replaced by the Dequeue operation, which
retrieves the element at the head of queue.

At the end of the initialization phase, lines 1–8, the node s has been labeled
GREY and added to the queue and the algorithm proceeds to the discovery
phase shown on lines 9–19. During the discovery phase, BFS dequeues one node
at a time until the queue is emptied. The algorithm verifies if each adjacent
node to the dequeued vertex has been visited before. If that is the case, the
adjacent node is colored GREY, its entry in the distance and predecessor list
are updated and then the node is added to the queue Q. Essentially, what
BFS does is to discover at first all nodes located one hop away from s, then all
nodes located two hops away from s and so on until the entire network has been
explored.

Compared to the previous two algorithms, BFS is much more efficient. Its
O (V + E) computational complexity makes it an ideal candidate for problems
with minimum-length paths.

2.5.4 Yen’s K Shortest Paths Algorithm

The optimization problems described in the next chapter are concerned with
the distribution of a set of bandwidth demands over multiple paths. For large
networks it becomes impractical to manually describe for each demand the paths
connecting the source with the destination node. An algorithm that performs
this task automatically is more efficient. This is where Yen’s KSP algorithm
comes into the picture.

Yen’s algorithm can find up to K shortest paths between a source node and
a destination node, such that path (i− 1) is shorter than path i for 1 < i ≤ K.
Depending on the network topology in question, a node pair can be disconnected
or connected by less than K paths. The algorithm handles correctly both special
cases [79].
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Algorithm 6 Yen’s K shortest paths algorithm.
Require: Graph G(V, E), source vs and destination vd, K

1: P 1 ← DIJKSTRA(G, vs, vd)
2: for k ← 2, . . . ,K do
3: for vi ← vs, v

k−1
2 , . . . , vk−1

d−1 do
4: for j ← 1, 2, . . . , (k − 1) do
5: if Rk−1

vi ≡ Rjvi then
6: w(vji , v

j
i+1)←∞ in the graph G

7: end if
8: end for
9: Skvi ← DIJKSTRA(G, vi, vd)

10: if Skvi 6= ∅ then
11: P kvi ← Rk−1

vi

⋃
Skvi

12: C
⋃
P kvi

13: if C contains K − k + 1 paths then
14: break
15: end if
16: end if
17: end for
18: P k ← min C
19: restore all changed weights w to original values
20: end for
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The pseudo-code for Yen’s KSP is shown in Algorithm 6. The algorithm
requires a graph description, G(V, E), a source node vs, a destination node vd
and the desired number of shortest paths, K. We denote the kth shortest
path between vs and vd by P k. Furthermore, the ith node (vertex) on the kth
path is denoted by vki . For k > 1, each path P k consists of a root Rkvi that
extends from the source node vs to an intermediate node vki and of a spur Skvi
from node vki to the destination node vd. A candidate path P kvi coincides with
the (k − 1)st shortest path, P k−1, in nodes vs, . . . , vk−1

i and differs from the
remaining portion of P k−1 that consists of nodes vk−1

i , . . . , vk−1
d−1 , vd. Node vk−1

d−1

is the predecessor of the destination node on path P k−1. The candidate path
P kvi is also called a deviation from the path P k−1 at the node vi.

The first shortest path P 1 is computed using Dijkstra’s shortest path al-
gorithm [83], as shown on line 1. Subsequent shortest paths are computed
iteratively. The idea is to find new deviations, searching from the source node
towards the destination node. The for-loop on line 3 computes the root Rk−1

vi

of the shortest path P k−1. On each loop iteration, the root is allowed to extend
one node further towards the destination, up to the node vd−1 preceding the
destination. During each iteration this root is compared to the roots of equal
length for all shortest paths computed so far, as shown on lines 4–5.

If the compared roots consist of the exact same sequence of nodes, then the
algorithm removes the link connecting the nodes vji and vji+1 from the graph.
This is shown on line 6, where the algorithm sets the link weight w to infinity.
This has the effect of forcing Dijkstra’s algorithm on the next line to find a new
shortest path from vi to vd, different from Rk−1

vi (note that nodes vji and vi are
the same at this point). If Dijkstra’s algorithm is successful in finding a shortest
path, then we concatenate the path to the root Rk−1

vi and save that in the list
C with candidate paths, as shown on lines 11–12. Since it is not necessary to
store more than (K − k + 1) paths in the candidate list [79], we terminate the
for-loop started on line 3 when the list grows to this size.

On line 18 Yen’s KSP extracts the shortest path from the candidate list
and this becomes our kth shortest path. Before starting a new iteration, the
algorithm restores the weights in the graph as shown on the next line.

Yen’s KSP algorithm has O
(
KV 3

)
worst-case time complexity. In the case

when Dijkstra’s algorithm uses Fibonacci heaps the complexity is reduced to
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O (KV (V log2 V + E)) [80]. There have been reports [80, 85] of newer imple-
mentations that share the same worst-case complexity, but with the claim that
in practice they perform better than Yen’s KSP.

2.6 Summary

In this chapter we established graph theoretical notation and terminology. We
provided also a brief overview of various graph models used to represent real
networks and a short description of the BRITE topology generator. Further-
more, we discussed different classes of algorithms and methods used to quantify
algorithmic efficiency.

In the final part of the chapter our attention was focused on shortest path
algorithms, which are used in our ORP framework. We provided algorithmic
formulation and worst-case run-time estimates for the Bellman-Ford algorithm,
Dijkstra’s algorithm, breadth-first search and Yen’s K shortest paths algorithm.
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Chapter 3

Optimization Algorithms

The ORP framework described in Chapter 5 relies on three different types of
optimization algorithms:

i) path selection,

ii) K shortest paths,

iii) flow allocation.

The purpose of the path selection algorithm is to find a path from a source
node s to a destination node d, subject to a number of QoS constraints. In the
event that one or more paths are no longer able to satisfy the QoS constraints,
the K shortest paths algorithm is used to discover multiple backup paths. The
flow allocation algorithm is then used to distribute the affected flows over the
backup paths, such that the traffic volumes are accommodated [86].

To quantify the time and memory requirements for this type of computations
we have implemented a performance tested for network flow algorithms. Using
this testbed we have analyzed the performance of Yen’s K shortest paths (KSP)
algorithm [79] as well as the performance of linear optimization methods (i. e. ,
the simplex method and the interior point method) in conjunction with the pure
allocation problem (PAP) and the PAP with modified link-path formulation
(PAP-MLPF) [70]. These problems are described in Section 3.2. The end goal
in this chapter is to select, based on empirical data provided by the testbed, an
optimization algorithm suitable for use with ORP.
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In the next section we describe linear programming terminology and then
proceed to outline optimization problems related to path selection and flow
allocation. The remaining part of the chapter describes the performance testbed
and the performance results obtained with it.

3.1 Linear Programming

The expression linear programming refers to the design and analysis of algo-
rithms for solving linear optimization problems [87]. The general form of a
linear optimization problem is shown in Table 3.1.

minimize f (x) = cTx

subject to Ex = p (1)
Gx ≥ s (2)
Hx ≤ t (3)
xi ∈ R for i = 1, . . . , n

Table 3.1: Linear optimization problem in general form.

The function f (x) is called the objective function. The unknown variables
are denoted by the column vector x with n elements. The vector cT holds the
coefficients for the unknown variables. The matrix E contains the coefficients
for the equality constraints. Similarly, the matrices G and H represent the
coefficients for the inequality constraints. The vectors p,s and t contain the
constants on the right hand side of the equalities and inequalities, respectively.
Solving this problem, implies finding an optimal point x∗ (also called optimal
solution) such that the optimal value f (x∗) is a minimum and all constraints
are satisfied. In the description of the linear problem any combination of the
constraints (1)–(3) may appear. If there are no constraints of the type (1)–(3),
then the linear problem is unconstrained.

Optimization algorithms (e. g. , the simplex method) require the problem
description to be converted from the general form to the standard form shown
in Table 3.2. To do that, the inequality constraints (2) and (3) are changed to
equality constraints and are stored together with (1) in matrix A [66].
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minimize f (x) = cTx

subject to Ax = b

xi ≥ 0 and bi > 0 for i = 1, . . . , N

Table 3.2: Linear optimization problem in standard form.

Inequality constraints can be changed to equality constraints by adding slack
or surplus variables to the problem. For example, given the constraint row i in
matrix G

gi1x1 + gi2x2 + · · ·+ ginxn ≥ si (3.1)

this row can be converted into standard form by subtracting from it a surplus
variable y1 such that

gi1x1 + gi2x2 + · · ·+ ginxn − yi = s1. (3.2)

There are just as many surplus variables as rows in the matrix G. Similarly, for
the constraints row i in matrix H

hi1x1 + hi2x2 + · · ·+ hinxn ≤ ti (3.3)

we add a slack variable wi on the right side of the equality sign such that

hi1x1 + hi2x2 + · · ·+ hinxn + wi = ti. (3.4)

Geometrically, the feasible region of the problem described in Table 3.2 is
always a convex polytope, also called simplex. The vertices of the simplex con-
stitute feasible solutions to the optimization problem. For a problem with n

variables and m constraints there are(
n

m

)
=

n!
m!(n−m)!

(3.5)

feasible solutions.
The simplex method, which is the classical algorithm for solving linear op-

timization problems, attempts to find the optimal solution by searching the
vertices of the polytope in an efficient manner. The algorithm starts in one of
the simplex vertices, and it evaluates how the objective function changes if it
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were to “move” into one of the (n−m) neighboring vertices. The move is always
along the edges of the simplex. Although in practice the simplex method ap-
pears to have O (m+ n) computational complexity, it can approach exponential
complexity on some specific problems [50, 70, 87].

A newer class of optimization algorithms, called interior point methods
(IPMs), has O (n log 1/ε) theoretical worst-case complexity, where ε > 0 is a
small tolerance factor. Contrary to the simplex method, IPMs approach the
solution asymptotically from the interior or exterior of the polytope. Many
practical IPM implementations, including the one used here, are based on tech-
niques suggested by Mehrotra [88]. These techniques are aimed at improving
the performance of the algorithm. Their side effect is that certain theoretical as-
pects of the algorithm are modified. Hence, it is not yet known if the complexity
estimate apply to Mehrotra-based implementations [87].

3.2 Optimization Models

In this section we focus on optimization models that are used within the ORP
framework to solve multi-constrained path (MCP) and multi-constrained opti-
mal path (MCOP) selection problems [89] as well as flow allocation problems.
Comprehensive surveys on additional types of optimization models and algo-
rithms are available in [64, 69, 70].

The starting assumption is that information about network topology is avail-
able in the form of a weighted digraph G(V, E). The weight of each link repre-
sents a set of metrics of interest, such as bandwidth, delay, jitter, packet loss
and cost. In addition to the graph and link weights, information about the flow
demands is available as well. A flow demand is a set of path constraints for
the path P (s, d), where s ∈ V is the source node and d ∈ V is the destination
(sink) node. In its simplest form, the flow demand contains only the bandwidth
required to transfer data from s to d. In our implementation, the flow demands
are tied to the direction of the path.
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3.2.1 Multi-Constrained Path Selection

In the case of a MCP problem we attempt to find one constrained path at a
time. This is a feasibility problem. Each link weight in G(V, E) is a vector of
QoS metrics, where each metric belongs to one of the following types:

additive: delay, jitter, cost

multiplicative: packet loss

min-max: bandwidth, policy flags

Multiplicative weights can be turned into additive weights by taking the loga-
rithm of their product. The constraints on min-max metrics can be dealt with
by pruning the links of the graph that do not satisfy the constraints [89, 90].
Therefore, in the remainder of this section we focus on additive link weights
only.

For i = 1, . . . ,m we denote by wi(u, v) the ith additive metric for the link
(u, v) between nodes u and v such that (u, v) ∈ E . The MCP optimization
problem for m additive constraint values Li on the requested path is shown in
Table 3.3.

find path P

subject to wi(P ) =
∑

(u,v)∈P

wi(u, v) ≤ Li for i = 1, . . . ,m and (u, v) ∈ E

Table 3.3: Multi-constrained path selection problem (MCP).

The MCP selection problem problem can be converted to a multi-constrained
optimal path (MCOP) selection problem by minimizing or maximizing over one
of the metrics wi. It is also possible to define a path-weight function f over all
metrics [89, 90] and to optimize over the path-weight function itself, as shown
in Table 3.4.

Wang and Crowcroft proved in [75] that MCP problems with two or more
constraints are NP-complete. By extension, MCOP problems with two or more
constraints are NP-complete as well. The apparent intractability of these prob-
lems suggests abandoning the search for exact solutions in the favour of heuris-
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minimize f (w(P ))
subject to wi(P ) =

∑
(u,v)∈P

wi(u, v) ≤ Li for i = 1, . . . ,m and (u, v) ∈ E

Table 3.4: Multi-constrained optimal path selection problem (MCOP).

tics that have a better chance of running in polynomial time. Chen and Nahrst-
edt suggest a O (2L) heuristic [91] for the MCP problem, where L is the length
of the feasible path. The path selection algorithm in ORP is based on this
heuristic.

The results of a study [76] on the NP-complexity of QoS routing found four
conditions leading to its appearance:

i) graphs with long paths (large hop-count),

ii) link weights with infinite granularity, or excessively large or small link
weights,

iii) strong negative correlation among link weights,

iv) “critically constrained” problems, which are problems with constraint val-
ues close to the center of the feasible region.

The authors of the study consider that these conditions are unlikely to occur
in typical networks. If they are right, the consequence is that the exponen-
tial run time behavior of exact algorithms is bound to occur only in some few
pathological cases.

3.2.2 Flow Allocation

In the flow allocation problem, it is assumed that we know about one or more
directed paths connecting a source node s and a destination node d. These
paths can be discovered automatically, for example with a K shortest paths
algorithm. We consider the following type of optimization problems: given a
digraph G(V, E), a set P of directed paths and a set D of flow demands for
bandwidth, we would like to allocate bandwidth on the paths in P such as to
simultaneously satisfy all demands.
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If the traffic volume pertaining to a specific flow is allowed to be distributed
over several paths to the destination, this is said to be a feasibility problem for
bifurcated flows. This is the flow allocation problem that we are interested in.

On the other hand, if the problem includes the requirement that the entire
traffic flow between two nodes must be transmitted on a single path, instead
of being spread across several, we have a feasibility problem for non-bifurcated
flows. This problem is known to be computationally intractable [70] for large
networks (it is in fact NP-complete). Hence, it will not be considered here.

We adopt a notation called link-path formulation [70] to formalize our prob-
lem statement. Using this notation, we let the variable xdp denote bandwidth
allocated to demand d on path p. Recall that a demand is a request for a spe-
cific amount of bandwidth, hd, from a source node to a destination node. The
source node and the destination node can be connected by more than one path,
which explains the use of the index variable p. We use the variables D and E to
denote the number of demands in the demand set D and the number of edges
(links) in the set E , respectively. Further, the capacity of a link e is denoted by
ce. The indicator variable δedp is defined as

δedp =

{
1 if link e is used by demand d on path p,

0 otherwise.
(3.6)

Our problem statement can now be written as shown in Table 3.5.

find xdp for all d ∈ D, p ∈ P
subject to

∑
p xdp = hd, d = 1, 2, . . . , D∑
d

∑
p δedpxdp ≤ ce, e = 1, 2, . . . , E

Table 3.5: Pure allocation problem (PAP).

PAP is a linear feasibility problem. Finding a solution to it entails solving a
system of linear equations of the type Ax = b. If the number of variables equals
the number of equations we can use LU-decomposition or the conjugate gradient
method [92] to solve the system of equations. If there are fewer equations than
variables, then the system is underdetermined and has an infinity of solutions
or no solution at all. In the first case, this type of systems can be solved
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with singular value decomposition (SVD). Overdetermined systems of linear
equations (i. e. , systems with more equations than variables) in general lack an
exact solution. In this case, one can transform the system into a linear least-
square optimization problem to obtain an approximation of the true solution.
The goal of the least-square problem is to minimizes the residual error ‖Ax− b‖
due to the approximation. The least square problem can be solved for example
with SVD or with QR-decomposition [68, 93].

The first phase (phase I) of the simplex method is another approach for
solving the system of linear equations. The purpose of phase I is to obtain an
initial feasible solution from which the simplex method can start. This involves
augmenting the original system Ax = b with a set of artificial variables y and
using the simplex method to solve the modified system Ax + y = b [66, 86, 87].

In [70], it is suggested that the PAP described in Table 3.5 can be reformu-
lated in the form of the linear optimization problem shown in Table 3.6. The
new problem, PAP with modified link-path formulation (PAP-MLPF), has an
additional variable z to be modified. Unlike the PAP, this problem always has a
feasible solution in the sense that a minimum value for z can be found. If z < 0
in the solution, we have a successful bandwidth allocation. Otherwise the value
of z indicates how much additional bandwidth is required to obtain feasibility.

minimize z for all d ∈ D, p ∈ P
subject to

∑
p xdp = hd, d = 1, 2, . . . , D∑
d

∑
p δedpxdp ≤ z + ce, e = 1, 2, . . . , E

Table 3.6: PAP with modified link-path formulation (PAP-MLPF).

The PAP-MLPF can be solved with the linear programming algorithms pre-
sented in Section 3.1.

3.3 Performance Testbed

The performance testbed for network flow algorithms consists of five main parts:

i) network topology parser,
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ii) flow demands module,

iii) graph data types and algorithms,

iv) optimization methods,

v) resource utilization counters.

Currently, the topology parser is able to read network graphs created with
the BRITE [63] topology generator. BRITE uses a simple text-based file format,
which allows users to define their own topologies using a text editor.

The flow demand module is used to either randomly generate flow demands
or to read demands from a file. A flow demand consists of a source node iden-
tifier, a destination node identifier and a set of QoS values: bandwidth (i. e. ,
bit rate or throughput), delay and loss. The set of QoS values can be easily
extended to incorporate other metrics. A collection of flow demands is tied to
a specific topology since the source and destination nodes must have the same
identifier as in the corresponding graph. For random flow demands the value of
each component (i. e. , node identifiers and QoS parameters) is chosen according
to an uniform distribution. We are using for this purpose the Mersenne-Twister
random number generator [94] from the GNU Scientific Library (GSL) version
1.9 [95]. The user can choose to initialize the random number generator using
the default seed or with a seed from device /dev/urandom [96]. The Linux kernel
maintains an entropy pool containing environmental noise from device drivers
and other sources. The entropy pool is used to create random numbers that can
be accessed via /dev/urandom.

We have implemented a number of graph algorithms for performing various
operations on Graph objects. The Graph object is used to store data imported
from a BRITE topology file. Additionally, it provides various methods to obtain
information about or modify the contents of Graph objects (e. g. , finding the link
connecting a pair of nodes if one exists, adding and removing nodes and links).
A summary of the implemented graph algorithms consists of: BFS, depth-first-
search (DFS), topology closure, connectivity map, Bellman-Ford shortest-path,
Dijkstra’s shortest-path and Yen’s KSP [51, 79, 81–83].

There can be several optimization algorithms that are able solve the same
type of optimization problem. Furthermore, an optimization algorithm may
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have different vendor implementations. The combination of these three factors
(i. e. , problems, algorithms and implementations) is difficult to handle in a
consistent way, since vendor implementations use different APIs and different
input formats for the problem specification. We have designed a common solver
interface in order to improve this situation. A solver is the encapsulation of an
optimization problem description with the implementation of the optimization
algorithm used to solve the problem. A solver has three functions that can be
called by the program:

init(): loads the Graph object, the flow demands and a set of paths (e. g. , the
three shortest paths for all node pairs) into the solver. The solver converts
all this information into an optimization problem (i. e. , into a system of
equations and a corresponding objective function)

solve(): runs the optimization algorithm on the optimization problem, ex-
tracts the solution, if one can be found, and returns the status to the
caller

clear(): resets the solver and frees up the memory

We have developed solvers for the PAP and PAP-MLPF optimization prob-
lems [70] using the simplex and interior point methods from the GNU Linear
Programming Toolkit (GLPK) version 4.28 [97]. Additional solvers can be inte-
grated with the rest of the testbed provided that they implement the common
interface.

The solvers have the ability to output a problem statement in detail and in
Table 3.7 we show an example of it. The group of equality equations corresponds
to the first constraint equation in Table 3.5 and ensures that for each demand
the sum of bandwidth allocations on each path satisfies the demand. The set of
inequality equations correspond to the second equation in Table 3.5 and their
purpose is to ensure that bandwidth allocations do not exceed link capacity.

Since the solvers are intimately tied to the problem being solved, they au-
tomatically convert the problem from the general form shown in Table 3.7 to
the standard form, adding slack variables when necessary. This leaves us in fact
with a system of linear equations. We solve the system of linear equations using
the phase I of the simplex algorithm. In GLPK this is achieved by setting the
objective function equal to zero [97]. The same procedure works for GLPK’s
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find xdp for all d ∈ D, p ∈ P
subject to x0,0 + x0,1 + x0,2 = 289.401

x1,0 + x1,1 + x1,2 = 496.613
x2,0 + x2,1 + x2,2 = 553.005

x1,2 ≤ 9269.23
x0,1 ≤ 899.3
x1,1 ≤ 402.51
x2,2 ≤ 6661.46
x0,2 ≤ 2505.57
x0,2 + x2,2 ≤ 8457.03
x1,1 + x2,0 ≤ 902.17
x0,0 + x1,0 + x1,2 + x2,1 ≤ 213.26
x0,1 ≤ 5685.38
x1,2 ≤ 9323.55
x0,0 ≤ 3240.66
x1,0 ≤ 3220.41
x2,2 ≤ 5912.13
x2,1 ≤ 5482.41

Table 3.7: PAP in detail for a network with 10 nodes.
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implementation of the interior point method. This is the approach used by our
solvers in handling feasibility problems.

The final part of the testbed, the resource utilization counters, are used
to measure the run-time performance for graph algorithms and solvers. The
performance is expressed in memory and central processing unit (CPU) time
usage as reported by the operating system.

Memory usage is harvested using the statm node in the Linux /proc pseudo-
filesystem [98]. This information is an aggregation of memory reservations
within our own code and also of memory reserved by software libraries we link
with, e. g. , GSL and GLPK libraries. The counters record memory usage among
consecutive counter readings as well as the largest value since the counter was
started.

CPU time usage is recorded using getrusage [99]. This system call returns
the CPU time spent by the current process in kernel space and user space,
respectively. The counters keep track of time usage between consecutive counter
readings as well as the total time used since the counter was started.

In addition of CPU time the counters record absolute time durations (i. e. ,
wall clock time) from the gettimeofday system call [100]. The difference be-
tween the wall clock time and the total amount of CPU time is due to other
processes running concurrently on the same host.

