
Unicast QoS Routing in Overlay Networks

Dragos Ilie1 and Adrian Popescu2

1 dragos.ilie@gmail.com
2 Blekinge Institute of Technology, Sweden

adrian.popescu@bth.se

Abstract. The goal of quality of service (QoS) routing in overlay net-
works is to address deficiencies in today’s Internet Protocol (IP) routing.
This is achieved by application-layer protocols executed on end-nodes,
which search for alternate paths that can provide better QoS for the
overlay hosts. In the first part of this paper we introduce fundamental
concepts of QoS routing and the current state-of-the-art in overlay net-
works for QoS. In the remaining part of the paper we report performance
results for the Overlay Routing Protocol (ORP) framework developed at
Blekinge Institute of Technology (BTH) in Karlskrona, Sweden. The re-
sults show that QoS paths can be established and maintained as long
as one is willing to accept a protocol overhead of maximum 1.5% of the
network capacity.

1 Introduction

One of Internet’s characterizing features is its pervasive nature. Online bank-
ing, online shopping, voice over IP (VoIP), IP Television (IPTV), video on
demand (VoD) and social networking (e. g. , Facebook and Twitter) are just
a few examples of Internet services that have become an integral part of our
lives. Some of these services, in particular those making heavy use of video and
audio streams, have strict requirements on how the media streams must be han-
dled during transit in the network. The requirements are typically expressed
in the form of constraints on bandwidth1, packet delay, delay jitter and packet
loss. A network that meets these requirements is said to provide QoS [1]. A key
issue in providing QoS is that of selecting paths for network traffic such that the
stream requirements are satisfied. This can be done by QoS routing, which is
a mechanism for optimizing network performance by constrained-path selection
and traffic flow allocation.

To be more specific, QoS routing solves the following problem. A source node
must transfer data over a network to a set of destination nodes. The two sets can
be overlapping in the sense that some nodes are both senders and receivers. The
data is in the form of packets. These packets are grouped into flows, where a flow
consists of packets sharing the same source and destination address as well as a
set of common QoS requirements called the flow demand. The problem is how
1 In the field of computer networking, the term bandwidth is used to denote data rate

or capacity, unless specified otherwise.

D. Kouvatsos (Ed.): Next Generation Internet, LNCS 5233, pp. 1018–1039, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Unicast QoS Routing in Overlay Networks 1019

to satisfy all flow demands simultaneously. Two sub-problems must be solved
in order to meet the flow demands. First, one must find at least one path that
connects each source node to the corresponding destination node. Second, the
flows must be allocated to these paths without violating their QoS requirements.
A more far reaching objective is to solve these two problems while maximizing
network throughput and minimizing congestion.

The network architect relies on a number of low-level building blocks in order
to design a network with support for QoS. Examples of QoS low-level building
blocks routing algorithms and protocols, resource reservation protocols, traffic
shapers scheduling algorithms, admission control mechanisms, congestion avoid-
ance and congestion control techniques. A QoS architecture defines how building
blocks are combined in order to provide QoS.

Integrated Services (IntServ) is the first proposed QoS architecture for IP-
based networks [2]. In IntServ, resources are allocated along the path by using
the Resource Reservation Protocol (RSVP) [3]. IntServ performs per-flow re-
source management. This has led to skepticism towards IntServ’s ability to scale,
since core routers in the Internet must handle several hundred thousands flows
simultaneously [4].

A second QoS architecture called Differentiated Services (DiffServ) [5] was
developed, due to concerns about IntServ’s scalability. DiffServ attempts to solve
the scalability problem by dividing the traffic into separate forwarding classes.
Each forwarding class is allocated resources as stipulated in the service level
agreement (SLA) between provider and customer. Packets are classified and
mapped to a specific forwarding class at the edge of the network. Inside the core,
routers handle the packets according to their forwarding class. Since routers do
not have to store state information for every flow, but only have to inspect certain
fields in the packet header, it is expected that DiffServ scales much better than
IntServ. A major problem with the DiffServ architecture has to do with end-to-
end QoS provisioning over multiple DiffServ domains. Premium services cannot
be offered unless bilateral SLAs exist between peering domains over the entire
end-to-end path. Currently, technical difficulties coupled with the providers’ lack
of incentive to engage in bilateral SLAs has prevented wide-spread deployment
of DiffServ [6,7].

Both architectures are of benefit to services and users located in the same
network (e. g. , the corporate network), but fail to address a more heterogeneous
scenario, where the service provider and users are scattered across the Internet.
The main reason for this situation is because of the lack of interaction between
network providers or difficulties to align premium services to a common denom-
inator among the providers [8].

Furthermore, another issue to consider in the context of QoS is that of inter-
domain routing. From a hierarchical point of view, Internet consists of a large
number of autonomous systems (ASs). Interconnected ASs exchange routing
information using the Border Gateway Protocol (BGP) [9]. An AS connects
to other ASs through peering agreements. A peering agreement is typically a
business contract stipulating the cost of routing traffic across an AS along with

1020 D. Ilie and A. Popescu

other policies to be maintained. When there are several routes to a destination
the peering agreements force an AS to prefer certain routes over others. For
example, given two paths to a destination where the first one is shorter (in terms
of hops) and the second one is cheaper, the AS will tend to select the cheaper
path. This is called policy routing and is one of the reasons for suboptimal
routing. With the commercialization of the Internet it is unlikely that problems