All main testbed components are developed in C++ and make heavy use of
the C++ Standard Template Library (STL) [101, 102]. The testbed software
is organized into a linkable library called liboptim. This facilitates integration
at source code level with other applications (e. g. , simulators or network-based
utilities) as we have done for ORP.

3.4 Experiment Setup and Results

The experiments described here were performed on a host equipped with an In-
tel Core2 2.0 GHz CPU with 4 MB cache memory and 2 GB RAM. The host
was running the Gentoo Linux 32-bit operating system with kernel 2.6.24.
The testbed and the required libraries were compiled with the GNU Compiler
Collection (GCC) version 4.1.2 with optimization flag -O2. This is the form in
which the libraries would be used by a “real-world” application. Consequently,
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the results presented here are what should be expected in a “real-world” en-
vironment, when the same experiments are performed with similar network
topologies, and on a host with similar hardware and software specifications.

We used BRITE to generate a set of network topologies with 10, 25, 50,
100, 125, . . . , 300 nodes. Apart from the number of nodes, BRITE was config-
ured to generate one level “ROUTER (IP) ONLY” graphs using the Barabási-
Albert (BA) model [62] with incremental growth type and preferential connec-
tivity. The nodes were placed on a plane of size 10000 × 10000 divided into
squares of size 100× 100. We selected heavy-tailed node placement, which uses
the bounded Pareto distribution to choose the number of nodes in a square.
The number of links per node (i. e. , BRITE’s parameter m) was set to 4. Fur-
thermore, we selected uniform bandwidth distribution between 10 and 10000.

In BRITE all links in a graph are undirected. When we import a BRITE
topology in the testbed each link is replaced by a pair of links, one in each
direction.

After the topology is imported we run Yen’s KSP algorithm to compute 3,
5, and 7 shortest paths, respectively, from each node to the other nodes in the
graph. For example, in a graph with 100 nodes for each node we call Yen’s KSP
algorithm 99 times computing up to a maximum of K × 99 paths. In our case
K = 3, 5, 7 and when referring to a specific K instance of Yen’s KSP we use the
shorthand notation 3SP, 5SP and 7SP, respectively. Each time the testbed has
computed the KSPs from a node to all other nodes we record the time spent in
doing that as well as the memory usage.

When the algorithm has finished iterating over all nodes, we compute an
average value of the computation time. The computed values are shown in
Figure 3.1(a), Figure 3.2(a) and Figure 3.3(a). Each figure consist of a group
of three bars. Each group corresponds to a network with a different number of
nodes, increasing from the left to the right on the bar diagram. The height of
each bar represents the average time duration in seconds. In each group, the
first bar to the left corresponds to the measured wall-clock time. The bar in
the middle denotes time spent in user space and is the actual time spent by
the processor in performing the computation. The last bar shows the amount
of time spent in kernel space. This occurs, for example, when I/O operations
take place, such as when the testbed process logs data to a file. In the tests
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Figure 3.1: Yen’s 3SPs.

considered here, kernel-space time is generally much lower than wall-clock time
and user-space time. Consequently, in some of the graphs the bars corresponding
to kernel-space time are hardly visible.

A rapid increase in computation time can be observed in all three figures.
This is expected given the cubic worst-case time complexity of Yen’s KSP. We
have plotted in Figure 3.4 the average user-space time, on the left side using
linear scale on the axes, and with logarithmic scale on the right side. The
almost straight line in Figure 3.4(b) indicates a power-law relationship between
the number of nodes and the user-space time required for computation.

It can be observed that, for a network of 300 nodes, the average user-space
time required to compute 5SPs to 299 nodes is almost double the duration of that
required by 3SPs (i. e. , ≈ 7 seconds versus ≈ 3.5 seconds). When comparing
computation time between 5SPs and 7SPs, again for 300 nodes, it is observed
that the 7SPs require only about 50 % more time than the 5SPs. This happens
when, due to previous iterations, (K − k + 1) shortest paths accumulate in the
candidate list C maintained by the algorithm (see Algorithm 6 on page 36).
When this occurs, the number of calls to Dijkstra’s algorithm is reduced. In
short, the algorithm performs more work in the early stages while it discovers
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Figure 3.2: Yen’s 5SPs.
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Figure 3.3: Yen’s 7SPs.
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Figure 3.4: KSP user-space time comparison.

initial paths k, such that 1 ≤ k � K, than in the later stages, where for paths
k such that 1� k ≤ K, it can exploit knowledge from the earlier stages.

We now turn our attention to the corresponding memory usage shown in
Figure 3.1(b), Figure 3.2(b), and Figure 3.3(b). Each bar in a figure shows the
memory used for storing all KSPs for all nodes in the corresponding network,
including memory used by libraries loaded by the testbed. The bar correspond-
ing to a network of 100 nodes in Figure 3.1(b) indicates the memory used by the
testbed process after we have computed a maximum of 3×99×100 paths, while
the same bar in Figure 3.2(b) and Figure 3.3(b) shows the memory usage after
computing a maximum of 5×99×100 paths and 7×99×100 paths, respectively.
The bar diagrams show a growth pattern similar to that of computation time.
The memory usage for a network with 300 nodes increases with ≈ 40 % when
going from 3SPs to 5SPs and with ≈ 30 % for the step from 5SPs to 7SPs.

The next target in our performance study is the init() function in the
solver interface. The GLPK API uses a data type called problem object to
represent a problem statement. The problem object must be initialized with
the number of rows and columns belonging to the problem statement, before
the actual problem can be loaded. The number of rows includes any slack or
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Figure 3.5: Solver init() subroutine with 3SPs.
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(b) Memory usage, 20 % demands.
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Figure 3.6: Solver init() subroutine with 5SPs.
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Figure 3.7: Solver init() subroutine with 7SPs.
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surplus variables required to bring the problem into standard form. This allows
GLPK to reserve enough memory for the problem object. Consequently, the
init() function performs two passes. During the first pass we iterate through
the flow demands and through the KSPs and compute the amount of memory
needed. During the second pass we iterate again through the same items and
load the variable coefficients, the constraint values and the objective function
into the reserved memory. The time spent in init() is computed over both
passes.

There are several factors that decide the number of equations and the number
of variables in a problem statement:

i) amount of flow demands,

ii) number of paths associated with each flow demand,

iii) number of links traversed by the flow demand paths.

Item ii) can be controlled loosely by a suitable choice of K for Yen’s KSP. Item
iii) is indirectly decided by the choices in i) and iii). To test the influence of
item i) on the problem statement we have created two scenarios corresponding
roughly to a quiescent network and to a busy network, respectively. In the
quiescent network scenario we create d0.2V e demands, where V is the number
of nodes in the graph1. We call this the “20 % demands” scenario. In the busy
network scenario we let the number of demands go up to d0.8V e and we call it the
“80 % demands” scenario. For each demand, we randomly choose the bandwidth
required, the source and the destination nodes. The only requirement is that the
source and the destination nodes are distinct from each other. The bandwidth
values are selected from a uniform distribution on the half-open segment (0, 256].

Figures 3.5–3.7 show each a group of bar diagrams for the run-time behavior
and memory usage of the init() function in the case of 3SPs, 5SPs and 7SPs,
respectively. In each group we show the 20 % demands and 80 % demands
scenarios on top of each other. At the top of each bar diagram there are two
rows with numbers aligned to the bars. The first row shows the number of
equations corresponding to the bar in question and the second line shows the
number of variables. We want to emphasize that the number of variables on

1The notation dxe denotes that x is rounded upwards to the nearest larger integer.
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top of the diagrams does not include slack variables. To compute the number of
slack variables we can use the property that for a PAP problem with n demands,
n of the equations are equality equations for satisfying the demands, and the
reminder are inequality equations for satisfying link capacity constraints. The
inequality equations require a slack variable each. The largest system of linear
equations encountered in our test is shown in Figure 3.7(c) and Figure 3.7(d) and
contains 1801 equations and 1680 variables. In addition, this system includes
also 1801− (0.8× 300) = 1561 slack variables.

We can observe that the computation time for init() is directly proportional
to the number of demands: when the number of demands grows four times (i. e. ,
from 20 % to 80 % demands) so does the computation time. The same relation
holds between computation time and number of variables. This is expected
because the number of variables is equal to the number of demands multiplied
by the number of paths used by all demands. The BRITE topologies are strongly
connected, which allows Yen’s KSP to always find K paths between a pair of
nodes. This keeps the number of paths per demand constant (i. e. , 3, 5, and 7).

The memory usage displayed in the diagrams is constituted of the following
components:

• memory used for storing all KSPs as shown in Figure 3.1(b), Figure 3.2(b),
and Figure 3.3(b),

• memory reserved for all flow demands,

• memory reserved for GLPK’s problem object.

In all diagrams the memory usage shows roughly 20 MB increase for networks
with 250–300 nodes, when compared to the memory used for storing KSPs. For
smaller networks the increase is smaller because the STL data types allocate
a reasonable amount of memory from the start. Additionally, /proc/statm

reports memory usage in terms 4 KB pages reserved by the Linux kernel. When
the testbed is started a number of pages are automatically reserved, which can
be enough to hold our data for small networks.

The next six groups of graphs, Figure 3.8–3.13, show the computation time
required to solve the PAP and PAP-MLPF problems using the simplex method
and the interior point method (IPM), respectively. Some of the bars displaying
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(a) PAP-IPM computation time.
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(b) PAP-MLPF-IPM computation time.
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(c) PAP-SIMPLEX computation time.
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(d) PAP-MLPF-SIMPLEX computation time.

Figure 3.8: Solver solve() subroutine with 3SPs, 20 % demands.
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(a) PAP-IPM computation time.
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(b) PAP-MLPF-IPM computation time.
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(c) PAP-SIMPLEX computation time.
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(d) PAP-MLPF-SIMPLEX computation time.

Figure 3.9: Solver solve() subroutine with 5SPs, 20 % demands.
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(a) PAP-IPM computation time.
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(b) PAP-MLPF-IPM computation time.
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(c) PAP-SIMPLEX computation time.
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(d) PAP-MLPF-SIMPLEX computation time.

Figure 3.10: Solver solve() subroutine with 7SPs, 20 % demands.
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(a) PAP-IPM computation time.
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(b) PAP-MLPF-IPM computation time.
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(c) PAP-SIMPLEX computation time.
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(d) PAP-MLPF-SIMPLEX computation time.

Figure 3.11: Solver solve() subroutine with 3SPs, 80 % demands.
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(a) PAP-IPM computation time.
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(b) PAP-MLPF-IPM computation time.
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(c) PAP-SIMPLEX computation time.
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(d) PAP-MLPF-SIMPLEX computation time.

Figure 3.12: Solver solve() subroutine with 5SPs, 80 % demands.
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(a) PAP-IPM computation time.
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(b) PAP-MLPF-IPM computation time.
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(c) PAP-SIMPLEX computation time.
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(d) PAP-MLPF-SIMPLEX computation time.

Figure 3.13: Solver solve() subroutine with 7SPs, 80 % demands.
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entries in the millisecond range show user-space time or kernel-space time larger
than the total time value. This pathological behavior is caused by the getrusage
system call, which uses the system timer that runs at a frequency of 250 Hz.
The time reported by getrusage is consequently incremented by 4 ms units.
The total time provided by the gettimeofday system call has microsecond
accuracy [103].

The name in the caption of each graph denote the type of problem and solved
and the algorithm used:

PAP-IPM: pure allocation problem solved with the IPM,

PAP-MLPF-IPM: pure allocation problem with modified link-path formula-
tion solved with the IPM,

PAP-SIMPLEX: pure allocation problem solved with the simplex method,

PAP-MLPF-SIMPLEX: pure allocation problem with modified link-path
formulation solved with the simplex method.

The obvious observation is that the simplex method outperforms the IPM
in every tested scenario. We suspect that this happens because GLPK’s imple-
mentation of the interior point method is not as mature as the implementation
of the simplex method. In particular, there is a huge difference, almost two
orders of magnitude in some scenarios, between the IPM’s computation time
for the feasibility problem, PAP, and the computation time for the optimization
problem, PAP-MLPF. When the simplex method is used to solve these prob-
lems, the diagrams show minor differences (1–20 ms) between the computation
time of the feasibility problem versus the computation time of the optimization
problem.

We show no corresponding memory graphs since any fluctuations in the
memory usage while solving the problems are too small to distinguish from the
memory usage displayed in Figure 3.8–3.13.

3.5 Summary

The chapter started with a brief overview of linear programming notation. Using
this notation, we formulated optimization problems concerning path selection
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and flow allocation. Furthermore, we described the performance testbed for
methods used in solving network flow problems.

We used the testbed to obtain empirical results for the performance of Yen’s
KSP, the simplex method, and the IPM. The purpose for obtaining these results
was two-fold. First, we wanted to know the cost in terms of resource usage
associated with running these algorithms. Secondly, but no less important, the
test results provided guidance for choosing an optimization algorithm for the
ORP framework presented in Chapter 5.

Based on the results in final part of Section 3.4 we selected the simplex
algorithm to be used in ORP because it showed consistent good performance
when compared to the performance of the IPM.
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Chapter 4

Gnutella Traffic Models

In the design of the ORP framework described in Chapter 5 it is assumed
that implementations run on top of existing overlay networks spawned by end-
nodes. The Gnutella P2P network is a typical example of this type of overlays.
Consequently, Gnutella’s traffic characteristics were the subject of a detailed
study [104, 105].

The goal in studying the characteristics of Gnutella traffic was to obtain
a better understanding of P2P dynamics and to construct simple statistical
models that can be used for synthetic traffic generation.

In Section 4.1 we describe the Gnutella protocol with emphasis on message
format, bootstrap, connection establishment, topology exploration and resource
discovery. The infrastructure for measuring Gnutella traffic is described in Sec-
tion 4.2, which is followed by a presentation of the methodology for constructing
statistical models in Section 4.3. Section 4.4 presents the characteristics and
models obtained from the recorded traffic.

4.1 The Gnutella Protocol

Gnutella is a heavily decentralized P2P system. Nodes1 can share any type of
resources, although the currently available specification covers only computer

1A Gnutella node is also called a servent, which is a combination of the words server and

client.
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files [106].
The network spawned by Gnutella nodes consists of an unstructured topol-

ogy with a two-level hierarchy: ultrapeers (UPs) and leaf nodes (LNs). UPs are
faster nodes in the sense that they are connected to high-capacity links and have
a large amount of processing power available. LNs maintain a single connection
to their UP. An UP maintains 10-100 connections, one for each LN and 1-10
connections to other UPs [107]. The UPs perform signaling on behalf of the
LNs, thus shielding them from large volumes of signaling traffic. An UP does
not necessarily have LNs, in which case it works standalone.

The activities of Gnutella peers can be divided into two main categories:
signaling and user-data transfer (further referred to as data transfer). Signal-
ing activities are concerned with peer discovery, overlay topology maintenance,
content search and other management functions. Data transfer occurs when a
peer has localized during content search one or more files of interest.

According to the Gnutella Development Forum (GDF) mailing list, the
Gnutella community has recently adopted what is called support for high out-
degree [108]. This implies that UPs maintain at least 32 connections to other
UPs and 100–300 connections to different lead nodes. LNs are recommended to
maintain approximately 4 connections to UPs. The numbers may slightly differ
between different Gnutella vendors. The claim is that high outdegree support
allows a peer to connect to the majority of Gnutella peers in 4 hops or less [109].

4.1.1 Bootstrap

A Gnutella node that attempts to join the overlay for the first time must boot-
strap itself into the overlay. This implies finding and connecting to one or
several peers that are already part of the overlay. A list of active servents can
be obtained from a Gnutella Web Cache (GWC) [110] server. A GWC server
is essentially an Hypertext Transfer Protocol (HTTP) server maintaining a list
of active peers with associated listening sockets. A listening socket is an IP
address and port number pair that can be used to connect to the corresponding
servent. UPs update the list continuously, ensuring that new peers can always
join the overlay.

Once the node joins the overlay, additional peers can be found through the
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exchange of PING and PONG messages. The servent saves peer addresses in a
local host cache in order to avoid connecting to a GWC server upon restart. The
local host cache is used also if the servent supports the UDP Host Cache (UHC)
protocol. The protocol works as a distributed bootstrap system, transforming
UHC-enabled servents into GWC-like servers [111] and off-loading the actual
GWC servers.

4.1.2 Connection Establishment

Peer signaling occurs over TCP connections. Once a TCP connection has been
setup, the peers at each end of the TCP connection perform a three-way Gnutella
handshake. The Gnutella handshake allows the negotiation of a common set of
capabilities to be used during the session. The type of capabilities negotiated
are UP - LN relationship, support for high outdegree, traffic compression, etc.

If the handshake fails the TCP connections is teared down. Otherwise,
the client and the server start exchanging binary Gnutella messages over the
existing TCP connection. The connection lasts until one of the peers decides
to terminate the session. At that point the node ending the connection can
optionally send a BYE message to notify its peer of its departure. The TCP
connection will then be closed.

If the capability set used by the peers includes stream compression [112],
then all data on the TCP connection is compressed, with the exception of the
initial Gnutella handshake. The type of compression algorithm can be selected
during the handshake, but the currently supported algorithm is deflate, which
is implemented in zlib [113].

4.1.3 Messages

Each Gnutella message starts with a generic header that contains the fields
shown in Figure 4.1 (the numbers in the figure denote bytes):

• message ID using a globally unique identifier (GUID), to uniquely identify
messages on the Gnutella network [114],

• payload type code, denoted by P in Figure 4.1, which identifies the type of
Gnutella message. The currently supported messages are: PING, PONG,
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GUID P T H Length

15 17 19 220

Figure 4.1: The Gnutella header.

BYE, QRP, VEND, STDVEND, PUSH, QUERY, QUERY HIT and HSEP,

• time-to-live (TTL), to limit the signaling radius and its adverse impact on
the network. Messages with TTL > 15 are dropped2. This field is denoted
by T in Figure 4.1,

• hop count to inform receiving peers how far the message has traveled,
denoted by H in Figure 4.1,

• payload length in bytes to describe the length of the message, not including
the header. The payload length indicates where in the byte stream the
next Gnutella generic message header can be found.

The generic Gnutella header is followed by the actual message, which may
have own headers. Also, the message may contain vendor extensions. Vendor
extensions are used when a specific type of servent wants to implement experi-
mental functionality not covered by the standard specifications.

4.1.4 Topology Exploration

Each successfully connected servent periodically sends PING messages to its
neighbors. The receiver of a PING message decrements the TTL in the Gnutella
header. If the TTL is greater than zero the node increments the hop counter in
the message header and then forwards the message to all its directly connected
peers, with the exception of the one from where the message came. PING
messages do not carry any user data, not even the sender’s listening socket.
This means that the payload length field in the Gnutella header is set to zero.

PONG messages are sent only in response to PING messages. More than
one PONG message can be sent in response to one PING. The PONG message
travels in the reverse direction on the path used by the corresponding PING

2Nodes that support high outdegree drop messages with TTL > 4.
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message. Each PONG message contains detailed information about one active
Gnutella peer. It also contains the same GUID as the PING message that
triggered it.

UPs use the same scheme, however they do not forward PINGs and PONGs
to and from the LNs attached to them.

Gnutella peers are required to implement some form of flow control in an
effort to prevent PING-PONG traffic generated by malfunctioning servents from
swamping the network. A simple flow control mechanism is specified in [115].

The BYE message is an optional message used when a peer wants to inform
its neighbors that it will close the signaling connection. The message is sent
only to hosts that have indicated during handshake that they support BYE
messages.

4.1.5 Resource Discovery

Gnutella peers use QUERY messages to search for files. The message payload
consists of a text string, information about the minimum speed (i. e. , upload
rate) of servents that should respond to this message, and in some cases addi-
tional extensions that are not within the scope of this work. The most important
part of the query is the text string, which is used to match files on the nodes
receiving the message.

Gnutella v0.6 sends QUERY messages through a form of selective forwarding
called dynamic query [108]. A dynamic query first probes how popular the
targeted content is. This is done by using a low TTL value in the QUERY
message that is sent to a small set of directly connected peers. A large number
of replies indicate popular content, whereas a low number of replies imply rare
content. For rare content, the QUERY TTL value and the number of directly
connected peers receiving the message are gradually increased. This procedure is
repeated until enough results are received or until an upper bound on the number
of QUERY receivers is reached. This form of resource discovery requires all LNs
to rely on UPs for their queries (i. e. , LNs do not perform dynamic queries).

If a peer that has received the QUERY message is able to serve the resource,
it responds with a QUERY HIT message. The GUID for the QUERY HIT mes-
sage must be the same as the one in the QUERY message that triggered the
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response. The QUERY HIT message lists all file names that match the text
string from the QUERY message, their size in bytes and some other informa-
tion [106]. In addition, the QUERY HIT messages contain the listening socket
to be used by the message receiver when it wants to download the matched files.
The Gnutella specification discourages the use of messages with size greater than
4 KB. Consequently, several QUERY HIT messages may be issued by the same
servent in response to a single QUERY message.

4.1.6 Other Features

The Query Routing Protocol (QRP) was introduced in order to mitigate the
adverse effects of flooding used by the Gnutella file queries [116]. QRP is based
on a modified version of Bloom filters [117]. The idea is to break a query into
individual keywords and have a hash function applied to each keyword. Given
a keyword, the hash function returns an index to an element in a finite discrete
vector. Each entry in the vector is the minimum distance (i. e. , number of hops)
to a peer holding a resource that matches the keyword in the query. Queries are
forwarded only to leaf nodes that have resources that match all the keywords.
This procedure substantially limits the bandwidth used by queries. Peers run
the hash algorithm over the resources they share and exchange the routing tables
(i. e. , hop vectors) at regular intervals.

LNs send route table updates only to UPs and the UPs propagate these
tables only to directly connected UPs [118].

Data exchange takes place over a direct HTTP connection initiated by the
receiver of a QUERY HIT message. Both HTTP 1.0 and HTTP 1.1 are sup-
ported but use of HTTP 1.1 is strongly recommended [106].

PUSH messages can be used when the file owner is protected by a firewall
that does not allow incoming TCP connections or if the host is behind a Network
Address Translation (NAT) device. In that specific case, the file requester opens
a listening socket and puts information about the socket in a PUSH message.
The PUSH message is sent over the signaling path to the file owner who, upon
message reception, is able to open a TCP connection to the file requester. At
that point the HTTP transfer can be performed. The PUSH message does not
help if both peers are protected by firewalls or NAT devices that block incoming
TCP connections.
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The Horizon Size Estimation Protocol (HSEP) [119] is used to obtain es-
timates on the number of reachable resources (e. g. , nodes, shared files and
shared kilobytes of data). Hosts that support HSEP announce this as part of
the capability set exchange during the Gnutella handshake. If the hosts on
each side of a connection support HSEP, they start exchanging HSEP message
approximately every 30 seconds. The HSEP message consists of n max triples.
Each triple describes the number of nodes, files and kilobytes of data estimated
at the corresponding number of hops from the node sending the message. The
n max values is the maximum number of hops supported by the protocol and its
recommended value is 10 hops [119]. The horizon size estimation can be used to
quantify the quality of a connection (e. g. , the higher the number of reachable
resources, the higher the quality of the connection).

4.1.7 Example of a Gnutella Session

Figure 4.2 shows a simple Gnutella scenario, involving three peers. It is assumed
that Peer A has obtained the listening socket of Peer B from a GWC server.
Using the socket descriptor, Peer A attempts to connect to Peer B. In this
particular example, Peer B already has a signaling connection to Peer C.

The first three messages between Peer A and Peer B illustrate the establish-
ment of the signaling connection between the two peers. The two peers may
exchange capabilities during this phase as well.

The next phase encompasses the exchange of network topology information
with the help of PING and PONG messages. The messages are sent over the
TCP connection established previously (i.e., during the peer handshake). It is
observed that PING messages are forwarded by Peer B from Peer A to Peer C
and in the opposite direction. Also, it can be observed that PONG messages
follow the reverse path taken by the corresponding PING message.

At a later time the Peer A sends a QUERY message, which is forwarded
by Peer B to Peer C. In this example, only Peer C is able to serve the re-
source, which is illustrated by the QUERY HIT message. The QUERY and
QUERY HIT messages use the existing TCP connection, just like the PING
and PONG messages. Again, it is observed that the QUERY HIT message
follows the reverse path taken by the corresponding QUERY message.
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Figure 4.2: Example of a Gnutella session.
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Finally, Peer A opens a direct HTTP connection to Peer C and downloads the
resource by using the HTTP GET method. The resource contents are returned
in the HTTP response message.

The exchange of PING-PONG and QUERY-QUERY HIT messages contin-
ues until one of the peers tears down the TCP connection. A Gnutella BYE
message may be sent as notification that the signaling connection will be closed.

4.2 Measurement Infrastructure

Network traffic measurements can be generally divided into active and passive
measurements. The main difference between the two is that in active measure-
ments specific patterns of traffic are injected into the network and analyzed
when they exit the network. Changes in the injected traffic pattern are used
to draw inferences about various properties of the network. In the case of pas-
sive measurements, traffic flows seen at specific nodes are observed or recorded,
without sending any additional traffic in the network. In general, when the
focus is on the characteristics of traffic crossing a single network element, the
passive method is more appropriate [120]. This was our choice as well, since we
were interested only in the traffic crossing the BTH ultrapeer.

There are two main approaches to perform passive application layer mea-
surements: application logging or link-layer packet capture with application flow
reassembly [104]. An important advantage of the link-layer packet capture is
that it allows for traffic analysis at any layer in the TCP/IP stack. This enables
a more accurate view of how the application affects the network and vice-versa.
Another advantage is that packet timestamping is performed in the kernel and
not in user space as is the case of application logging [103]. This means that
packet timestamps are less affected by, e. g. , process preemption due to schedul-
ing in the operating system and queuing and scheduling in the TCP/IP stack.
Given these advantages, we use link-layer packet capture with application flow
reassembly.

A measurement infrastructure dedicated to P2P measurement has been de-
veloped at BTH [121]. It consists of peer nodes and protocol decoding software.
Tcpdump [122] and tcptrace [123] are used for traffic recording and protocol de-
coding. Although the infrastructure is currently geared towards P2P protocols,
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Figure 4.3: Measurement network infrastructure.

it can be easily extended to measure other protocols running over TCP. The
measurement infrastructure has been successfully used for Gnutella [104, 124]
and BitTorrent measurements [125, 126].

The BTH measurement nodes run the Gentoo Linux 1.4 operating system,
with kernel version 2.6.5. Each node is equipped with an Intel Celeron 2.4 GHz
processor, 1 GB RAM, 120 GB hard drive, and 10/100 Mbps Ethernet network
interface. The network interface is connected to a 100 Mbps switch in the labo-
ratory at the Department of Telecommunication Systems, which is further con-
nected through a router to the GigaSUNET backbone, as shown in Figure 4.3.

Figure 4.4 shows the measurement process flow, which consists of six stages.
The data enters each stage sequentially, from top to bottom.

Each measurement node has tcpdump 3.8.3 installed on it. When the node is
running measurements, tcpdump is started before the Gnutella servent to avoid
missing any connections. Tcpdump collects Ethernet frames from the switch port
where the ultrapeer node is connected. The collected data is saved in packet
capture (PCAP) format [122]. Since P2P applications tend to use dynamic
ports, all traffic reaching the switch port must be collected. In addition, Ether-
net frames cannot be truncated since we need the entire payload to decode the
signaling traffic.
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Figure 4.4: Measurement process.
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During the first stage of the measurement process, we use tcptrace to ex-
tract TCP segments from the Ethernet frames.

The TCP segments are then sent to the next stage, whose task is to reassem-
ble them to a flow of ordered bytes. The TCP reassembly module developed
at BTH [104] builds on the TCP engine available in tcptrace and is similar
to the one used by the FreeBSD TCP/IP stack [127]. The reassembly engine
is capable of handling out-of-order segments as well as forward and backward
overlapping between segments.

When a new Gnutella connection is found, the application reassembly mod-
ule first waits for the handshake phase to begin. If the handshake fails, the
connection is marked invalid and it is eventually discarded by the memory man-
ager.

If the handshake is successful, the application reassembly module scans the
capability lists sent by the nodes involved in the TCP connection. If the nodes
have agreed to compress the data, the connection is marked as compressed. Sub-
sequent segments received from the TCP reassembly module for this connection
are first sent to the decompresser, before being appended to previous data that
has not been consumed yet.

The decompresser uses zlib’s inflate() function to decompress the data
available in the new segment [113]. Upon successful decompression the de-
compressed data is appended to the data buffer.

Immediately after the handshake phase, the application reassembly module
attempts to find the Gnutella message header of the first message. Using the
payload length field, it is able to discover the beginning of the next message.
This is the only way to discover message boundaries in the Gnutella protocol
and thus track application state changes [104]. Based on the message type field
in the message header, the corresponding decoding function is called, which
outputs a message record to the log file. The message records follow a specific
format required by the post-processing stage [104].

Since the logs can grow quite large, they can be processed through an op-
tional stage of data compression. The compression is achieved by using the
on-the-fly deflate compression offered by zlib. Additional data reduction can
be achieved if the user is willing to sacrifice some detail by aggregating data
over time.
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The data analysis module interprets the (optionally compressed) log data
and it is able to demultiplex it based on different types of constraints: message
type, IP address, port number, etc. The data output format of this stage is
suitable for input to numerical computation software such as MATLAB and
standard UNIX text processing software such as sed, awk and perl.

4.3 Methodology for Statistical Modeling

The measurement infrastructure described in the previous section was used to
collect Gnutella traffic crossing the BTH ultrapeer. By decoding the recorded
traffic data, flows were recreated at several layers in the TCP/IP stack. The
flows consist of discrete protocol data units: IP datagrams at the network layer,
TCP segments at the transport layer, and finally, Gnutella messages at the
application layer. The Gnutella messages are logically grouped in peer sessions.
The time when the protocol data units reached the link layer was recorded
together with their size. For peer sessions, the session duration was recorded as
well. Due to the complexity of the protocol we used a statistical approach [104,
125] to describe the quantities of interest, which is similar to the methodology
introduced by Paxson in [128].

Each quantity of interest is modeled by a random variable X that changes its
value whenever a new protocol data unit (or session) is considered. The actual
values taken by X are denoted by the small letter x. The random variable X is
assumed to have a theoretical cumulative distribution function (cdf) FX(x; θ).

Definition 4.1. The theoretical cdf FX(x; θ) of a random variable X is defined
as

FX(x; θ) , P [X ≤ x], (4.1)

where , is the equality by definition operator, x is some value on the real line
and θ is a set of one or more parameters that control the distribution function
e. g. , θ = {µ, σ} in the case of the normal distribution.

Definition 4.2. It is assumed that a cdf FX(x; θ) has a corresponding proba-
bility density function (pdf) fX(x; θ) defined as

fX(x; θ) ,
dFX(x; θ)

dx
. (4.2)
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The derivative must exist at all points of interest otherwise impulse functions
are required like in the case of discrete distributions [129].

It is often useful to observe how fast the cdf decays for large values of x.
For that particular purpose it is better to use the complementary cumulative
distribution function (ccdf) function.

Corollary 4.1. Assuming a cdf function FX(x; θ), the corresponding ccdf func-
tion is:

FX(x; θ) , 1− FX(x; θ) = P [X > x] (4.3)

For each quantity of interest, the set of values extracted from the recorded
traffic is considered to be a random sample from the population of the random
variable X. The elements of the random sample are denoted by X1, X2, . . . , Xn

and the actual recorded values (data sample) by x1, x2, . . . , xn. The index n is
the number of available values from the measurement.

The modeling methodology employed in this chapter involves three phases:

i) identify a distribution family F (·) through exploratory data analysis (EDA),

ii) using the available data, estimate the parameter(s) θ of the distribution
from the previous step. Denote the estimated parameter(s) by θ̂ and the
estimated distribution by F̂X(x; θ̂),

iii) quantify the quality of the fit.

4.3.1 Exploratory Data Analysis

The first step in the modeling methodology is to identify a distribution family
FX(x, θ). This is done through an EDA approach that combines graphs of the
data such as histograms and distribution plots and summary statistics e. g. ,
mean, median and standard deviation [130, 131].

The histograms and distribution plots are the main EDA tools. Using them,
the EDA user is aided in recognizing a family of distributions that provides good
match for the data. The summary statistics provide some quantitative support
in the selection of a distribution family.
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When unknown parameters of the distribution family are estimated, the
candidate distribution is fully specified. At that point the quality of the fit can
be assessed by formal numerical methods, as described in Section 4.3.3.

Summary Statistics

Five different types of statistics can be used to summarize a random sample:
maximum, minimum, mean, median and standard deviation. All definitions in
this section assume a random sample X1, X2, . . . , Xn of length n > 1. The
corresponding order statistics are X(1) ≤ X(2) ≤ · · · ≤ X(n).

Definition 4.3. The largest and smallest value of the random sample are de-
noted by X(n) = max[X1, . . . , Xn] and X(1) = min[X1, . . . , Xn], respectively.
The difference

(
X(n) −X(1)

)
defines the range of the data sample.

Definition 4.4. The sample mean X is defined as

µ̂ = X =
1
n

n∑
i=1

Xi (4.4)

X is an unbiased estimator of the first population moment, that is of the
expected value E[X]. For a symmetric distribution the actual value of X rep-
resents the “center” of the data range. For a skewed distribution, the median
statistic is a more appropriate representation of centricity.

Definition 4.5. If the sample size is odd, i. e. , n = 2k+ 1, the sample median
is the middle order statistic X(k+1). If the sample size is even, i. e. , n = 2k, the
sample median is the average of the two middle order statistics

median =
X(k) +X(k+1)

2
(4.5)

Definition 4.6. The sample standard deviation is defined as

σ̂ =

√√√√ 1
n− 1

n∑
i=1

(Xi −X)2 (4.6)
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Histogram Plots

A histogram plot is a graph of tabulated frequencies for an univariate data
sample x1, x2, . . . , xn of length n. If the frequencies are normalized such that
the area below the histogram is equal to one, then the histogram can be viewed
as a rough estimate of the probability density function.

In order to build a histogram one must begin by dividing the range r of the
data into a number of m contiguous bins. Each bin i covers a portion of length3

L of the data range. The boundaries of the bin i are denoted by bi and bi+1.
Next, the data values are sorted and placed into bins that correspond to their
value. The number of entries in each bin represents the frequency fi of the bin
i. To obtain the probability of each bin, the frequencies fi are normalized such
that the probability pi of bin i is:

pi =
fi
n

(4.7)

It follows that the probability of the bin i is [132]

pi ≈ P [bi < X ≤ bi+1] =

bi+1∫
bi

fX(x) dx = fX(y)L for some y ∈ (bi, bi+1)

(4.8)
An important question is how to choose the bin length L or equivalently the

number of bins m. Histograms using bins that are too wide fail to reveal specific
characteristics of the data such as multi-modality (i. e. , mixture of distributions)
or impulses at the origin. These are called undersmoothed histograms. On
the other hand, if the bin width is too small the histogram is likely have a
jagged appearance that could complicate the identification of the underlying
distribution or even worse, it may present false evidence of multi-modality. In
this case the histogram is called an oversmoothed histogram. Research into
optimal bin width has lead to the thumb rules [133, 134] presented in Table 4.1.

The terms σ̂, q.75 and q.25 denote the estimated standard deviation, the
0.75-quantile, and the 0.25-quantile, respectively. Figure 4.5 shows an example
of how the histogram of specific data can look like when the bin width is too
large, too small and when it is chosen by using the Friedman-Diaconis method.

3Bins of equal length are assumed.
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Figure 4.5: Poisson distribution with λ = 400: histogram for 2000 samples and
superimposed density function.
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Name Bin width

Sturges’ formula L = r/(1 + log2 n)
Scott’s rule L = 3.49σ̂ n−1/3

Friedman-Diaconis L = 2 (q.75 − q.25)n−1/3

Table 4.1: Various rules for choosing histogram bin width.

The rules in Table 4.1 work well in many situations. Unfortunately, none of
them is a panacea. In fact, for some distributions it is necessary to manually
adjust the number of bins in order to obtain a smooth histogram [133].

Edf Plots

The empirical distribution function (edf) Fn(x)4 of a random sample is an ap-
proximated representation of the true cdf for the population from which the
sample is drawn.

Definition 4.7. Given a random sample X1, X2, ..., Xn of length n drawn from
a distribution FX(x), denote the corresponding order statistics byX(1) ≤ X(2) ≤
· · · ≤ X(n). Then, Fn(x) is defined as

Fn(x) ,


0 x < X(1)

i

n
X(i) ≤ x < X(i+1)

1 X(n) ≤ x.

(4.9)

For large samples, Fn(x) converges uniformly to the population FX(x) for
all x-values [130].

Corollary 4.2. Assuming an edf Fn(x), then

Fn = 1−Fn (4.10)

is the corresponding complementary empirical distribution function (cedf).
4Normally, the notation Fn(x) is used to denote an edf. However, this notation could

conflict here with the notation used for a cdf and it is therefore written using a calligraphic

letter: Fn(x).
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The histogram, the edf and the cedf are complementary views of the sam-
ple distribution. The terminology used for ccdf and cedf plots is to denote as
“body” the values of Fn(x) for x ≤ ξ and as “tail” the values of Fn(x) for
x > ξ. The point ξ on the x-axis is in general dictated by the type of data
analysis performed, but tends to be selected such that for large x-values the
corresponding ccdf values are very small, but non-negligible. The decay of the
tail allows us to assign the empirical distribution to a particular distribution
class.

The subexponential or long-tailed class contains distributions that decay
slower than the exponential distributions. The class of heavy-tailed distribu-
tions is a more restrictive subclass, since they require infinite variance. A ran-
dom variable X has a heavy-tailed distribution if:

lim
x→∞

FX(x) = lim
x→∞

P [X > x] = cx−α, 0 < α < 2, c > 0 (4.11)

When the tail index α is 0 < α < 1, the heavy-tailed distribution has infinite
mean in addition to infinite variance. This is in contrast with the larger class
of long-tailed distributions with finite moments [135].

The Pareto distribution is a good example of heavy-tailed distribution. The
lognormal and Weibull distributions are subexponential, but not heavy-tailed.
In particular, the Weibull distribution has finite variance [135]. Paxson and
Floyd provide proof that the lognormal distribution is not heavy-tailed [136].
Gaussian or Gamma and exponential distributions are called light-tailed dis-
tributions and are not part of the subexponential class [135]. For light-tailed
distributions the ccdf values in the tail are negligible.

4.3.2 Parameter Estimation

Parameter estimation is the second phase of the modeling methodology used
in this thesis. It is assumed that a distribution family FX(x; θ) with a set of
unknown parameters θ has been identified as described in Section 4.3.1. The goal
is to estimate the parameters by using point estimators Θ̂ = E(X1, X2, . . . , Xn),
where E is a function of the random sample. Point estimates θ̂ are obtained by
replacing the random variables in Θ̂ with observed values.

The optimality of point estimators is decided by concepts such as bias, ef-
ficiency, consistency and sufficiency. An unbiased estimator is one for which
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E[Θ̂] = θ [137]. Furthermore, an estimator Θ̂1 is more efficient than an estima-
tor Θ̂2 if Var

[
Θ̂1

]
< Var

[
Θ̂2

]
. By consistency it is meant that a sequence of

estimators converges towards the “true” value of the parameter. Sufficiency is
concerned with the amount of information intrinsic to the sample, which is lost
or kept when a particular estimator is used [137, 138]. These are large topics
outside the scope of this thesis. It is sufficient to mention that maximum like-
lihood estimators are in general at least as good as other estimators for large
sample sizes. However, the equations that appear in the course of using the
method can be non-linear and difficult to solve. In this case numerical solu-
tions are required [137–139]. Similar problems appear when the method is used
with mixture distributions. Therefore, a secondary method, denoted minimum-
absolute-error, is introduced as well. In addition for providing point estimates,
the minimum-absolute-error method is used as goodness-of-fit measure, as de-
scribed in Section 4.3.3.

Maximum Likelihood Method

The maximum likelihood (ML) method is based on the concept of likelihood
function, which is defined as the joint pdf of a number of random variables [138].

Definition 4.8. Given n random variables X1, X2, . . . , Xn drawn from a dis-
tribution FX(x; θ), and the corresponding observed values x1, x2, . . . , xn, the
likelihood function L(θ) is defined as

L(θ) , fX1,X2,...,Xn(x1, x2, . . . , xn; θ) (4.12)

which is the joint distribution of X1, X2, . . . , Xn.

Corollary 4.3. For a random sample X1, X2, . . . , Xn with common distribution
FX(x; θ)

L(θ) =
n∏
i=1

fX(xi; θ), (4.13)

which follows from the definition of a random sample.

Intuitively, the likelihood function L(θ) for a random sample drawn from a
discrete pdf is the probability that the random sample will assume the observed
values [139]:
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L(θ) = P [X1 = x1; θ]P [X2 = x2; θ] . . . P [Xn = xn; θ] (4.14)

It becomes evident that the optimal θ̂ is the value that maximizes L(θ).
This idea can be applied in a similar manner to random samples from a con-
tinuous pdf. Assuming certain regularity conditions [138], the solution Θ̂ =
E(X1, X2, . . . , Xn) to the equation

dL(θ)
dθ

= 0 (4.15)

is the ML estimator. When the random variables are replaced with the actual
observed values, one obtains the ML estimate θ̂ = E(x1, x2, . . . , xn). Sometimes
it is easier to solve the equation

d ln [L(θ)]
dθ

= 0 (4.16)

instead of Equation 4.15 [138].

Minimum-Absolute-Error Method

The minimum-absolute-error method seeks to find an estimate θ̂ that minimizes
the difference between the edf, Fn(x), and the estimated cdf, F̂X(x; θ̂), over all
x.

Definition 4.9. For a data sample x1, x2, . . . , xn, the difference between Fn(x)
and F̂X(x; θ̂) is defined as the cumulative absolute error ε(θ), such that

ε(θ) ,
n∑
i=1

∣∣∣F̂X(xi; θ̂)−Fn(xi)
∣∣∣ (4.17)

The estimate θ̂ is the θ-value that minimizes ε(θ). .

Since this method relies on the edf, θ̂ cannot be solved analytically. Numer-
ical algorithms to obtain solutions for it are discussed in Section 4.3.5.
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4.3.3 Fitness Assessment

After a probability distribution has been fitted to the data as described in the
previous section, the next step is to estimate the quality of the fit. A variety
of goodness-of-fit tests can be used for this purpose, e. g. , the χ2, Kolmogorov-
Smirnov and Anderson-Darling tests. Their common denominator is the test of
the null hypothesis:

H0 : The random sample X1 . . . Xn is drawn from

the distribution F̂ (x, θ̂)

Unfortunately, these tests tend to erroneously reject the null hypothesis when
the number of samples is large (Type 1 error) [132, 140, 141], which is the case
for our data. Therefore, a different approach is used in which the hypothesis
test is avoided.

A goodness-of-fit measure called error-percentage measure (E%) was intro-
duced in [126] and used later in [125, 142]. The method is based on the proba-
bility integral transform (PIT).

Definition 4.10 (Probability integral transform). Given a continuous random
variable R with cdf FX(x) and P [Y ≤ y] d= U [0, 1], the transformation

FX(R) = P [X ≤ R] = Y (4.18)

is called the probability integral transform [132, 138]. The symbol d= denotes
equality in distribution and U [0, 1] denotes the uniform distribution between
zero and one.

The algorithm to compute E% is shown in Algorithm 7. If the distribu-
tion F̂ is a perfect fit, then the PIT transforms the random sample to an uni-
form distribution, U [0, 1]. However, since perfect fittings rarely occur in reality,
the transformed distribution, Û , is an approximate of the uniform distribution.
The discrepancies between U and Û are computed and their average is normal-
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ized [125] to the highest possible error Emax for the distribution U [0, 1] where,

Emax =

1∫
0

sup {U(x), 1− U(x)} dx

=

1/2∫
0

[1− U(x)] dx+

1∫
1/2

U(x) dx =
3
4

(4.19)

Algorithm 7 Calculate error percentage.

Fit a distribution F̂X(x; θ̂) to the random sample X1, X2, . . . , Xn

Obtain the order statistics X(1), X(2), . . . , X(n)

Transform the random sample with PIT: Ûi = F̂X(X(i); θ̂), i = 1, . . . , n

E% = 100

∑n
i=1

∣∣∣Ui − Ûi∣∣∣
nEmax

, where Ui =
i

n

d= U [0, 1]

return E%

Figures 4.6(a)–4.6(b) provide additional visual clues on how the E%-method
works. Figure 4.6(a) shows a hypothetical edf for a random sample transformed
with the PIT, i. e. , the diagonal straight line. The blue shaded area represents
the error (discrepancy) when the edf is compared to the ideal U [0, 1] distribution.
The size of that area is the E% score. The size of the shaded area in Figure 4.6(b)
is the maximum error Emax that can occur when the PIT is applied to a random
sample. This is the value that is used to normalize the E% score.

E% is expressed in the form of a percentage. The criteria used here to
accept a candidate distribution is that E% < 6. We call this value the accepted
error percentage. The accepted error percentage was decided experimentally by
observing that most distributions that provide a visually acceptable fit in both
body and tail have E% < 6. Table 4.3.3 presents a mapping between various
E% ranges and qualitative statements about the fit.

The main disadvantage of the E%-method is that it cannot be used with
discrete distributions. The reason is that when the PIT method is applied
to a discontinuous distribution, the transformed variable is not uniformly dis-
tributed [143].
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(a) Error in transformed random sample.

0 1

1

U(x)

x

(b) Maximum error for a PIT transforma-
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Figure 4.6: Probability integral transform (PIT).

Range 0 ≤ E% < 2 2 ≤ E% < 4 4 ≤ E% < 6 E% ≥ 6

Quality Excellent Good Acceptable Unacceptable

Table 4.2: Quality-of-fit mapping.

4.3.4 Finite Mixture Distributions

Sometimes a single cdf cannot accurately describe the distribution of the random
variables of interest e. g. , the E%-method yields an unacceptable score. A more
accurate model may be constructed by using a mixture of two distributions
or more. In the case of a mixture of two distributions one component of the
mixture accounts for the main body of the empirical distribution and a different
one describes the behavior in the tail. In the case of more than two components,
each cdf accounts for specific modality found in the data. The crux of the
problem becomes to find a way to combine the two distributions in a meaningful
way. The method used here is based on finite mixture distributions as described
in [144]

A mixture distribution FX(x) with n components has the following distri-
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bution function:

FX(x) =
n∑
i=1

πiGi(x) π1 + π2 + · · ·+ πn = 1 (4.20)

where Gi(x) is the ith distribution in the mixture and each πi is a constant
called mixing weight. The mixing weight πi is selected such that 0 < πi < 1
and it decides how much each component is allowed to influence the distribution
FX(x).

The first step in building a mixture distribution with two components is to
identify a distribution familyG1(·) that matches the body of the data, preferably
the tail as well. This is done by using the EDA approach, as explained in
Section 4.3.1. The parameters of the distribution are estimated, yielding a
specific distribution function Ĝ1(x; θ̂1). Ĝ1(x; θ̂1) is then visually compared
to the true distribution to asses the fit in the tail. If the fit appears good,
then the goodness-of-fit measure E% is computed as explained in Section 4.3.3.
Otherwise, it is necessary to find the cutoff point xc and the corresponding cutoff
quantile qc, where Ĝ1 diverges from the true distribution. The probability mass
between qc and 1 is used to identify the distribution family Ĝ2(·) that matches
the tail. The parameters of the new distribution must be estimated as well,
yielding θ̂2. Then, a finite mixture distribution

F̂ (x; θ̂) = πĜ1(x; θ̂1) + (1− π)Ĝ2(x; θ̂2) (4.21)

is assembled, where π = qc. Since the single distributions, Ĝ1 and Ĝ2, are now
combined in a finite mixture, the parameters θ̂1 and θ̂2 must be recomputed5.
Their original values may be used as a starting point. An optimal value for π
must be computed as well. The parameter set θ̂ in F (x; θ̂) is the set containing
the parameters for both distributions and π, i. e. , θ̂ = {θ̂1, θ̂2, π}. Numeri-
cal methods for computing the set of optimal parameters θ are presented in
Section 4.3.6.

It is often the case that a mixture distribution (in particular one with only
two components) still cannot describe the data accurately enough. This may
be further improved by increasing the number of components in the mixture
distribution at the expense of an increase in the number of parameters. However,
a different approach was used here.

5Recall that G1 was estimated using the entire probability mass.
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Typically, the major discrepancies between the estimated distribution and
the true one appear either in the body or in the tail. If, for example, the dis-
crepancies appear in the tail, one can attempt to improve the model accuracy
by adjusting the values of the distribution parameters. However, our experi-
ence was that this is likely to decrease the accuracy of the model in the body.
Similarly, attempts to increase the accuracy in the body may lead to (higher)
discrepancies in the tail. Thus, a trade-off is required, accuracy in the body ver-
sus accuracy in the tail [104]. Accordingly, a decision must be taken on which
part of the distribution (body or tail) is more important to model accurately.

For example, in the case of transfer rates the tail of the distribution models
high rates of traffic (bursts) that occur rarely. On the other hand, the body
of the distribution models the “average” size of transfer rates. For message or
packet size the body accounts for small packets or messages and the tail for large
ones. In the case of interarrival and interdeparture times the body accounts for
“dense” traffic and the tail for “sparse” traffic. In our models, when a trade-off
was required, we favored to accurately model bursty, dense traffic with large
packets (messages).

4.3.5 Methodology Review

The goal of this section is to present a formal process for the modeling method-
ology discussed in the previous sections. The process assumes that the variable
of interest has been measured (sampled) n times. The values x1, x2, . . . , xn
resulting from the n measurements are assumed to be the result of a random
sample X1, X2, . . . , Xn. The complete process for building the statistical models
is presented in Algorithm 8 [104].

Step 14–15 in Algorithm 8 may be confusing since no criteria has been pro-
vided on how to decide to either select a different quantile or to start over. To
solve this, the quantile was changed in increments of 0.05 to either sides of the
original value. If this did not result in any improvement, the decision was to
start over.
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Algorithm 8 Methodology for statistical modeling.
1: Use EDA visual tools, i. e. , histogram, edf and cedf plots, to explore the

data. The summary statistics provide hints about range, skewness and
spread

2: Select a distribution family G1, which appears to provide a good fit
3: Estimate the unknown parameters θ1 using ML estimation to obtain a can-

didate distribution Ĝ1X(x, θ̂1)
4: Compare the plots of ĝ1X(x; θ̂1), Ĝ1X(x; θ̂1), and Ĝ1X(x; θ̂1) to the his-

togram, edf, and cedf plots obtained in Step 1
5: if high visual discrepancy then
6: Go back to Step 1
7: end if
8: Compute E% for Ĝ1X(x; θ̂1) using x1, x2, . . . , xn
9: if E% < 6 then return E% and Ĝ1X(x, θ̂1)

10: end if
11: Identify the cutoff quantile qc
12: Fit a distribution G2(·) to the probability mass (1−qc) as outlined in Step 1–

8
13: if E% > 6 then
14: Either go back to Step 11 and select a different quantile qc or,
15: Go back to Step 1. This is equivalent to starting over. Try using a

different distribution family G1(·)
16: end if
17: Assemble the mixture distribution F (·) = πG1(·) + (1− π)G2(·)
18: Estimate the unknown parameters θ = {θ1, θ2, π} using E% method. Use

the estimated values from previous steps as initial values
19: if E% < 6 then return E% and FX(x; θ)
20: else
21: Go back to step 1
22: end if
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4.3.6 Numerical Software and Methods

The process presented here was implemented by using the statistical software
package R [145]. R is an interpreted computer language with syntax similar to S

and S-PLUS [133]. The software package contains in addition to the language, a
run-time environment with graphics, a debugger and a large library of functions.

As mentioned in Section 4.3.4, the E%-method relies on numerical optimiza-
tion for finding a minimum. ML estimation requires also numerical optimiza-
tion in many cases where no closed form ML estimators exist. The R-functions
optimize() and optim() have been used for numerical optimization.

The function optimize() performs optimization in one dimension. The
underlying algorithm is a combination of golden section search and successive
parabolic interpolation [93, 145]

General purpose multi-dimensional optimization is performed by the optim()
function. The function has support for several optimization algorithms. The
default algorithm, Nelder-Mead [93, 146, 147], is primarily used. The algorithm
does not require any derivatives, and it is quite stable although not very efficient
in terms of number of iterations.

When the Nelder-Mead algorithm fails to converge to a solution, the L-
BFGS-B [148] algorithm is used instead. This algorithm requires a lower and
an upper bound for each variable. The thumb rule used to provide the bounds
is to allow variables with initial values m0 ≥ 1 a range of 0.2m0 between the
upper and lower bound. For variables with initial values m0 < 1 the range
between bounds was 0.1m0. This thumb rule was designed empirically and it
is by no means optimal in any way. In fact, from our experience, the bounds
often needed additional adjustment to obtain convergence.

4.4 Characteristics and Statistical Models

In order to keep the mathematical formulas brief we use the following conven-
tions. Cdfs are denoted by capital letters and pdfs by lower case letters, as
shown in Table 4.3. The parameters are as follows: µ and σ are related to
the distribution mean and standard deviation, while α, β and κ are the shape,
scale and location parameters. For the uniform distribution, a and b are the
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Uniform uX(x; a, b) UX(x; a, b)
Poisson poX(x;µ) POX(x;µ)
Exponential expX(x;µ) EXPX(x;µ)
Normal (Gaussian) nX(x;µ, σ) NX(x;µ, σ)
Log-normal lnX(x;µ, σ) LNX(x;µ, σ)
Generalized Pareto paX(x;α, κ, β) PAX(x;α, κ, β)

Table 4.3: Model notation.

lower and upper boundary, respectively, of the range of x-values for which the
distribution is valid. In particular, the parameter a is equivalent to a location
parameter, while (b−a) is equivalent to a scale parameter [132]. All logarithmic
edf plots use log10-transformations for both axes.

The generalized Pareto distribution [149] and the corresponding density
function are defined as

FX(x;α, κ, β) = 1−
[
1 +

α(x− κ)
β

]− 1
α

(4.22)

fX(x;α, κ, β) =
1
β

[
1 +

α(x− κ)
β

]− 1
α−1

(4.23)

where α 6= 0 is the shape parameter, κ ≤ x is the location parameter, and β > 0
is the scale parameter.

4.4.1 Ultrapeer Settings and Packet-Trace Statistics

The results reported here were obtained from an 11-days long link-layer packet
trace collected from the BTH network with the methods described in Section 4.2.
The gtk-gnutella servent at BTH was configured to run as ultrapeer and to
maintain 32–40 connections to other ultrapeers and approximately 100 connec-
tions to leaf nodes. The number of connections is a vendor preconfigured value,
which is close to the suggested values [107, 108]. Although gtk-gnutella can
communicate using the User Datagram Protocol (UDP), this functionality was
turned off. Consequently, the ultrapeer used only TCP for its traffic. No other
applications, with the exception of a Secure Shell (SSH) daemon, were running
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on the ultrapeer for the duration of the measurements. One SSH connection was
used to remotely check on the status of the measurements and the amount of
free disk space. The SSH connection was idle for most of the time. The firewall
was turned off during the measurements.

The total amount of PCAP data collected with tcpdump is approximately
33 GB. The PCAP data generated approximately 45 GB log files. The recorded
traffic contains 234 million IP datagrams. The log files show 604 thousand
Gnutella sessions that were used to exchange 267 million Gnutella messages.
A total of 423 thousand sessions (70 %) were unable to perform a successful
Gnutella handshake. The main reasons for the unsuccessful handshakes are
filled-up connection queues6 and refusal to accept uncompressed connections.
The remaining sessions consist of 181, 805 sessions where both peers used com-
pression, 22 where one of the peers used compression and 10 uncompressed
sessions.

4.4.2 Session Characteristics

A Gnutella session is defined as the set of Gnutella messages exchanged over
a TCP connection between two directly connected peers that have successfully
completed the Gnutella handshake. The session lasts until the TCP connection
is closed by either FIN or RST TCP segments.

To describe the Gnutella handshake we have created three pseudo-message
types: CLI HSK, SER HSK, and FIN HSK. The CLI HSK message is the first
part of the handshake and it is sent by the peer that opened the TCP connection,
i. e. , the client. The SER HSK message is the reply from the peer that received
the CLI HSK, i. e. , the server. The FIN HSK message, which is sent by the
client, is the final part of the handshake.

The session duration is computed as the time duration between the instant
when the CLI HSK message is recorded (at link layer) until the time recorded
for the last Gnutella message on the same TCP connection.

An incoming session is defined as being a session for which the CLI HSK
message was received by the ultrapeer at BTH. Outgoing sessions are sessions
for which the CLI HSK message was sent by the ultrapeer at BTH. Tables 4.4

6Code 409: “Vendor would exceed 60 % of our slots”.

98



4.4. CHARACTERISTICS AND STATISTICAL MODELS

and 4.5 show duration (in seconds), number of exchanged messages and bytes
for incoming and outgoing sessions, respectively. Table 4.6 shows the same
statistics when no distinction is made between incoming and outgoing sessions.

A Gnutella session is considered valid (in the sense that it is used to compute
session statistics) if the Gnutella handshake was successfully completed and at
least one Gnutella message was transferred between the two hosts participating
in the session. Our data contains 173,711 valid incoming sessions and 7094 valid
outgoing sessions.

Type Max Min Mean Median Stddev

Duration (s) 767553 0.03 517.30 0.86 6780.99

Messages 7561532 4 585.18 11 22580.99

Bytes 535336627 780 53059 1356 2034418

Table 4.4: Incoming session statistics.

Type Max Min Mean Median Stddev

Duration (s) 470422 0.12 3949.86 2459.10 11170.80

Messages 2644660 6 23145.15 15716.50 58627.75

Bytes 182279191 1574 2173564 1457360 4458468

Table 4.5: Outgoing session statistics.

Type Max Min Mean Median Stddev

Duration (s) 767553 0.03 651.98 0.87 7036.85

Messages 7561532 4 1470.34 11 25375.64

Bytes 535336627 780 136258 1357 2219411

Table 4.6: Incoming and outgoing session statistics.

The tables show that outgoing sessions transfer about 40 times more data
than incoming sessions. Furthermore, by comparing the mean and median val-
ues for messages and bytes it can be observed that a few sessions transfer the
majority of data. This can be explained by the hierarchy inherent in Gnutella:
UPs are bound to transfer more data than their LNs. In addition, most incom-
ing sessions have very short duration (< 1 second), which can be observed by
comparing the mean and median duration values for incoming sessions. This
translates in little data being exchanged.
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These observations confirm earlier results reported in [40, 41, 150]. Following
the taxonomy used in [41, 151], we observe that, although we analyze only
signaling traffic without considering data transfers, the sessions can be divided
into “mice” (i. e. , sessions carrying small amounts of data), and “elephants”
(i. e. , sessions responsible for large volumes of traffic).

The same type of heterogeneity appears when we consider session duration.
We observe both “dragonflies”, which are very short sessions and “tortoises”,
which are sessions with very long duration.

4.4.3 Session Interarrival and Interdeparture Times

The statistics and models for session interarrival and interdeparture times are
shown in Table 4.7 and Table 4.8. It is observed that interarrival times can be
modeled by the lognormal distribution, which is subexponential. In contrast,
session interdeparture times require a mixture distribution with a heavy-tailed
component (Pareto distribution) to provide an acceptable fit.

A possible explanation for the appearance of the heavy-tailed component is
given by the connection cap described in Section 4.4.1. When a Gnutella peer
reaches the preset number of connections it does not attempt to establish more
connections until existing connections are terminated. This leads to large session
interdeparture times that have a non-negligible probability of occurrence.

The absence of the heavy-tailed component from the session interarrival
times distribution can be explained as follows. We noticed that many of the
short duration (< 1 second) incoming sessions presented in Section 4.4.2 transfer
one BYE message and are then terminated. This behavior cannot be traced to
any of the Gnutella specifications. We assume that the behavior is due to the
gtk-gnutella implementation, but further study is required to confirm. It
appears that gtk-gnutella discovers that the connection cap is reached after
the handshake is completed. Only then it sends the BYE message to terminate
the connection. Normally, this connection should have been aborted during
handshake. Nonetheless, since these sessions are considered valid according to
our criteria, the session interarrival times are shorter and we can model them
without introducing a heavy-tailed component.

An interesting characteristic was observed when all session interarrival times
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DIR Max Min Mean Median Stddev

IN 1119.01 4.05e-6 5.47 2.20 20.38

OUT 5192.62 0.20e-3 133.99 71.78 210.34

Table 4.7: Session interarrival and interdeparture times statistics (s).

DIR Model E%

IN LNX(x; 0.71, 1.08) 3.0 %

OUT 0.77 EXPX(x; 0.01) + 0.23 PAX(x; 0.7, 0, 132.9) 3.3 %

Table 4.8: Models for session interarrival and interdeparture times (s).
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Figure 4.7: Gnutella session interarrival and interdeparture times (s).
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Statistic Model E%

Interarrival times (s) EXPX(x; 0.58) 1.7 %

Rate (sessions/s) POX(x; 0.58) N/A

Table 4.9: Gnutella (valid and invalid) session interarrival times.
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Figure 4.8: Gnutella (valid and invalid) session interarrival times and incoming
session rate.

were considered, that is, even those for invalid sessions. This is equivalent to
interarrival times for incoming requests to open a session (incoming CLI HSK
messages). It turns out that the set of all interarrival times is exponentially
distributed with parameter λ = 0.58, as shown in Figure 4.8(a) and Table 4.9.
The session arrival rate was analyzed to verify that this is not a measurement
error. It is well-known that exponentially distributed interarrival times imply
a Poisson arrival rate [129]. As it can be observed in Figure 4.8(b), a Pois-
son distribution POX(x; 0.58) fits well, at least visually. Unfortunately, no E%

measure can be provided since the method does not work with discrete distribu-
tions. However, the edf should leave little doubt that the data is indeed Poisson
distributed. The edf is plotted without log-scaled axes, since most of the data,
99.9 % of the probability mass, is clustered around the values 0, 1, . . . , 4.
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Figure 4.9: Gnutella (valid and invalid) session interdeparture times (s).

The same relation does not hold for outgoing traffic, which is well modeled
by a mixture distribution 0.88 LNX(x;−2.32, 1.41) + 0.12 EXPX(x; 0.008) with
1.1 % error, as observed in Figure 4.9.

The appearance of the Poisson distribution can be explained by the mixture
of arriving CLI HSK message from different sources. If one assumes that these
arrivals are generated by a number of point processes, then the superposition
of point processes converges, under some general assumptions, to a Poisson
distribution, when the number of sources increases [152–154].

This hypothesis does however not apply to outgoing CLI HSK due to the
connection cap. Once gtk-gnutella reaches the preset amount of connections
it does not attempt to establish new ones.

4.4.4 Session Size and Duration

The session size and duration models are reported in Table 4.10 and Figure 4.10.
It is observed that the session duration statistic has a very complex ccdf, which
cannot be modeled with only two distributions. This is the only reported model
that uses a mixture of three distributions. Alternatively, the upper 5 % of the
tail can be modeled with a Pareto distribution. The Pareto shape parameter
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Statistic Model E%

Session size (bytes) 0.69 NX(x; 1356, 5.9) + 0.31 LNX(x; 9.0, 3.17) 4.7 %

Session duration (s) 0.57 NX(x; 0.85, 0.07)+

0.33 LNX(x; 0.37, 0.96)+

0.10 UX(x; 18.45, 2460) 2.3 %

Session duration, upper 5 % (s) PAX(1.1, 1800, 1870.4) 2.4 %

Table 4.10: Session size and duration models.
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(a) Session size (bytes).
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(b) Session duration (s).

Figure 4.10: Gnutella session size and duration.

α = 1.1 implies that no upper bound exists for the mean session duration.
Most of the observed session sizes (64.8 %) lie in the range 1300–1400 bytes,

9.6 % are smaller than 1300 bytes and 25.6 % are larger than 1400 bytes.

4.4.5 Message Characteristics

In this section, message statistics are reported for each Gnutella message type.
The message type UNKNOWN denotes messages with a valid Gnutella header,
but with unrecognized message type. These messages are either experimental
or corrupted. The message type ALL is used for statistics computed over all
messages, irrespective of type. Only models for the aggregated message streams,
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i. e. , message type ALL are presented.
Table 4.11 shows interarrival times for messages received by the BTH ultra-

peer and Table 4.12 shows interdeparture times for messages sent by the BTH
ultrapeer. Although the PCAP timestamps have microsecond resolution [103],
the times presented here have only 100µs precision. This is due to memory
limitations in the post-processing software.

Summing over the number of samples for each message type does not add
up to the value shown in the number of samples for message type ALL. This
is caused by the analysis software, which ignores messages that generate nega-
tive interarrival and interdeparture times. Negative times appear because the
application flow reassembly handles several (typically more than a hundred)
connections at the same time. On each connection the timestamp for arriving
packets is monotonically increasing. However, the interarrival and interdepar-
ture statistics are computed across all connections. To ensure monotonically
increasing timestamps even in this case, new messages from arbitrary connec-
tions are stored in a buffer, where they are sorted by timestamp. The size of the
buffer is limited to 500, 000 entries due to memory management issues. By sum-
ming the entries in the “Mean” column in Table 4.19 it can be observed that, on
average, there are 280 incoming and outgoing messages per second. This means
that the buffer can store about 30 minutes of average traffic and much less dur-
ing traffic bursts. If there are delayed messages due to TCP retransmissions or
other events, they reach the buffer too late and are discarded.

The large interarrival and interdeparture times in handshake messages (CLI -
HSK, SER HSK, FIN HSK) observed in Table 4.11 and Table 4.12 occur because
once a servent reaches the preset amount of connections, it no longer accepts or
attempts to open new connections until one or more of the existing connections
is closed. This behavior also explains the large interarrival and interdeparture
times for BYE messages.

It is interesting to see that interarrival times are exponentially distributed as
shown in Table 4.13 and Figure 4.11. Analysis of the arrival process reveals that
this is is not a pure Poisson process, but rather a compound Poisson process [129,
155, 156] since simultaneous message arrivals do occur. To understand why this
happens, recall that before the messages can be extracted from the TCP flows,
these flows pass through a decompression layer. Typically, a single TCP segment
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Type Max Min Mean Median Stddev Samples

CLI HSK 28.4591 0.0001 1.7246 1.1256 1.8644 551148

SER HSK 5185.0490 0.0001 19.6294 0.2090 92.1849 48432

FIN HSK 1118.9920 0.0001 5.3165 2.1942 19.4800 178783

PING 13.5871 0.0001 0.2762 0.1931 0.2726 3457169

PONG 2.2624 0.0001 0.1404 0.0979 0.1383 9086918

QUERY 1.4514 0.0001 0.0343 0.0240 0.0340 59010007

QUERY HIT 19.2778 0.0001 0.1842 0.0976 0.2661 6932327

QRP 50.0632 0.0001 2.0475 1.0534 2.8707 478451

HSEP 1780.4420 0.0003 6.1560 4.3834 8.4758 154742

PUSH 40.1396 0.0001 0.0677 0.0405 0.1157 24934450

BYE 1119.5930 0.0001 5.9160 2.3591 22.3494 160695

VENDOR 30.8037 0.0001 0.4346 0.2207 0.5993 9669915

UNKNOWN 51576.8600 3.0680 2075.3190 6.9379 9298.3600 35

ALL 9.8299 0.0001 0.02436 0.0169 0.0243 114663084

Table 4.11: Message interarrival time statistics (s).

Type Max Min Mean Median Stddev Samples

CLI HSK 5189.2340 0.0002 17.9655 0.1273 88.8506 52902

SER HSK 28.4595 0.0003 1.7298 1.1287 1.8712 549456

FIN HSK 5185.5150 0.0006 28.4784 0.3305 110.2372 33373

PING 20.5910 0.0001 1.3773 0.5077 2.1342 694550

PONG 2.7215 0.0001 0.1573 0.1012 0.1682 34639367

QUERY 12.1151 0.0001 0.0295 0.0003 0.0541 70066326

QUERY HIT 19.2818 0.0001 0.2188 0.1285 0.2885 6309719

QRP 603.3599 0.0001 2.6350 0.0004 19.8572 680103

HSEP 358.3067 0.0001 2.5020 1.4089 5.8293 384084

PUSH 76.5303 0.0001 0.0429 0.0003 0.1713 38105019

BYE 3849.4550 0.0001 134.8121 77.2090 187.7784 7033

VENDOR 64.6689 0.0001 1.8253 1.1124 2.4838 525269

UNKNOWN N/A N/A N/A N/A N/A 1

ALL 1.5450 0.0001 0.0178 0.0003 0.0353 152047214

Table 4.12: Message interdeparture time statistics (s).
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DIR Message Model E%

IN ALL EXPX(x; 40.96) 0.16 %

OUT ALL 0.261 EXPX(x; 20.23) 3.8 %

(upper 26.1 %) (see Table 4.14 for the body)

Table 4.13: Models for message interarrival and interdeparture times (s).

Interdeparture times 0.0001 0.0002 0.0003 0.0004 0.0005

Probability 0.024 0.515 0.155 0.033 0.012

Table 4.14: Probability mass points for message interdeparture times (s).

carries several Gnutella messages. All of them receive the same timestamp, since
they traveled in bulk all the way from the source to the destination. Models for
the bulk-size distributions are provided in Table 4.16 and Table 4.17.

The appearance of the Poisson distribution can be explained by arguments
similar to those considered in Section 4.4.3.

Message interdeparture times have an interesting distribution. As it can be
observed in Table 4.14, approximately 73.9 % of the probability mass is clustered
around the values 0.0001–0.0005. The remaining 26.1 % of the probability mass
can be modeled by an exponential distribution (λ = 20.23) with 3.8 % error.

Table 4.15 shows the message size statistics for each Gnutella message type.
In contrast to the other tables, messages are not classified by direction (incoming
or outgoing). The rationale is that the message size is independent of message
direction. It can be observed that, on average, QUERY HIT and QRP messages
have the largest size. They are closely followed by handshake messages, where
the capability headers account for most of the data. It is interesting to notice
that the maximum size of QUERY HIT messages is 39 KB, which is an order of
magnitude larger than the 4 KB specified in [106].

The model for the message bulk size is reported in Tables 4.16–4.17. Bulks
of size 1–15 use 99.7 % of the probability mass. The remaining 0.3 % of the
probability mass is modeled with a Pareto distribution.

The message duration statistic can be useful to infer waiting times at the
application layer, when a message is transported in two or more TCP segments.
The statistic is defined as the time difference between the first and last TCP

107



CHAPTER 4. GNUTELLA TRAFFIC MODELS

log x

lo
g 

P
[X

≥
x]

−
5

−
4

−
3

−
2

−
1

0

−4 −3 −2 −1 0 1

50.0%
80.0%
90.0%
95.0%
99.0%

Empirical
Exponential (0.2% error)

(a) Message interarrival times (s)

log x

lo
g 

P
[X

≥
x]

−
5

−
4

−
3

−
2

−
1

0
−3 −2 −1 0

50.0%
80.0%
90.0%
95.0%
99.0%

Empirical
Exponential (3.8% error)

(b) Message interdeparture times (s), upper

26.1 %

Figure 4.11: Message interarrival and interdeparture times.

Type Max Min Mean Median Stddev

CLI HSK 696 22 336.91 328 65.69

SER HSK 2835 23 386.83 369 145.69

FIN HSK 505 23 107.92 76 88.55

PING 34 23 25.48 23 3.88

PONG 464 37 74.96 61 38.68

QUERY 376 26 70.17 55 46.40

QUERY HIT 39161 58 590.28 358 1223.58

QRP 4124 29 608.60 540 596.70

HSEP 191 47 70.39 71 28.15

PUSH 49 49 49.00 49 0.00

BYE 148 35 40.02 37 15.84

VENDOR 177 31 36.45 33 19.51

UNKNOWN 43 23 23.53 23 3.24

ALL 39161 22 93.45 49 303.26

Table 4.15: Message size statistics (bytes).
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DIR Message Model E%

IN/OUT ALL 0.81 LNX(x; 3.94, 0.23)+ 4.3 %

0.19 LNX(x; 5.14, 1.24)

IN/OUT Bulk size 0.003 PAX(x; 0.42, 15, 9.6) 5.0 %

Table 4.16: Message size (bytes) and bulk size distribution.

Bulk size (messages) 1 2 3 4 5

Probability 0.586 0.173 0.082 0.049 0.031

Bulk size (messages) 6 7 8 9 10

Probability 0.020 0.012 0.008 0.005 0.003

Bulk size (messages) 11 12 13 14 15

Probability 0.019 0.005 0.002 0.001 0.001

Table 4.17: Probability mass points for message bulk size.
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Figure 4.12: Gnutella message size (bytes) and bulk distribution.
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Type Max Min Mean Median Stddev Samples

CLI HSK 349.3015 0 0.0308 0 1.0412 604072

SER HSK 52.2645 0 0.0032 0 0.1350 597896

FIN HSK 68.6295 0 0.0057 0 0.2838 212162

PING 251.2914 0 0.0273 0 0.6309 4151799

PONG 2355.8650 0 0.0077 0 0.5881 43727188

QUERY 2355.8650 0 0.0035 0 1.3271 129078986

QUERY HIT 480.8159 0 0.0243 0 1.0260 13242329

QRP 753.1904 0 0.1883 0 1.6019 1158596

HSEP 74.0482 0 0.0017 0 0.2186 538834

PUSH 135.5155 0 0.0023 0 0.2017 63040718

BYE 148.7292 0 0.0386 0 0.5194 167726

VENDOR 391.3439 0 0.0117 0 0.2451 10195389

UNKNOWN 1.0418 0 0.2995 0 0.4294 38

ALL 2355.8650 0 0.0065 0 0.9968 266715733

Table 4.18: Message duration statistics (s).

segments that were used to transport the message. When a message uses only
one TCP segment the time duration for that specific message is zero.

From the median column in Table 4.18 it can be observed that at least 50 %
of the messages require just one TCP segment. The PONG and QUERY HIT
message rows contain extreme values for the maximum duration, namely 2355.9
seconds (≈ 39 minutes). These values are most likely the result of malfunction-
ing or experimental Gnutella servents.

4.4.6 Transfer Rate Characteristics

This section reports on transfer rates in bytes per second and in messages per
second for each Gnutella message types. All statistics are computed over 950,568
samples. The number of samples is equal to the time duration expressed in
seconds (approximately 11 days) for the available measurement data. Models
are reported only for aggregate message flows, i. e. , type ALL messages. As it
can be observed in Table 4.21 both incoming and outgoing transfer rates are
heavy-tailed. In terms of specific message types, QUERY and QUERY HIT
messages dominate incoming and outgoing streams, both in terms of average
message rate and of average byte rates. This is expected since the Gnutella
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system is used primarily for searching for files.

DIR Max Min Mean Median Stddev

IN 6471 0 120.63 111 84

OUT 4164 0 159.96 153 61

Table 4.19: Gnutella (ALL) message rate (msg/s) statistics.

DIR Max Min Mean Median Stddev

IN 1745341 0 12883 10113 24287

OUT 370825 0 13338 12062 7624

Table 4.20: Gnutella (ALL) byte rate (bytes/s) statistics.

DIR Model E%

IN 0.76 LNX(x; 9.26, 0.37)+ 5.2 %

0.23 PAX(x; 1.06, 0, 4003)

OUT 0.81 LNX(x; 9.43, 0.39)+ 5.3 %

0.19 PAX(x; 0.63, 0, 3704)

Table 4.21: Gnutella (ALL) byte rate (bytes/s) modeling results.

Table 4.24 provides the summary statistics for the IP byte rates. It is in-
teresting to note that the mean and median IP byte rates are very similar to
the corresponding statistics for Gnutella byte rates shown in Table 4.23. These
values alone indicate that the compression of Gnutella messages does not yield
large gains. However, if one takes into consideration the maximum and standard
deviation values it can be observed that the compression removes much of the
burstiness from the application layer, leading to smoother traffic patterns. This
effect is visible if one compares Figure 4.14(a) to Figure 4.14(b).

111



CHAPTER 4. GNUTELLA TRAFFIC MODELS

Type DIR Max Min Mean Median Stddev

CLI HSK IN 12 0 0.58 0 0.79

CLI HSK OUT 30 0 0.06 0 0.56

SER HSK IN 20 0 0.05 0 0.48

SER HSK OUT 12 0 0.58 0 0.79

FIN HSK IN 9 0 0.19 0 0.46

FIN HSK OUT 18 0 0.04 0 0.34

PING IN 72 0 3.64 3 1.94

PING OUT 17 0 0.73 0 1.56

PONG IN 130 0 9.56 9 4.33

PONG OUT 433 0 36.44 36 19.12

QUERY IN 347 0 62.08 60 19.64

QUERY OUT 875 0 73.71 69 34.08

QUERY HIT IN 531 0 7.29 5 9.82

QUERY HIT OUT 272 0 6.64 5 7.39

QRP IN 45 0 0.50 0 0.98

QRP OUT 283 0 0.72 0 7.18

HSEP IN 20 0 0.16 0 0.41

HSEP OUT 23 0 0.40 0 0.68

PUSH IN 1068 0 26.23 23 19.34

PUSH OUT 4091 0 40.09 32 37.32

BYE IN 40 0 0.17 0 0.43

BYE OUT 118 0 0.01 0 0.15

VENDOR IN 6385 0 10.17 1 76.17

VENDOR OUT 24 0 0.55 0 0.80

UNKNOWN IN 1 0 0.00 0 0.01

UNKNOWN OUT 1 0 0.00 0 0.00

Table 4.22: Message rate (msg/s) statistics.
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Type DIR Max Min Mean Median Stddev

CLI HSK IN 4126 0 187 0 258

CLI HSK OUT 14519 0 27 0 273

SER HSK IN 12507 0 31 0 289

SER HSK OUT 4001 0 212 0 306

FIN HSK IN 982 0 15 0 42

FIN HSK OUT 4474 0 9 0 94

PING IN 1665 0 92 92 50

PING OUT 503 0 19 0 45

PONG IN 17043 0 1213 1173 541

PONG OUT 26050 0 2235 2162 1179

QUERY IN 24101 0 4441 4317 1426

QUERY OUT 46424 0 5088 4702 2511

QUERY HIT IN 1736791 0 4868 1912 23917

QUERY HIT OUT 360235 0 3355 1837 5229

QRP IN 47340 0 389 0 1408

QRP OUT 152820 0 353 0 3660

HSEP IN 940 0 8 0 21

HSEP OUT 2185 0 32 0 58

PUSH IN 52332 0 1285 1127 948

PUSH OUT 200459 0 1964 1568 1829

BYE IN 1720 0 6 0 16

BYE OUT 4956 0 1 0 11

VENDOR IN 210702 0 347 33 2514

VENDOR OUT 2197 0 44 0 81

UNKNOWN IN 23 0 0 0 0.1

UNKNOWN OUT 43 0 0 0 0.1

ALL IN 1745341 0 12883 10113 24287

ALL OUT 370825 0 13338 12062 7624

Table 4.23: Message byte rate (bytes/s) statistics.

DIR Max Min Mean Median Stddev

IN 249522 0 11536 10961 4075

OUT 176986 0 12668 12037 5722

Table 4.24: IP layer byte rate (bytes/s) statistics.
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Figure 4.13: Gnutella (ALL) byte rates (bytes/s) models.
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(a) Incoming IP byte rate.

0.0  
200.0 k
400.0 k
600.0 k
800.0 k

1.0 M
1.2 M
1.4 M
1.6 M
1.8 M

12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00

Jul 01 Jul 02 Jul 03 Jul 04 Jul 05 Jul 06 Jul 07 Jul 08 Jul 09 Jul 10 Jul 11 Jul 12 Jul 13

B
yt

es
 p

er
 s

ec
on

d

Time

(b) Incoming Gnutella byte rate (message type ALL).

Figure 4.14: Comparison of compressed and decompressed traffic.
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4.5 Summary

In this chapter we examined the characteristics of Gnutella traffic. An 11-days
long Gnutella link-layer packet trace collected at BTH was systematically de-
coded and analyzed. We extracted several traffic characteristics and constructed
statistical models for some of them. The emphasis for the characteristics has
been on accuracy and detail, while for the traffic models the emphasis has been
on analytical tractability and ease of simulation. To the author’s best knowl-
edge this is the first work on Gnutella that presents statistics down to message
level.

The results show that incoming requests to open a session follow a Poisson
distribution. Incoming messages of mixed types can be described by a compound
Poisson distribution. Mixture distribution models for message transfer rates
include a heavy-tailed component.
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Chapter 5

Overlay Routing Protocol

In this chapter we present the current implementation of the ORP framework
and the associated performance results. ORP consists of two protocols: the
Route Discovery Protocol (RDP) and the Route Management Protocol (RMP).

RDP is used to find network paths subject to various QoS constraints [46, 47].
To achieve this goal, RDP uses a form of selective diffusion in which a node that
receives a path request forwards the request only on outgoing links that do not
violate the QoS constraints. Eventually, the request arrives at the destination
node if there is at least one path satisfying the constraints. At that point, a
reply message containing information about the complete path is sent back to
the requesting node. RDP is based on ideas presented in [91, 157, 158].

The purpose of RMP is to alleviate changes in the path QoS metrics, due
to node and traffic dynamics. This is done through a combination of path
restoration and optimization algorithms for traffic flow allocation on bifurcated
paths. The purpose of the flow allocation is to spread the demand on multiple
paths towards the destination [86]. The design of RMP is influenced by ideas
presented in [159, 160].

In Section 5.1 we give a brief overview of fundamental elements of QoS rout-
ing. Based on this, we discuss in Section 5.2 a number of assumptions used
in the design of RDP and RMP. The protocol specification and the perfor-
mance results for RDP and RMP are presented in Section 5.3 and Section 5.4,
respectively.
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5.1 Elements of QoS Routing

In QoS networks every link and every node has a state described by specific
QoS metrics. The link state can consist of available bandwidth, delay and
cost whereas the node state can be a combination of available memory, CPU
utilization and harddisk storage. The link state and the node state may be
considered separately or they may be combined. The focus in the reminder of
this thesis is on link state.

Recall from Section 1.1 that routing is the process of finding a path between
two hosts in a network. In QoS routing, the path must be selected such thatQoS
metrics of interest stay within specific bounds. The routing process relies on
a routing algorithm for computing constrained paths and on a routing protocol
for distributing state information.

There are three basic forms of storing state information: local state, global
state and aggregated (partial) state [161].

When a node keeps local state, it maintains information about its outgoing
links only. No information about the rest of the network is available.

A global state is the combination of local states for all nodes in a graph.
Global states are imprecise (i. e. , they are merely approximations of the global
state) due to non-negligible delay in propagating information about local states.
When the network size grows, the imprecision grows as well. This makes it hard
to maintain an accurate picture about resource availability in the network and
it has severe impact on QoS routing.

Aggregated state aims to solve scalability issues in large networks. The basic
idea is to group together adjacent nodes into a single logical node. The local
state of a logical node is the aggregation of local states for physical nodes that
are part of the logical node. Similar to the case of global state, this leads to
imprecision that grows with the amount of state information aggregated in the
logical node.

Imprecision, also called uncertainty [162], is not generated by aggregation
only. Other sources of uncertainty are network dynamics (churn), information
kept secret by ISPs due to business reasons, as well as approximate state infor-
mation due to systematic or random errors in the measurement process [162].
An interesting solution suggested for mitigating these problems is to replace

118



5.1. ELEMENTS OF QOS ROUTING

the deterministic state information metrics with random variables. In this case,
the routing algorithm must be changed such as to select feasible paths on a
probabilistic basis, with the result that the selected paths are those most likely
to satisfy the QoS constraints [163, 164]. However, a non-trivial problem with
this approach lies in the estimation of the probability distributions for state
variables [165].

There are three different classes of routing strategies, each corresponding
roughly to one form of maintaining state information: source routing, (flat)
distributed routing and hierarchical routing [166].

In source routing the nodes are required to keep global state and the fea-
sible path is computed at the source node. The main advantage in this case
is that route computation is performed in a centralized fashion, avoiding some
of the problems associated with distributed computation. The centralized com-
putation can guarantee loop-free routes. One disadvantage of source routing is
because of the requirement to maintain global state. In a network where the
QoS metrics often change, this requires large communication overhead in order
to keep the state information updated. Additionally, due to the propagation
delay, the state information may become stale before reaching the destination.
This leads to imprecise state information, as explained above. Furthermore,
depending on the network size and the number of paths to compute, the source
routing algorithm can result in very high computational overhead [166].

Distributed routing, typically, also relies on nodes maintaining global states,
but the path computation is performed in a distributed fashion. This diminishes
computational overhead and also allows concurrent computation of multiple
routes in search for a feasible path. Distributed computation suffers from prob-
lems related to distributed state snapshot, deadlock and loop occurrence [161].
Additionally, when global state is maintained, distributed routing shares with
source routing the problems related to imprecise state information.

Some suggestions on using flooding-based algorithms, require nodes to main-
tain local state only [91, 167]. This mitigates problems related to imprecise state
information. However, flooding-based algorithms tend to generate large volumes
of traffic compared to the other forms of routing.

In hierarchical routing, the network is divided into groups of nodes and the
state information is aggregated for the nodes participating in a group. With
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this form of aggregation, a group appears as a logical node. One node in the
group is designated leader or border node and acts as a gateway for the com-
munication with other logical nodes. Each group can in turn be divided into
smaller groups. Using this form of recursion, several hierarchical levels can be
created. Nodes maintain global state information for peers within a group and
aggregated state information about the other groups. The major advantage of
hierarchical routing is scalability [159, 166]. In particular, since nodes maintain
aggregated state information there is less state information to be transmitted
to other nodes, hence less communication overhead. For the same reason, there
is also less computational overhead. However, each level of hierarchy induces
additional uncertainty in the state information. This problem becomes more dif-
ficult when several QoS metrics must be aggregated, since for some topologies
there can be no meaningful way to combine the metrics [161]. Some solutions
for topology aggregation are presented in [168, 169].

The networks considered here rely on end-nodes. Since end-nodes are under
the control of their users, they tend to be an unreliable infrastructure. By this,
we mean that end-nodes can be turned off by their users, effectively removing
them from the network. This type of node churn is similar to the topology
dynamics occurring in mobile ad-hoc networks, when stations move out of radio
range. Routing protocols that handle topology dynamics can be classified as
proactive or reactive protocols.

Proactive protocols, such as destination sequence distance vector (DSDV)
periodically update the routing tables [170]. In contrast, reactive protocols
(e. g. , dynamic source routing (DSR) and ad-hoc on-demand distance vector
(AODV)) update the routing tables only when routes need to be created or
adjusted due to changes to topology [170]. Proactive protocols are in general
better at providing QoS guarantees for real-time traffic such as multimedia.
Their disadvantage lies in the traffic volume overhead generated by the pro-
tocol itself. Reactive protocols scale better than proactive protocols, but will
experience higher latency when setting up a new route [170].
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5.2 Design Assumptions

In this section are discussed a number of assumptions that have influenced the
design of RDP and RMP. These assumptions pertain to the environments in
which the protocols are running and to the type of media being routed.

The first assumption is that ORP is executed on end-nodes consisting of off-
the-shelf hardware (e. g. , PC, Macintosh) running a general purpose operating
system (e. g. , Linux-based operating systems, Mac OS X, Microsoft Windows).
ORP runs in unprivileged mode accessing peripheral devices through standard
calls to the operating system API.

ORP requires that nodes interested in performing QoS routing form an
application-layer overlay. The overlay may be structured (i. e. , a DHT) or
unstructured. The only requirements for it are the ability to forward mes-
sages and to address individual nodes through some form of universally unique
identifier (UUID) [114]. In the simulations we assumed that ORP runs on top
of a Gnutella-like topology.

The type of services considered for the QoS layer are currently restricted
to those that require interactive and non-interactive live unicast multimedia
streams only.

Multimedia stream refers to a stream containing audio, video, text (e. g. ,
subtitles or Text-TV), control data (e. g. , synchronization data), or a combina-
tion thereof. If an application chooses to use several media streams (e. g. , one
stream per media type), the QoS routing protocol treats them independently of
each other and assumes that the application is capable on its own of performing
synchronization or any other type of stream merging processing.

The multimedia streams within the scope of ORP are of unicast type (one-
to-one). Multicast streams (one-to-many) are not withing the scope of this
thesis. Furthermore, the streams are considered to be live, which means that
the receiver is not willing to wait until the whole stream data is received, but
would rather start watching and listening to the contents as soon as enough
data is available for rendering.

Interactive multimedia streams refers to streams generated by user inter-
action as in a video conference or a VoIP call. Conversely, non-interactive
multimedia streams do not involve any interaction between users as is the case
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of IPTV or music streaming.
Applications using ORP request overlay paths from the node where they are

running to specific destinations, along with constraints attached to each path.
The path is discovered using RDP as described in Section 5.3.

It is assumed that each node is capable of estimating the available host
resources (e. g. , RAM, storage) as well as link properties (e. g. , residual band-
width, round-trip time (RTT), loss rate) to its one-hop neighbors in the over-
lay. The amount of available host resources can be obtained using calls to the
operating system API. Link properties can be estimated using active measure-
ments [171–175]. Nodes are expected to exchange this information using RMP,
as described in Section 5.4.

Furthermore, it is assumed that ORP-enabled software cannot interfere with
resources used by processes outside ORP’s scope. In other words, ORP can-
not perform resource reservation other than on residual resources, which are
resources currently unused by other applications running simultaneously on the
node. Consequently, it is expected that the volume of available resources will
fluctuate.

Large fluctuations can drive the node into resource starvation. During re-
source starvation the node is unable to honor some or all of the QoS constraints.
This type of events can lead to degradation in the quality of rendered media
(e. g. , MPEG frames that are lost, garbled, or arrive too late). Applications
may be able to tolerate quality degradation for very short periods of time or
even recover from brief degradation by using forward error correction (FEC)
codes or retransmissions. However, prolonged quality degradation may even-
tually lead to user dissatisfaction with the quality of the service. Each node
must therefore carefully monitor the link properties to each of its immediate
neighbors. If resource starvation is detected, or anticipated, then a new feasible
path should be found and traffic re-routed on it. It is clear that the latency
experienced in obtaining measurement results is in fact an upper bound on how
fast ORP can react to changes. Estimating the effect of the upper bound on
the performance of ORP has not been studied yet, but is planned as an item
for future work.
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5.3 Route Discovery Protocol

RDP is a distributed routing protocol relying on local state information. This
architectural choice is motivated because of:

i) overlay networks with a large number of nodes,

ii) unreliable end-nodes as infrastructure,

iii) topology dynamics.

To quantify the impact of the first factor, consider the Gnutella network and
the Kademlia-based [34] DHT used by Azureus1. Both systems are good candi-
dates for running ORP. Recent measurements indicate that these systems have
more than one million concurrent peers [176, 177]. The memory requirement
to store the complete network topology makes it impractical to maintain global
state in each node. If global state cannot be maintained, then source routing
is not a viable alternative. The computational overhead associated with path
selection in topologies of this size is yet another argument against using source
routing.

The second factor implies that elements critical for the correct behavior of
the protocol should not depend on single nodes. For example, in hierarchical
routing, if the border node leaves the overlay, the hosts represented by the
logical node are cut-off from the rest of the network. This can be counteracted
by a leader-election protocol at the cost of increased complexity. Taking into
account this issue as well as the problem of state aggregation, it was decided to
leave out hierarchical routing from ORP’s architecture.

The third factor, topology dynamics, refers to node churn or to significant
changes in the state information. Two types of latencies come into play when
information about these events must be disseminated throughout the network.
The first type of latency is the time duration required to detect that such an
event has occurred, which is directly related to the measurement method used.
The second type of latency is the one-way delay to nodes receiving the event in-
formation. When the sum of these two latencies grows, the probability of nodes
receiving stale information increases. There is nothing that can be done in the

1Azureus is a very popular BitTorrent client.
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case of the first latency, other than changing the measurement method. How-
ever, one completely avoid the second type of latency if distributed routing with
local state is used, as explained in Section 5.1. In this case, path computation
is achieved by selective diffusion over the feasible paths in the network.

Obviously, selective diffusion is a form of flooding and as such it comes with
a cost in terms of bandwidth overhead. The benefit of using flooding can hardly
motivate the cost in a network where the topology changes slowly. However,
when the dynamics become more aggressive the benefit to cost ratio increases,
providing a more compelling argument in favor of flooding. This is the case of
P2P networks, which are typical environments with aggressive traffic dynamics,
as it was shown in Chapter 4 in Gnutella’s case.

5.3.1 Protocol Elements

All ORP messages2 start with the generic header shown in Figure 5.1. Field

Type

0 8 16 24 31

0−3Byte: HopsTTL

ReservedFlags Status code

Version

Flow ID (128 bits)

Size (in bytes)

4−7

8−11

12−27

28−43

44−59

Source ID (128 bits)

Destination ID (128 bits)

Figure 5.1: ORP generic packet header.

values in the packet header are arranged in network byte order. The following
elements are included in the ORP packet header:

2The terms message and packet are treated as synonyms in the thesis.
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Version ORP protocol version. At the moment of writing the protocol is at
version 1.

Type ORP packet type, showed below.

Field value Packet type

0 reserved
1 control packet (CP)
2 acknowledgement packet (AP)
3 data packet (DP)
4 used by RMP

TTL time-to-live, denoting how many overlay hops the packet is allowed to
travel.

Hops indicates the amount of links the packet already has passed. If the value
in the Hops field equals the value in the TTL field the packet is dropped.

Flags bitfield arranged as |0|0|E|0|D|C|B|R|, where 0 denotes unused bits.

E indicates that the node is leaving the overlay and all routes
associated with Source Id should be rerouted or deleted.

D indicates that the path associated with the Flow Id
should be deleted.

C denotes a route change.
B denotes a bidirectional route request.
R indicates a redundant AP.

Reserved For future use.

Status code Used to exchange status codes among nodes.

Size Packet size in bytes excluding the generic header.

Source ID UUID denoting the source node of the packet3, also abbreviated as
SrcID.

3ORP UUIDs are defined as specified in [114].
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Destination ID UUID denoting the destination node of the packet, also ab-
breviated as DstID.

Flow ID UUID of the flow to which this packet belongs, also abbreviated as
FlowID.

RDP uses both a TTL field and a hops field. This is in contrast with, e. g. ,
IP, where only TTL is available. The reason for using both fields is that the hops
field can relay distance information, which can be useful for selecting a proper
TTL value. Consider for example a network where each node can be reached in
N hops or less. In the absence of any information, nodes use TTL=N . Suppose
that a node v0 forwarding control traffic learns from the hops field that another
node v1 is M < N hops away. Based on this information, if node v0 wants to
open a route to v1 it can set the TTL field to M in order to reduce the flooding,
thus saving bandwidth and CPU utilization.

The use of 128-bit identifiers is mandated by the UUID specification [114].
Even if direct use of UUIDs is not desired, a 128-bit large field offers the following
advantages:

• IPv6 addresses can be mapped directly on this field,

• IPv4 addresses can be mapped on this field, provided padding is used, or
by using IPv6 mapping,

• addressing used by other systems can be directly mapped on this fields
if the address length is equal or smaller than 128 bits, as in the case of
Gnutella, or mapped by truncating the address space when it exceeds 128
bits.

RDP uses two different kinds of packets: control packets (CPs) and acknowl-
edgement packets (APs).

A CP begins with the generic header followed by a data structure called
QoS map, as shown in Figure 5.2. The QoS map starts with the flow demand,
i. e. , with the QoS constraints for the requested path. ORP currently supports
two type of QoS constraints: minimum bandwidth specified in kilobytes per
second and the maximum path delay, specified in milliseconds. We plan to
integrate additional constraint types in future ORP versions. The timestamp,
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ReservedLoss rate

DelayBandwidth

ReservedLoss rate

DelayBandwidth

Max delayMin bandwidth

Timestamp

Hop 1 UUID

32160

Hop N UUID

Feasible Path

QoS constraints

Figure 5.2: QoS map.

in Coordinated Universal Time (UTC) format, indicates the time when the QoS
map was sent to the next hop.

Following the path QoS constraints comes the feasible path explored so far
by the CP in question. Each node that forwards the CP appends an entry to
the feasible path. The entry consists of the UUID of the downstream node and
a set of QoS metrics associated with the link on which the packet is forwarded.
Metrics currently supported by ORP are bandwidth (expressed in kilobytes per
second), delay (expressed in milliseconds) and packet loss rate. The packet loss
rate is a fraction with the accuracy 1/(216 − 1). A loss rate of 0 indicates that
no packets are lost whereas a loss rate of 216 − 1 denotes that all packets are
lost. The use of the last field is not defined yet. The manner in which the
QoS metrics are computed is not within the scope of the thesis, as stated in
Section 5.2.
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When the destination node receives a CP it assembles an AP by copying the
triple (SrcID, DstID, FlowID) and feasible path from the CP. Then, the AP
is sent back to the source node over the reverse feasible path4. The purpose
of APs is to inform nodes on the feasible path that a complete route to the
destination has been found.

After a route has been established between two nodes, the source node can
start sending data. Data (payload) is transported in data packets (DPs). DPs
using the same FlowID are said to form a flow. The actual format of these
packets is left open. The only requirement is that they begin with the generic
header. The simulations presented in the reminder of this chapter are concerned
with control traffic (i. e. , CPs and APs) and do not include DPs.

Each node maintains a number of flow relays (FRs). A FR is an abstract
data type associated with a single flow or a group of flows (flow bundle) sharing
common characteristics (e. g. , the same QoS constraints). The information in
the FRs is updated by CPs and APs associated with the flows and by QoS
measurements performed by the node in question.

At each node a list of active CPs is maintained. Each entry in the list consists
of a copy of the triple (SrcID, DstID, FlowID) from the corresponding CP. A
CP is considered active from the time it is forwarded towards the destination
until a corresponding AP is received or a timeout occurs. Further, a timer
Tout is associated with every entry in the list. When the timer expires the
corresponding entry is removed from the list.

5.3.2 Path Discovery Procedure

When a node in the overlay wants to open a route to another overlay node
it assembles a CP with the desired QoS constraints. The requesting node,
also called source node, sends the CP to all adjacent nodes connected by links
satisfying the QoS constraints. If at least one feasible link is found, the CP is
added to the list of active CPs and a timer is started accordingly. If after Tout
seconds no information is received, the CP is considered lost and it is removed
from the active CP list.

4Traveling on the reverse feasible path between node v1 and node vN means traveling in

the opposite direction on the feasible path (i. e. , over hops vN , vN−1, . . . , v1).
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Each node that forwards the CP computes the value of Tout by the following
formula:

Tout = 0.2× (TTL−Hops). (5.1)

Initially, (TTL−Hops) was multiplied by 2 instead of 0.2 in order to obtain a
conservative estimate of the round-trip time from the node in question to the
destination node. However, it was observed that the Tout values were excessively
large, keeping links blocked for unnecessarily long durations of time. This prob-
lem occurs because in the Equation 5.1 it is implicitly assumed that the delay of
each link is one second, when in fact the link delays are much smaller. Several
tests were performed, in which the multiplying factor was successively lowered.
Based on the results, it was decided to scale down the Tout values by a factor
of 1/10. The advantage of the new equation is that link bandwidth is freed up
much faster, decreasing the call blocking. The disadvantage is that in some very
few cases, the timer expires before the corresponding AP is received.

Each node receiving a CP checks whether its node UUID is matching an
entry in the feasible path of the CP or not. A matching entry means that the
CP has entered a loop and causes the CP to be disregarded.

If no matching node UUID entry is found and at least one feasible link exists,
the received CP is added to the list of active CPs. For each feasible link found,
the adjacent node UUID (denoted by Hop UUID in Figure 5.2) and the QoS
statistics of the link are appended to a copy of the received CP. The modified
CP is then forwarded over the link in question. This process is performed for
each link, except for the one connected to the node that sent the original packet.

If no feasible link exists, the CP is dropped and no further actions are taken.
The receiving and forwarding process is repeated at several nodes until one or
more CPs reach the destination node, or all CPs are dropped by intermediate
nodes. If all CPs are lost, the nodes on the feasible path eventually experience
Tout timeouts and thus are able to free any reserved resources.

The first CP that arrives to the destination node is used to obtain the feasible
path between source and destination. This policy favours minimum delay feasi-
ble paths. However, the downside of this approach is that it can create hot-spots
in the network, i. e. , congested links. Investigating policies for load-balancing
is an item for future work.

Upon receiving the CP, the destination node creates a flow relay (FR) for
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packets corresponding to the FlowID in the CP and sends an AP back to the
source node over the reverse feasible path. If the received CP indicates that
the source node wishes bidirectional communication, then the destination node
begins immediately a route discovery process towards the source node, using the
same QoS constraints specified in the CP. This feature can be useful for example
for VoIP, where the path in each direction uses the same QoS constraints.

All subsequent CPs that arrive to the destination node are used to construct
corresponding APs. These APs are marked as redundant. The manner in which
the redundant APs are treated depends on the particular overlay policies. If the
overlay policies favor backup paths or multipath routing, the redundant APs
are treated just as regular APs and forwarded to the source node on the reverse
feasible path. Otherwise, redundant APs are dropped.

Each node receiving an AP checks whether the triple (SrcId, DstId, FlowID)
is matching an entry in the list of active CPs or not. If a matching entry is
found, the node either creates a FR or adds the flow to an existing flow bundle
corresponding to a FR. Further, the CP entry is removed from the active CP
list and the AP is forwarded to the next node on the reverse feasible path. If no
matching entry is found, the AP is dropped silently. As mentioned before, the
manner in which redundant APs are treated depends upon the overlay policy.
In the reported experiments the redundant APs are dropped.

The first AP to arrive at the source node signals that a feasible path has
been set up and the application can begin sending DPs. A feasible path can be
torn down by a CP with the delete (D) flag set.

Chen and Nahrstedt [91, 161] provide worst-case complexity results for the
time and communication overhead required to establish a QoS path. They as-
sume that each link requires unit time to transport a packet. The path discovery
procedure uses one round-trip to establish a path. For a path length l, the time
complexity is O (2l). In the case of RDP, the path length is bounded by the
TTL value. Hence, RDP’s time complexity for one QoS request is O (2 TTL).

In the case of computation overhead it should be noted that each CP is sent
at most once over a link. Thus, the number of CPs corresponding to a QoS
request is bounded by the number E of links in the network. Assuming that
redundant APs are dropped, one AP travels each link on the feasible path. Chen
and Nahrstedt [91, 161] count this as a different packet each time it arrives at
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a new link. Consequently, the communication complexity for one QoS request
is on the order O (E + TTL).

5.3.3 Implementation

To evaluate the performance of RDP the open-source simulation environment
OMNeT++ is used [178]. OMNeT++ is an object-oriented, modular discrete-
event simulation environment with an embeddable simulation kernel.

An OMNeT++ simulation is built out of hierarchically nested modules,
which is ideal for an object-oriented approach. Modules communicate with each
other by means of messages and these messages may contain data of arbitrary
length. Messages are transported through gates and over channels. A node
maintains an arbitrary amount of gates and different gates are connected with
channels. The topology of a network, in terms of gates, channels and modules,
is defined in the Network Description (NED) language [178].

The simulator includes two different modules: the ORP module and the
DATACENTER module. The ORP module implements the RDP protocol and the
DATACENTER module collects the simulation statistics. These statistics can be
easily written to files with help of dedicated classes provided by the OMNeT++
framework.

OMNeT++ allows arbitrary parameters to be defined in an external initial-
ization file, which can be loaded in the simulation at any time. This allows the
user to control the behaviour of the simulation without having to recompile the
source code. The parameters available in the initialisation file are:

• TTL value of the packets,

• destination node to which a route is opened,

• delay and bandwidth QoS constraints used for route requests,

• session arrival rate and session duration.

The destination node parameter can be a node identifier or a discrete prob-
ability distribution used to randomly select a node.
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5.3.4 Simulator Validation

The simulation model for RDP was primarily developed for assessing the per-
formance of the protocol under different workloads. Ideally, a simulator should
be validated against an existing system or against a mathematical model [132].
Since RDP is a prototype for a new system, the first form of validation cannot
be applied. Also, due to the complexity of the protocol it is difficult to con-
struct an accurate mathematical model. This is however left for future work. In
order to circumvent these hurdles and still provide some validation, a number
of scenarios with known correct outcome, called sanity tests, were considered:

i) one feasible path only,

ii) no feasible paths,

iii) multiple feasible paths.

Figure 5.3: Topology for validation of RDP simulator.
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Link-state class Capacity (Kbps) Delay (ms)

1 64 1000

2 500 5

3 500 35

Table 5.1: Topology parameters for validation of RDP simulator.

The sanity tests are executed in a network with 11 nodes, shown in Fig-
ure 5.3. The network with the corresponding scenarios, is small enough to allow
inspection of each event occurring in the simulator. In each scenario, the goal is
to find paths from node 0 to node 6, such that the maximum end-to-end delay
does not exceed 100 ms and the available bandwidth is at least 64 Kbps. The
path computation is initiated from node 0. For each link, the link state is de-
terministically set to one of the link-state classes shown in Table 5.1. The links
are error-free. It should be noted that links with link-state class 1 are always
infeasible due to excessive delay. For class 2 and 3, the path feasibility depends
on its length.

In the first scenario, links have either link-state class 1 or link state class 2.
In Figure 5.3, links with link state class 1 are colored red and links with link-
state class 2 are colored green. If correctly implemented, RDP finds a single
feasible path 0→ 1→ 5→ 3→ 6. CPs traveling over the path 0→ 8→ 2→ 1
are dropped when reaching node 1. This happens because node 1 has already
received a CP from node 0, since a CP requires only 5 ms over the path 0→ 1
compared to 15 ms over the path 0→ 8→ 2→ 1.

In the second scenario, the network shown in Figure 5.3 was modified by
changing the state of the links (6, 3) and (3, 6) to link-state class 1. In this case,
a valid RDP implementation finds no feasible path between node 0 and node 6.

The network shown in Figure 5.3 was changed once more for the third sce-
nario. In this scenario, all links in the network have link-state class 2, with the
exception of the links (1, 4), (4, 1), (4, 7) and (7, 4), which have link-state class 3.
These changes prevent node 4 from being used as intermediate node on the path.
A valid RDP implementation finds two feasible paths: 0→ 1→ 5→ 3→ 6 and
0→ 10→ 7→ 6.
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The sanity tests above are based on modifying the delay of various links.
Similar tests were performed with regards to the link bandwidth and error rate.
Additional validation tests were performed on the output of the simulator, e. g. ,
controlling that measured bitrates are proportional to the number of exchanged
messages.

5.3.5 Experiment Setup

The purpose of the experiments is to evaluate the performance of RDP for
different workloads. The experiments are divided into two sets. In the first set
of experiments, the network size is increased from 10 to 1000 nodes and various
performance metrics are computed. In the second set of experiments, the same
metrics are observed when the network utilization increases in a network of 100
nodes. The network size in the two experiments was limited by the amount of
memory required. In particular, high network utilization results in high memory
usage in the simulator.

In the experiments the focus was entirely on bandwidth reservations. The
term QoS session is used to denote a request for a directed path with a con-
straint on minimum available bandwidth. Each session has an associated session
duration, which specifies the life length of the path. If a path is successfully es-
tablished, the amount of bandwidth specified by the path constraint is reserved
for the entire session duration. The links in these experiments are error-free and
no churn occurs.

During simulation data has been collected for the following metrics:

call blocking ratio: ratio between the number of infeasible QoS sessions and
the total number of QoS sessions arrived at the network,

low-TTL blocking ratio: ratio between infeasible sessions due to low TTL
value and the total number of infeasible sessions,

bandwidth utilization: average number of bytes per second due to RDP con-
trol information,

bandwidth overhead: ratio between the average number of RDP bytes per
second and network capacity (i. e. , the aggregated volume of every link
in the network),
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path stretch: average value for the ratio between feasible path length to short-
est path length.

The call blocking ratio metric is a good indicator of the overall success or
failure of the protocol in establishing QoS paths. When the call blocking ratio is
high, it is important to diagnose the root cause of the failures. In this context,
the low-TTL blocking ratio metric can help in deciding if failures occur because
bandwidth requests cannot be satisfied or because CPs are hindered in finding
a feasible due to the TTL value used.

The bandwidth metrics provide information about the cost of using RDP
expressed in terms of protocol overhead. The utilization metric can be used to
compare the required bandwidth per second with that used by other protocols.
On the other hand, the overhead metric reflects how much of the entire network
capacity is dedicated to RDP.

Finally, path stretch is also a way of estimating the cost of using RDP. When
the path stretch is higher than 1, a penalty is payed in terms of bandwidth and
delay. The bandwidth penalty has to do with reserved bandwidth on additional
links compared to the case of the shortest-path. Since more links are used, the
one-way delay of packets sent over feasible paths increases as well.

In the first set of experiments, the sessions arrive at the network according to
a Poisson distribution with parameter λ = 1. The session duration is drawn from
a generalized Pareto distribution with mean 180 seconds. This value reflects the
average duration of a voice conversation [29, 179, 180]. The Pareto distribution
is used to model the effect of long-tails and heavy-tails. The existence of long-
tails in the distribution of session duration in wide-area networks is supported
by empirical evidence from several studies [179, 181, 182].

The bandwidth requested for a QoS session is uniformly distributed over
three different ranges: 16–64 Kbps, 128–512 Kbps and 1–2 Mbps. These ranges
roughly represent low-to-high quality audio, streaming music or low quality
video, and high quality video, respectively. The network topologies are cre-
ated with the same settings as described in Section 3.4. The bandwidth in the
topologies generated with BRITE is uniformly distributed between 10 Kbps and
10 Mbps. The upper bound of the distribution represents an average value for
the maximum connection capacity offered to residential users by ISPs in Swe-
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den5. Links with less than 10 Kbps are not considered useful. The link delay
constraint is set to 10000 seconds. This value is several orders of magnitude
higher than the link delay, thus the delay constraint is always satisfied.

Preliminary results [183] indicate that RDP’s performance is strongly influ-
enced by the TTL value in use. Consequently, the performance of the protocol is
compared for the following TTL values: 4, 8 and 250. For brevity, these values
are denoted by TTL=4, TTL=8, and TTL=250, respectively.

In the second set of experiments, the metrics are observed in terms of in-
creasing network utilization. The network utilization, ρ, is defined as [29, 181]

ρ =
λTQH∑
e∈E

be
(5.2)

where T is the average session duration, Q is the average amount of QoS (band-
width) requested, H is the average path length across all node pairs, and be is
the available bandwidth on link e.

The session duration is selected from a generalized Pareto distribution with
mean 180 seconds, as in the first set of the experiments. Additionally, these
experiments include Pareto distributed sessions with a mean of 600 seconds.
This value was selected to explore the effect of longer sessions on the performance
of the protocol.

The amount of bandwidth requested by each QoS is defined exactly as in
the case of the first set of experiments.

The network utilization variable, ρ, was allowed to assume values from the set
{0.1, 0.25, 0.50, 0.75, 1.00}. This is accomplished by correspondingly adjusting
the arrival rate variable, λ, in Equation 5.2, while the remaining variable were
kept fixed.

For the second set of experiments a single BRITE topology is used, which
consists of 100 nodes. The topology is generated with the configuration param-
eters described for the first set of experiments.

The TTL value is set to 8, based on results from the first set of experiments.
Redundant APs are dropped.

Both sets of experiments are executed 30 times for each parameter combi-
5This was estimating by comparing the current offers from ISPs in Sweden.
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Parameter Assigned value

Session arrival Poisson with parameter λ = 1

Session duration Generalized Pareto with mean 180 s

Requested bandwidth ranges Uniform, 16–64 Kbps, 128–512 Kbps, 1–2 Mbps

Link bandwidth Uniform, 10–10000 Kbps

Link delay 10000 s

TTL 4, 8, 250 hops

Table 5.2: Parameters for the first set of experiments.

Parameter Assigned value

Network utilization, ρ 0.1, 0.25, 0.50, 0.75, 1.00

Session duration Generalized Pareto with mean 180 s and 600 s

Requested bandwidth ranges Uniform, 16–64 Kbps, 128–512 Kbps and 1–2 Mbps

Link bandwidth Uniform, 10–10000 Kbps

Link delay 10000 s

TTL 8 hops

Table 5.3: Parameters for the second set of experiments.

nation. This allows for the construction of average values with corresponding
95 %-confidence intervals. Each run lasts for a duration of 3600 seconds simu-
lated time preceded by a warmup period of 1000 seconds.

The parameters for each set of experiments are summarized in Tables 5.2
and Table 5.3, respectively.

5.3.6 Performance Results

Figure 5.4 shows the changes in the call blocking ratio as a function of the
network size. The functions plotted in the graph are grouped according to
bandwidth range and TTL value. The bandwidth ranges corresponding to 16–
64 Kbps, 128–512 Kbps and 1–2 Mbps range are colored green, blue and red,
respectively. For each bandwidth range, when the TTL=4, the curve is drawn
with a solid line, with a dashed line in case of TTL=8, and with alternating
dots and dashes when TTL=250.

It is observed in Figure 5.4(a) that 128–512 Kbps sessions and 1–2 Mbps
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Figure 5.4: Call blocking ratio.

sessions, both with TTL equal to 250, experience call blocking ratio in the
range of 0.8–0.9. This effectively dwarfs the remaining curves. The zoomed
view in Figure 5.4(b) makes it easier to distinguish these curves.

A session is blocked for one of the following three reasons:

no-path blocking: there is no path connecting the source node with the des-
tination node,

QoS blocking: a connecting path exists, but it does not satisfy the QoS con-
straints,

low-TTL blocking: the TTL value is too low to allow any CP to reach the
destination.

The BRITE topologies used for experiments are strongly-connected, which
means that at least one connecting path exists for each node pair. Hence,
sessions are blocked either due to QoS blocking or due to low-TTL blocking.

The plots shown in Figure 5.5 indicate that the cause for the high block-
ing ratio observed in Figure 5.4(a) is QoS blocking. The curves in Figure 5.5
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represent the ratio of low-TTL blocked sessions to the total number of blocked
sessions. This ratio is zero when the TTL value is equal to 250, implying that
QoS blocking is solely responsible for call blocking. Additionally, this shows
that in every topology every node can be reached in 250 hops or less.

Returning to Figure 5.4 it is observed that the curves corresponding to 1–
2 Mbps sessions with TTL=4 and TTL=8 experience high call blocking ratio
for very small network sizes. The call blocking ratio decreases abruptly when
the network size increases. The explanation is that, in small networks of 10–50
nodes, there is simply not enough bandwidth to accommodate the QoS sessions.
This assertion is corroborated by Figure 5.5(c). For larger networks, the low-
TTL blocking ratio increases. This happens very fast for sessions with TTL=4,
because for large networks the number of unreachable destinations increases.
This also explains the slight increasing trend in call blocking ratio for networks
larger than 400 nodes.

Figure 5.4(b) shows that the call blocking ratio for 16–64 Kbps sessions and
128-512 Kbps sessions changes less dramatically. Since these sessions require
a much smaller amount of bandwidth, there is a higher probability of finding
feasible paths of short length.

Finally, it can be observed that call blocking ratio does not decrease below
0.23. The reason for this behavior has to do with the link bandwidth distribu-
tion. Recall that link bandwidth is uniformly distributed with a lower bound
on 10 Kbps. Yet, QoS sessions require 16 Kbps or more. Consequently, several
links cannot accommodate any QoS sessions at all. Additional contributing fac-
tors are the TTL value and the session duration. The TTL value prevents the
protocol from finding potential routes extending beyond the TTL horizon. The
session duration keeps link bandwidth reserved. In several cases, the remaining
amount of free bandwidth is too small to allow additional sessions over the same
link.

As mentioned before, 95 % confidence intervals have been computed for all
metrics of interest. The intervals are very narrow for all metrics, implying that
the mean value estimates are quite accurate. As an example, the 95 % confidence
intervals for 128–512 Kbps session with TTL=8 and for 1-2 Mbps sessions with
TTL=250 are shown in Figure 5.6. The confidence intervals are represented by
vertical black lines, with the length corresponding to the width of the confidence
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(a) 16–64 Kbps.
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(b) 128–512 Kbps.
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(c) 1–2 Mbps.

Figure 5.5: Low-TTL blocking ratio.

140



5.3. ROUTE DISCOVERY PROTOCOL

0 200 400 600 800 1000

0.
22

0.
24

0.
26

0.
28

0.
30

Number of nodes

C
al

l b
lo

ck
in

g 
ra

tio

128−512 Kbps, TTL=8

(a) 95 % confidence interval.

0 200 400 600 800 1000

0.
92

5
0.

93
0

0.
93

5
0.

94
0

0.
94

5
0.

95
0

Number of nodes

C
al

l b
lo

ck
in

g 
ra

tio

1−2 Mbps, TTL=250

(b) 95 % confidence interval.

Figure 5.6: Call blocking ratio with confidence intervals.

interval. It can be observed that all confidence intervals are within the range
of 0.005. The intervals are so small, that in fact it was required to zoom in
the plot to make them visible. If they would be drawn on top of the curves in
Figure 5.4 they would not show at all. This is a recurring observation for all
metrics. Hence, additional confidence interval plots are not shown.

As stated in Section 5.3, RDP’s foremost disadvantage is its cost in terms of
bandwidth. Figure 5.7(a) shows the RDP bandwidth utilization in Kbps, as a
form of quantitative estimate of the cost. However, Figure 5.7(b) showing the
bandwidth utilization normalized by network capacity, is a better indication of
how much capacity is wasted by the path discovery process6.

The upper bound on RDP’s bandwidth utilization is decided by two factors:
the number of feasible links in the network and the TTL value used. In Fig-
ure 5.7 it can be observed that 128–512 Kbps sessions and 1–2 Mbps sessions
with TTL=250 consume the least amount of bandwidth. This happens because
most sessions of this type experience QoS blocking as it can be observed in
Figure 5.4(a) and in Figure 5.5.

6The legend shown in Figure 5.7(a) applies to Figure 5.7(b) as well.
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Figure 5.7: RDP bandwidth.

RDP’s bandwidth overhead shows a slow growing trend for networks with
200 nodes or more, with the exception of sessions with TTL=4. These ses-
sions experience an increasing blocking probability with growing network size
because more and more destination nodes are beyond the 4-hops TTL hori-
zon. The largest bandwidth overhead occurs in the case of 16–64 Kbps sessions
with TTL=8 and shows that roughly 0.03 % of the network capacity is used to
provide QoS routing.

Figure 5.8 shows the path stretch metric. In general, it is desired to limit
the path stretch because it can increase the traffic delay and the call blocking
ratio. When the path stretch is greater than one, the corresponding paths
are on average longer than the shortest paths. This means that traffic along
these paths tends to incur a higher delay than if transported along shortest
paths. When a feasible path is found, RDP reserves bandwidth on each link
along the path. When the paths are long the capacity is reduced on many links
for the duration of the QoS session. This increases the call blocking ratio for
subsequent sessions. As expected, the path stretch depends on the TTL value
used. It can be observed that the QoS paths are at most 3.3 times longer then
the corresponding shortest paths.
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Figure 5.8: Path stretch.

This concludes the first set of experiments. Based on the results it was
decided to use a TTL value of 8 for the second set of experiments. The main
reasons for this decision is the combination of low call blocking ratio and medium
path stretch.

For the second set of experiments, the same metrics as in the first set are
observed while the network utilization increases. The blue color is used for
sessions with mean duration of 180 seconds, while red color denotes sessions
with mean duration of 600 seconds. Plots for 16-64 Kbps sessions are drawn with
solid lines, those for 128–512 Kbps are drawn with dashed lines, and 1-2 Mbps
session plots use alternating dots and dashes. Each hollow circle indicates the
simulated utilization factor pertaining to the value on the y-axis.

The call blocking ratio and the low-TTL blocking ratio are shown side by
side in Figure 5.9. The first thing to notice in Figure 5.9(a) is that 180 seconds
sessions consistently experience higher call blocking ratio than 600 seconds ses-
sions. The explanation is found in Equation 5.2. This equation is used to
compute the utilization factor, ρ, by adjusting the arrival rate, λ, while the
other parameters are kept fixed. For a given ρ value, the arrival rate must be
higher for short sessions than for long sessions. A higher arrival rate implies that
more feasible paths must be found. This leads to higher bandwidth overhead
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Figure 5.9: Call blocking.

since more CPs are in the network, as it can be observed in Figure 5.10. Since
less network capacity is available in this case than in the case of low arrival rate,
the call blocking ratio is higher. Further support for this assertion is found in
Figure 5.9(b), where it can be observed that, when the utilization factor exceeds
0.25, most call blocking is due to QoS blocking.

Two different graphs are used in Figure 5.10 to show the RDP bandwidth
overhead. This is done because in the case of a single graph, the high band-
width overhead of 16-64 Kbps sessions would make it hard to distinguish the
bandwidth overhead of the remaining sessions. Indeed, for 16-64 Kbps sessions
the bandwidth overhead is 40–80 times higher than that of 1–2 Mbps sessions.

Figure 5.11 shows the path stretch metric as a function of the utilization
factor. The figure shows that when the utilization factor is below 0.75 the
path stretch is higher for 180 second sessions. When the path stretch increases
beyond 0.75 the situation is reversed. Unfortunately, there are currently no
results available for intermediate ρ values between 0.75 and 1. In their absence,
the hypothesis is that, at high network utilization, the session duration has more
influence over the path stretch. Long sessions keep the links occupied forcing
RDP to search longer feasible paths.
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Figure 5.10: RDP bandwidth overhead.
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Figure 5.11: Path stretch.
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5.4 Route Maintenance Protocol

The paths established with RDP must satisfy the QoS constraints (i. e. , the
flow demand) in the face of resource fluctuations, as explained in Section 5.2.
Applications are expected to cope with resource starvation during short dura-
tions of time. However, prolonged resource outage can have a serious adverse
impact on the QoE. When resource starvation is detected it is necessary to
re-route the flows such that the QoS constraints can still be satisfied. RMP
combines path restoration and flow allocation to achieve this goal. In this thesis
the focus is on bandwidth constraints, but the protocol as such has support for
different types of QoS constraints.

The factors that influence the design of RDP are also responsible for the
design of RMP. They were introduced in Section 5.3:

i) overlay networks with a large number of nodes,

ii) unreliable end-nodes as infrastructure,

iii) topology dynamics.

The use of traditional routing algorithms based on link state or distance vec-
tors in an environment with a large number of nodes is problematic at best [159].
In particular, the reliable flooding required by link-state algorithms presents se-
rious scalability issues. If the link-state updates are triggered by changes in the
link-state information in an environment with unreliable network infrastructure
and aggressive topology dynamics, the scalability problem becomes even more
serious. On the other hand, if the updates are periodic, nodes are likely to act
upon stale information. In the same type of environment, distance-vectors al-
gorithms suffer from problems related to routing loops and explosion in the size
of the routing table when multiple QoS constraints are maintained [159, 184].

To alleviate the scalability problem it is necessary to drastically reduce the
communication requirements. This entails to reducing the number of source-
destination pairs for which link state or distance vectors must be maintained.
Simultaneously, care must be taken such that QoS information is maintained
fresh.

If one considers the typical applications of unicast QoS routing (e. g. , VoIP,
videoconferencing) it becomes clear that maintaining information about all
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source-destination pairs in each node is unnecessary. For example, most people
have voice conversations with a limited number of other people, who add up
to just a tiny fraction of the entire population. In the VoIP scenario, this im-
plies that a source needs to maintain only topology information that describes
potential paths to its preferred destination nodes.

The solution proposed here assumes that source nodes establish QoS paths
using RDP. Neighbouring nodes share link-state information about established
paths among themselves. Contrary to the approach used by traditional link-
state protocols where complete topology information is flooded over the whole
network, the solution presented here exchanges specific topology information
by using selective diffusion. When an intermediate node on the path detects
that the QoS constraints of its outgoing link can no longer be maintained, it
enters restoration mode. A node in restoration mode computes a number of
backup paths based on the available link-state information. Traffic flows over the
broken path are reallocated to the backup paths using the techniques explained
in Chapter 3. Additionally, the intermediate node sends a message to the source
of each affected flow, informing it that backup paths are maintained until the
corresponding source node finds a new QoS path to the destination. In the case
when a link fails at the source node, the same actions are taken as in the case of
an intermediate node. Destination nodes are not required to do anything other
than to exchange link-state information.

5.4.1 Protocol Description

RMP relies on two main components: an algorithm for distributing link-state
information and an optimization algorithm for flow allocation.

Link-state information is distributed using the link vector algorithm pro-
posed by Behrens and Garcia-Luna-Aceves [159]. The difference between a
link-state algorithm and a link vector algorithm is that the link-state algorithm
is require to broadcast complete topology information. When a link vector
algorithm is used, a node uses selective diffusion to disseminate link-state infor-
mation pertaining only to its preferred paths. This reduces the communication
overhead associated with traditional link-state algorithms.

In the case of RMP, the preferred paths are setup using RDP. The QoS
information provided by RDP ensures that a node has link-state information
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about each link in each of its preferred paths. The set of links belonging to a
node’s preferred paths is called the source graph of that node. Nodes exchange
source graph information with their neighbours. Additionally, nodes have link-
state information about their own outgoing links. The topology information
known to a node consists of its own links, its own source graph and the source
graphs reported by its neighbours [159].

Nodes report incremental source graph information to their neighbours. Ob-
viously, when a node joins the overlay it receives complete source graphs from
its neighbours. Beyond that, information is transmitted only if the link-state
changes, i. e. , triggered updates.

There are two type of updates: add update and delete update. In RMP
parlance they are called LS ADD and LS DEL update, respectively. The prefix
LS is an abbreviation for link-state. A node sends an LS ADD update when a
new link is added to its source graph or when updated link-state information is
available for a link in its source graph. A LS DEL update is sent when a node
discards a link from its source graph.

A RMP message begin with the generic ORP header shown in Figure 5.1.
The type field in the header uses a value of 4. The generic header can be
followed by multiple LS ADD and LS DEL updates. The format of a sequence
of link-state updates is shown in Figure 5.12.

The bandwidth, delay and loss rate fields have the same meaning as in the
case of RDP. A value of one in the type field indicates a LS ADD update and
a value of two indicates a LS DEL update, respectively. The link source UUID
denotes the head node of a link. Similarly, the link destination UUID denotes
the tail node of a link.

Nodes receiving link-state updates must be guarded against the possibility of
processing stale information. Therefore, each node maintains a sequence number
counter that is updated by changes occurring to its topology table. Only the
head node of a link is allowed to change the sequence number and the link-state
information (i. e. , the QoS metrics) associated with the link in question. When
a node receives a link-state update for a link already available in its topology
table, it compares the sequence number of the update with the sequence number
stored in the topology table. If the sequence number of the update is higher,
the contents of the topology table are updated with the information from the
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Figure 5.12: Sequence of link-state updates.

update. Otherwise, the update is discarded.
For each link stored in the topology table there is also information main-

tained about the set of neighbours that sent LS ADD updates concerning that
particular link. The node that maintains the topology table is part of the neigh-
bour set if the link is in its source graph. When a LS DEL update is received, the
sender is removed from the set of neighbours. If the set of neighbours becomes
empty, the corresponding link is deleted from the topology table.

A link is deleted automatically from the topology table if a received LS DEL
message has a sequence number higher than the one stored in the table. This
is an indication that the link head node is unable to reach the link tail node.

When a link is removed from the topology table, it is stored temporary in a
list together with an age variable. The age variable is a conservative estimate
of the time it takes for an update to propagate throughout the network and
indicates how long the deleted link is kept in the list. This protects against
stale LS ADD updates for the deleted link and against wrapped sequence num-
bers [49, 159].
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Upon receiving a stale update, the receiver uses information from its topol-
ogy table to prepare an update for sender. If the stale information describes
a link present in the receiver’s source graph, the prepared update is of type
LS ADD. Otherwise, a LS DEL update is prepared to inform the sender that
the link in question is not in the receiver’s source graph.

A node enters restoration mode when a path is broken, i. e. , when one or
several links are deleted from the source graph or when their updated state infor-
mation makes it impossible to satisfy the path QoS constraints. In restoration
mode the following actions are taken:

i) an AP is sent to the source node of each affected flow, with the status code
set to indicate path error,

ii) Yen’s KSP algorithm is executed to find the K backup paths to the desti-
nations affected by the topology updates,

iii) the corresponding flow demands and the backup paths are used to construct
a PAP-MLPF optimization problem as described in Section 3.2.2,

iv) the simplex method is used to solve the PAP-MLPF problem as described
in Section 3.1 and Section 3.3,

v) if the simplex method is successful, the links on the new paths are added
to the source graph; otherwise the affected flows are dropped (i. e. , packets
belonging to them are not forwarded further).

In restoration mode, RMP exploits path diversity in order to keep traffic
flowing when the main route is failing. A strongly-connected topology (e. g. ,
a graph with high outdegree) is a key element for creating high path diversity.
Path diversity is also dependent upon the number of constraints. In particular,
finding several backup paths can be more difficult if several QoS constraints
must be satisfied simultaneously. The focus here is on bandwidth management,
but it is theoretically possible to replace Yen’s algorithm with the Self-Adaptive
Multiple Constraints Routing Algorithm (SAMCRA), which allows for path
selection with multiple constraints [55, 185].

As stated above, if the simplex method fails, then path failure occurs and
the node drops the concerned flows. An alternative approach is to drop one flow
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demand at a time and rerun the simplex method. This can improve the success
ratio for the flow allocation, albeit at a higher computational cost. Only the
first approach is used in the implementation reported here.

The following actions [159] are taken by a node if its topology table is up-
dated in response to a received RMP message:

i) a new source graph is constructed using the updated information,

ii) the new source graph is compared to the old source graph and based on
their differences a set of LS ADD and LS DEL updates is created,

iii) the set of updates from the previous step is used to construct a RMP
messages that is sent to all neighbours,

iv) aged links are removed from the deleted links list,

v) the sequence number counter is incremented.

The time complexity of the link vector algorithm after a single link change
is O (n), where n is the number of nodes affected by the change. The upper
bound for n is given by the length of the longest path in the network. The
communication complexity O (E) is asymptotic in the number of links in the
network [159].

5.4.2 Implementation and Validation

The OMNeT++ simulator [178] environment is used to test the performance
of RMP under various levels of churn. The simulator consists of two modules:
ORPNODE and WORLD.

The ORPNODE module is the actual RMP implementation. It should be noted
that the module is as close to a real implementation as it can be done in OM-
NeT++. This statement applies to the datatypes used, the function calls,
the message format and the optimization algorithms. In fact, the simulator
is linked with the liboptim software library presented in Chapter 3. If the
message-passing layer in OMNeT++ is replaced with a TCP/IP-based layer,
then minimal changes to ORPNODE are required in order to make it work over a
real network. Suggestions for enabling network communication in OMNeT++
can be found in [186].
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Given that RMP depends on RDP for obtaining preferred paths, it should
ideally use the RDP implementation described in Section 5.3.3. However, em-
pirical evidence from the experiments with RDP suggested that this approach is
likely to result in extremely long simulation times. Instead, the RMP simulator
uses a bootstrap phase to setup preferred routes.

The bootstrap phase is implemented in the WORLD module. This phase is
initiated with a set of randomly generated flow demands and with a BRITE
topology object. For each flow demand, a path is computed with Yen’s KSP
algorithm, where K = 5. The reason for using Yen’s KSP is to induce path
stretch as observed in the performance results for RDP. The bandwidth is
adjusted for each link on every 5SP7 in order to satisfy the flow demand. This
concludes the bootstrap phase.

It should also be noted that because RDP is not used, when a node enters
restoration mode no AP message is sent to the source node of each broken flow.

In addition to the bootstrap phase, the WORLD module is responsible for
generating link churn. Each connected pair of nodes shares a pair of links, with
each link going in the opposite direction of the other. Every link pair in the
network has an associated session duration variable, which is used to schedule
a session termination event. The value for the session duration is drawn from a
user-configurable probability distribution. When the session termination event
occurs, the node pair is disconnected. Nodes are assigned a session arrival
variable, also drawn from a user-selectable probability distribution. The session
arrival variable is used to schedule a session arrival event. Furthermore, each
node has a fixed degree, which is an upper bound on the number of nodes it can
be connected with. A node can be in three states: full, active or idle. A full
node has all its links in use and ignores any session arrivals. Active nodes have
one or more unused links, while idle nodes are completely disconnected from the
network. When a session arrival event occurs, the node in question is selected
as destination node. If idle nodes are available, the simulator randomly selects
one of them as source node. Otherwise, an active node is selected. If only full
nodes are available, the session arrival is ignored. When the simulator is able to
find both a source and a destination node, two links are created: one from the
source node to the destination node and another one in the opposite direction.

7Using the notation from Chapter 3, a 5SP denotes a path computed with Yen’s KSP

algorithm for K = 5.
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The link pair is assigned a session duration and a corresponding session duration
event is scheduled.

Figure 5.13: Topology for RMP simulator validation.

Validation methods similar to those used for RDP are used in the case of
RMP as well. The topology shown in Figure 5.13 has been extensively used
since it is simple enough both for calculating the outcome for the validation
tests and also for inspecting each event that occurs in the simulator. The tests
performed cover the following aspects of the protocol:

• Yen’s KSP algorithm,

• flow allocation,

• link vector algorithm.

The liboptim implementation of Yen’s KSP algorithm was executed to com-
pute up to the first seven shortest paths (7SPs), from each node to the remaining
nodes shown in Figure 5.13. For example, when the algorithm is searching paths
from from node 0 to node 4, only the following four paths must be found if the
algorithm works correctly:

i) 0→ 1→ 3→ 4,
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ii) 0→ 2→ 3→ 4,

iii) 0→ 1→ 2→ 3→ 4,

iv) 0→ 2→ 1→ 3→ 4.

In one of the flow allocation tests the bandwidth is forced to zero on all links
except for the links on the path 0 → 1 → 3 → 4, where each link is assigned
enough bandwidth to satisfy the demand from node 0 to node 4. A correct
implementation allocates the entire demand to the path 0→ 1→ 3→ 4, when
no other demands exist. In another test, bandwidth is allocated to the paths
0 → 1 → 3 → 4 and 0 → 2 → 3 → 4, such that the demand from node 0 to
node 4 can be evenly distributed. Error conditions are tested also, for example,
by setting the bandwidth on the link (3, 4) to a value below that of the demand
from node 0 to node 4. In this case no path from node 0 to node 4 can be found.

The link vector algorithm is tested by removing specific links and tracing the
updates generated. Also, an important test is to turn off the churn completely
after a number a link changes occurs. A valid implementation converges to a
stable state in these conditions.

Although each test described here validates only small aspects of the proto-
col, together they provide an indication that the protocol as a whole works as
intended.

5.4.3 Experiment Setup

The purpose of the experiments is to evaluate RMP’s performance for different
levels of churn. In the experiments we focus entirely on bandwidth reservations.
A network topology with 100 nodes and a maximum of 780 links is used for all
experiments. The links in these experiments are error-free.

The simulation time is divided into non-overlapping intervals that are one
minute long each. Within each interval, the simulator keeps track of the flows
that are affected by link churn. A path affected by churn is referred to as a
broken path. If the flow over a broken path can be allocated to a set of backup
paths, the path status is set to restored. Otherwise, the path status is set to
failure. A link that is down during consecutive minute intervals contributes

154



5.4. ROUTE MAINTENANCE PROTOCOL

only during the first interval to the number of path failures or to the number of
restored paths.

We denote by pt the total number of preferred paths, by pr the number
of restored paths, and finally by pf the number of path failures. The relation
0 ≤ pr + pf ≤ pt always holds. At the beginning of each interval the variables
pr and pd are reset to zero.

During simulation the following averages are computed:

path failure ratio: ratio between the number of path failures and the total
number of preferred paths in the network, pf/pt,

restored paths ratio: ratio between the number of restored paths and the
number of broken paths, pr/(pr + pf ) for pr + pf > 08,

bandwidth utilization: average number of bytes per second due to RMP con-
trol information,

bandwidth overhead: ratio between the average number of RDP bytes per
second and network capacity (i. e. , the aggregated volume of every link
in the network),

There are 50 random flow demands in each simulation, i. e. , pt = 50. This
value of pt provides an acceptable trade-off between link utilization and the time
required to run the simulations. The flow demand bandwidth is uniformly dis-
tributed over three different ranges: 16–164 Kbps, 128–512 Kbps and 1–2 Mbps,
as in the case of RDP. The source and destination node are selected randomly
as described in Section 3.3.

In these experiments, link bandwidth is interpreted as residual capacity after
bandwidth is reserved on preferred paths. The residual capacity determines the
amount of path diversity within the network. Here, the residual capacity is
exponentially distributed with mean value equal to the maximum bandwidth
demand multiplied by an integer scaling factor. For example, for the bandwidth
range 1–2 Mbps and a scaling factor of 2, the link bandwidth is exponentially
distributed with mean value 4 Mbps. This means that, on the average, each link
in the network can accommodate two flows or more.

8Intervals where pr + pf = 0 are not used in computing the average.
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The following scaling factors are used: 1, 2, 3, 4, and 5. The use of exponen-
tial distribution with mean value based on the maximum bandwidth demand
results in a good mix of links with very little bandwidth as well as links with lots
of residual capacity. Using the upper bound of the bandwidth range is a matter
of preference. In fact, any value within the bandwidth range can be selected and
the mean link bandwidth is scaled accordingly. The residual network capacity
increases proportionally with the integer multiple value.

Four different levels of churn are simulated: one based on the Gnutella session
duration model from Table 4.10, and the remaining three based on exponential
session duration with mean 10 seconds, 30 seconds and 300 seconds respectively.
The last three types of churn are referred to as exponential churn for the re-
mainder of the thesis. They are denoted by Exp(T), where T is mean session
duration.

The four types of churn correspond roughly to the following scenarios:

Gnutella churn: general purpose P2P overlay network,

Exp(300 s): a more reliable general purpose network,

Exp(30 s): wireless network with slowly moving stations,

Exp(10 s): wireless network with rapid moving stations.

The Gnutella mean session duration is approximately 130 seconds, since in
the model equation from Table 4.10

0.57 NX(x; 0.85, 0.07) + 0.33 LNX(x; 0.37, 0.96) + 0.10 UX(x; 18.45, 2460)

the largest contribution comes from the uniform distribution term. The session
interarrival time for Gnutella churn is modeled by the equation LNX(x; 0.71, 1.08),
as shown in Table 4.8 on page 101. From [138], the expected value for a random
variable X following the lognormal distribution LNX(x;µ, σ) is E[X] = eµ+σ2/2.
Hence, the Gnutella mean session interarrival time is 3.6 seconds.

For the remaining cases of churn, the Gnutella mean session interarrival time
with an exponential distribution time is used.

RMP is configured to use 3, 5, and 7 backup paths, respectively. A higher
number of backup paths increases the chances for successful flow allocation in
situations with low residual network capacity.
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Each experiment is executed 30 times for each parameter combination. This
allows the construction of average values with corresponding 95 % confidence
intervals. As in the case of RMP, the confidence intervals are very narrow,
implying that the estimated average values are statistically sound. For ratio
metrics in particular, the width of a 95 %-confidence interval is in the range
0.001.

In each run the duration of simulated time is 3600 seconds. Analysis of
simulation output by means of Welch’s procedure [132, 140] revealed that RMP
has a longer initial transient than RDP. A 2000 second warmup period was
required for removing the transient, which is twice as long as the warmup period
used in the case of RDP.

5.4.4 Performance Results

Figure 5.14 shows the performance of path restoration for each type of churn.
The solid black line at the top of each subfigure indicates the ratio of path
failures to the total number of paths (pt = 50) when no path restoration is in use.
It can be observed that the shorter the mean session duration is, the higher the
path failure ratio becomes. The minimum path failure ratio occurs in the case
of exponential churn with 300 seconds mean session duration. The maximum
path failure ratio is registered for scenarios with Exp(30 s) and Exp(10 s) churn.
These two scenario types show similar path failure ratio because 20 seconds
difference in the mean session duration is not enough to affect significantly
more links in the preferred paths.

Colored lines are used to plot the path failure ratio when RMP is used. Lower
path failure ratio values indicate higher RMP success in restoring paths. The
colors green, blue and red are used for curves belonging to bandwidth ranges 16–
64 Kbps, 128–512 Kbps and 1–2 Mbps, respectively. Solid lines denote scenarios
with 3SPs, dashed lines are used for scenarios with 5SPs and and alternating
dots and dashes are used for scenarios with 7SPs.

In all four cases of churn, the path failure ratio decreases when RMP is
used. Clearly, RMP’s success is directly proportional to the amount of residual
capacity. In terms of reduced path failure ratio, the largest gains are registered
for Exp(30 s) scenarios. In these scenarios, the path failure ratio is very high in
the absence of RMP, which means that there is a lot of room for improvement.
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Figure 5.14: RMP path restoration.
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At the same time, the churn is less aggressive than in the case of Exp(10 s)
scenarios. Hence, path diversity is less affected and backup paths are more
stable.

Using more backup paths (i. e. , 5SPs or 7SPs) shows most gain in the case of
Exp(30 s) scenarios for bandwidth range 1–2 Mbps. With less aggressive churn,
the usefulness of additional backup paths decreases.

A complementary view of RMP’s path restoration success is shown in Fig-
ure 5.15 in terms of the ratio of number of restored paths to the number of
broken paths. RMP’s largest success in restoring broken paths is experienced in
the case of 16-64 Kbps scenarios, in each scenario. In Figure 5.15(c) for scaling
factor 4 and 5, the restored paths ratio for 128-512 Kbps scenarios with 7SPs
is slightly higher than the restored path ratio for 16-64 Kbps scenarios with
7SPs. These minimal differences are due to the random selection of source and
destination node for each flow demand.

The worst path restored ratio is observed in the case of 1–2 Mbps scenarios
with 3SPs. This is consistent across all subfigures in Figure 5.15 and is a direct
result of lack of path diversity. In order to allocated 1–2 Mbps flow to a small
number of paths, those particular paths must have high residual capacity. For
the topologies used, it is more likely to find a large number of paths with low
residual capacity that together can accommodate the 1-2 Mbps broken flows.

As in case of RDP, the cost for using RMP is assessed in terms of bandwidth
utilization and bandwidth overhead, as shown in Figure 5.16 and Figure 5.17,
respectively.

Since RMP’s link vector algorithm uses triggered updates, it is no surprise
that the highest bandwidth utilization occurs in the case of aggressive churn as
it can be observed in Figure 5.16(b) and Figure 5.16(c).

It should be recalled from Section 5.4.1 that RMP sends updates in re-
sponse to changes in the topology table. The topology table stored at a node
consists of the node’s outgoing links, its source graph and the source graphs of
its neighbours. It should be clear that, with increasing number of backup paths,
the number of links stored in the topology table grows as well. Consequently,
changes to links in the network is more likely to trigger the node to send update
messages. This behavior is observed in Figure 5.16 for 5SPs and 7SPs scenarios.

The bandwidth overhead shown in Figure 5.17 is computed by dividing the
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Figure 5.15: RMP restored paths ratio.
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Figure 5.16: RMP bandwidth utilization.
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Figure 5.17: RMP bandwidth overhead.
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bandwidth utilization with the network capacity, i. e. , the sum of residual ca-
pacity and used capacity. In contrast to RDP’s bandwidth overhead, the RMP
bandwidth overhead is biased. For example, the 16–64 Kbps scenarios dominate
in each of the churn scenarios. This happens because the amount of average
residual capacity per link is determined by the product between the scaling fac-
tor in use and the upper bound of the bandwidth range. Hence, the network
capacity for 16–64 Kbps scenarios is always lower than for the other two band-
width ranges. Comparison of bandwidth overhead is fair only for graphs within
the same bandwidth range.

For each bandwidth range, the largest bandwidth overhead occurs in 7SPs
scenarios with Exp(30 s) churn when the scaling factor is equal to one: 0.6 %
in the case of 16–64 Kbps scenarios, 0.07 % in the case of 128–512 Kbps scenar-
ios, and 0.02 % in the case of 1–2 Mbps scenarios. RMP is less successful in
establishing backup paths for Exp(10 s) scenarios. This explains why Exp(10 s)
scenarios show lower bandwidth overhead than Exp(30 s) scenarios. The low-
est bandwidth overhead occurs in the case of Exp(300 s) scenarios where it is
approximately one magnitude lower than in the other scenarios.

5.5 Summary

At the beginning of this chapter a brief overview of QoS routing was provided.
This was followed by a discussion about the design assumptions used in the
design of ORP. The discussion included the type of underlying environment
and the targeted multimedia applications. The remaining part of the chapter
described RDP and RMP, the simulations performed for each protocol, and the
performance results obtained from the simulations.

RDP is used to select a path between two nodes subject to a number of
QoS constraints. Results from the RDP simulations indicate that the protocol
can find bandwidth-constrained paths with no more than 0.03 % overhead in
a network with 1000 nodes when TTL=8. The call blocking ratio depends on
the amount of available bandwidth in the network, but it is also sensitive to
the TTL value in use. When the utilization factor increases, the bandwidth
overhead increases as well, especially in the case of 16–64 Kbps flow demands.
Also, as the utilization increases, the call blocking ratio becomes increasingly
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sensitive to the amount of available bandwidth in the network.
RMP is used to restore RDP paths when the original paths are broken. This

includes the case when the path QoS constraints can no longer be satisfied. A
link vector algorithm is used to share link state information among neighbouring
nodes. When path needs to be restored, Yen’s KSP is used to compute backup
paths and the affected flows are allocated to them. RMP can be quite efficient
in restoring broken paths provided enough residual capacity is available. For
example in Exp(30 s) scenarios, in spite of aggressive churn, RMP is able to
restore up to 40 % of broken paths used for transporting 1–2 Mbps flows, with
approximately 0.02 % bandwidth overhead.

The worst-case cost in the case of RDP, namely 0.9 % bandwidth overhead,
occurs for 16–64 Kbps flow demands with 180 seconds mean session duration
when the utilization factor is one. For RMP, the worst-case cost, 0.6 %, occurs
in Exp(30 s) scenarios with 16-64 Kbps flow demands, 7SPs and scaling factor
one for residual capacity. Assuming an additive cost when RDP and RMP are
being used together, the worst-case cost is estimated to be as high as 1.5 %
protocol overhead in terms of bandwidth.
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Conclusions and Future Work

Wide availability of computing resources at the edge of the network has lead
to the appearance of services implemented in overlay networks. These applica-
tions often utilize end-node resources as infrastructure rather than relying on
dedicated resources. This approach greatly reduces the deployment effort and
the cost for the service in question.

The dissertation addresses the problem of unicast QoS routing in overlay
networks. More precisely, the emphasis is on methods for providing a QoS-
aware service on top of IP’s best-effort service, with minimal changes to existing
Internet infrastructure.

6.1 Contributions of the Thesis

The ORP framework for QoS routing is proposed along with a set of de-
sign assumptions on the environment and multimedia application for which
ORP can be used. The framework consists of two protocols: Route Discovery
Protocol (RDP) and Route Management Protocol (RMP). RDP is used to find
paths subject to a number of QoS constraints and RMP’s task is to maintain
them when churn occurs. The design and implementation of both protocols is
presented and their performance is evaluated through an extensive simulation
study. The study is focused on several parameters that capture the success of
finding and maintaining QoS paths along with the cost in terms of bandwidth
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overhead for using these protocols.
A Gnutella study was performed in order to gain a better understanding of

the dynamics that occur in an overlay network. The study resulted in highly
detailed statistical models and characteristics for Gnutella traffic crossing an
ultrapeer. The models for session arrival and session duration were later used
to generate churn in the ORP simulations. An additional contribution is the
design and implementation of a flexible software library for P2P traffic decoding,
based on tcptrace.

An important part of RMP’s operation involves solving linear optimiza-
tion problems for flow allocation. A software library for solving network flow
problems was designed, based on the GLPK implementation of the simplex
method and interior point method. The software library implementation, called
liboptim, can be relatively easy extended to include additional flow problems
and algorithms.

The liboptim library was essential for the implementation of a performance
testbed for network flow algorithms. The testbed was used for performance
measurements of the simplex method and interior point method as implemented
by GLPK. Based on these measurements the simplex method was selected for
use in RMP.

6.2 Future Directions and Research

The results of the performance study reported in the previous chapter indicate
that ORP is a viable solution for QoS routing. The intention is to run similar
tests in a more realistic environment, such as PlanetLab. However, a realis-
tic PlanetLab implementation requires that ORP is extended to include two
important elements: an overlay network that organizes nodes and transports
ORP messages and the ability to measure link-state variables (e. g. , available
bandwidth, delay and loss).

ORP’s initial design envisioned the Gnutella network as the overlay of choice
for ORP. In fact, the CPs and APs used by RDP can be directly mapped on
Gnutella’s QUERY and QUERY HIT messages. For DPs and RMP link-state
updates, either a new message type can be created or a existing message type
(e. g. , QUERY HIT) can be extended to include ORP data. However, ORP can
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use any overlay that can forward message and address individual nodes.
Several methods for active measurement [171–175] exist already. It is im-

portant that these methods are evaluated and a subset suitable for ORP is
selected.

There is a certain latency involved in obtaining link-state information via
active measurements, as it was explained in Section 5.2. An interesting item for
future work involves estimating the extent of this latency, its effect on ORP’s
ability to react to changes in the link-state, and finding methods to reduce it.

RDP’s current path-selection policy is to use the path determined by the
first CP arriving at the destination node. This policy favours paths with short
one-way delay but can create hot-spots in the network. Future research should
therefore also focus on designing policies for load-balancing in order to improve
the utilization of network resources.

All experiments presented here focus on a single QoS metric: bandwidth.
Additional experiments should be performed to evaluate ORP’s performance
when several QoS metrics are used. For RMP, this requires that Yen’s KSP
algorithm is replaced by SAMCRA or a similar algorithm.
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Appendix A

Acronyms

ccdf complementary cumulative

distribution function

cdf cumulative distribution

function

cedf complementary empirical

distribution function

edf empirical distribution

function

pdf probability density function

AODV ad-hoc on-demand distance

vector

AP acknowledgement packet

API application programming

interface

AS autonomous system

BFS breadth-first-search

BGP Border Gateway Protocol

BTH Blekinge Institute of

Technology

CLVL controlled-loss virtual link

CP control packet

CPU central processing unit

DFS depth-first-search

DHT distributed hash table

DiffServ Differentiated Services

DP data packet

DSDV destination sequence

distance vector

DSR dynamic source routing

EDA exploratory data analysis

FEC forward error correction

FIFO first in first out
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FR flow relay

GCC GNU Compiler Collection

GLPK GNU Linear Programming

Toolkit

GSL GNU Scientific Library

GT-ITM Georgia Tech - Internetwork

Topology Models

GUID globally unique identifier

GWC Gnutella Web Cache

HSEP Horizon Size Estimation

Protocol

HTTP Hypertext Transfer

Protocol

IP Internet Protocol

IPM interior point method

ISP Internet service provider

IPTV IP Television

IntServ Integrated Services

KSP K shortest paths

LN leaf node

MCP multi-constrained path

MCOP multi-constrained optimal

path

ML maximum likelihood

MOS mean opinion score

NAT Network Address

Translation

NED Network Description

ORP Overlay Routing Protocol

OSPF Open Shortest Path First

P2P peer-to-peer

PAP pure allocation problem

PAP-MLPF PAP with modified

link-path formulation

PCAP packet capture

PIT probability integral

transform

PSO particle swarm optimization

QoE quality of experience

QoS quality of service

QRON QoS-aware routing protocol

for overlay networks

QRP Query Routing Protocol

QSON QoS overlay network

RDP Route Discovery Protocol

RIP Routing Information

Protocol

RMP Route Management

Protocol

RON Resilient Overlay Network

ROVER Routing in Overlay

Networks
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RSVP Resource Reservation

Protocol

RTT round-trip time

SAMCRA Self-Adaptive Multiple

Constraints Routing

Algorithm

SLA service level agreement

SSH Secure Shell

STL Standard Template Library

SVD singular value

decomposition

TCP Transmission Control

Protocol

TTL time-to-live

UDP User Datagram Protocol

UHC UDP Host Cache

UMTS Universal Mobile

Telecommunications System

UTC Coordinated Universal

Time

UUID universally unique identifier

UP ultrapeer

VoD video on demand

VoIP voice over IP
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Appendix B

Notation

B.1 Graph Theory

NOTATION DEFINITION PAGE
G shorthand notation for a graph G(V, E) 17
V set of vertices (nodes) 17
V number of vertices in V 17
E set of edges (links) 17
E number of edges in E 17
(u, v) edge connecting nodes u and v 17
P (u, v) path from vertex u to vertex v 19
P ∗(u, v) optimal path (e. g. , shortest path) 29
L characteristic path length 19
C clustering coefficient 19
λ Euclidean distance between two nodes in the graph 20
Λ maximum distance between two nodes in the graph 20
dv degree of vertex v 18
rv rank of vertex v 19

173



APPENDIX B. NOTATION

B.2 Probability and Statistics

NOTATION DEFINITION PAGE
θ distribution parameter 81
θ̂ point estimate of θ 87
fX (x; θ) pdf for the random variable X 81
FX (x; θ) cdf for the random variable X 81
FX (x; θ) ccdf for the random variable X 82
FX (x; θ) edf for the random variable X 86
FX (x; θ) cedf for the random variable X 86
Xn nth element of a random sample 82
X(n) nth order statistic 83
E[X] expected value of the random variable X 83
Var[X] variance of the random variable X 87
µ̂ = X̄ sample mean (point estimate) 83
σ̂ sample standard deviation (point estimate) 83
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Probability Distributions

This is a very short review of the pdfs and cdfs for distributions used in this
thesis. The review is based on information presented in [132, 187, 188].

C.1 Uniform Distribution, U[a,b]

FX(x; a, b) =


0 if x < a
x− a
b− a

if a ≤ x ≤ b

1 if b < x

(C.1)

fX(x; a, b) =


1

b− a
if a ≤ x ≤ b

0 otherwise
(C.2)

The special case, U [0, 1] is equivalent to

FX(x; 0, 1) =


0 if x < a

x if 0 ≤ x ≤ 1

1 if 1 < x

(C.3)

fX(x; 0, 1) =

{
1 if 0 ≤ x ≤ 1

0 otherwise
(C.4)
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C.2 Poisson Distribution, PO[λ]

FX(x;λ) =


0 if x < 0

e−λ
[x]∑
i=0

λi

i!
otherwise

(C.5)

where [x] is the largest integer such that [x] ≤ x.

fX(x;λ) =


e−λ λx

x!
if x ∈ N

0 otherwise
(C.6)

C.3 Exponential Distribution, EXP[λ]

FX(x;λ) =

{
1− e−λx if 0 ≤ x
0 otherwise

(C.7)

fX(x;λ) =

{
λe−λx if 0 ≤ x
0 otherwise

(C.8)

C.4 Normal Distribution, N[µ, σ2]

fX(x;µ, σ2) =
1√

2πσ2
exp

(
−(x− µ)2

2σ2

)
for all x ∈ R (C.9)

There is no closed form available for FX(x;µ, σ2). The values must be esti-
mated numerically [132].

C.5 Lognormal Distribution, LN[µ, σ2]

fX(x;µ, σ2) =
1

x
√

2πσ2
exp

(
−(ln [x]− µ)2

2σ2

)
for all x ∈ R (C.10)

There is no closed form available for FX(x;µ, σ2). The values must be esti-
mated numerically [132].
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C.6 Pareto Distributions

The classical Pareto distribution, used for example in [136], is defined as

FX(x; a, κ) = 1−
(κ
x

)a
(C.11)

where a is the shape parameter and κ is the location parameter. The location
parameter is actually the lower bound of x. This is called a Pareto distribution
of the first kind [188]. The corresponding probability density function is

fX(x; a, κ) = aκax−a−1 (C.12)

The symbol a is used instead of α to avoid confusion with the shape parameter
in the generalized Pareto distribution.

A generalized Pareto distribution [149] is defined as

FX(x;α, κ, β) = 1−
[
1 +

α(x− κ)
β

]− 1
α

(C.13)

where α is the shape parameter, κ is the location parameter, and β is the scale
parameter. The corresponding density function is

fX(x;α, κ, β) =
1
β

[
1 +

α(x− κ)
β

]− 1
α−1

(C.14)

Clearly, for β = ακ and α = 1/a, the generalized Pareto distribution is equiva-
lent to the classical Pareto distribution.

In [189], the authors define the bounded Pareto density function

fX(x) =
aκx−a−1

1− (κ/K)a
k ≤ x ≤ K (C.15)

with the probability distribution function

FX(x) =
κx−a

(κ/K)a − 1
k ≤ x ≤ K. (C.16)

where K is the upper bound of x. In contrast with the previous two Pareto
distributions, the bound Pareto distribution is not a heavy-tail distribution.
The distribution shows high variability if k � K, but its moments are finite.
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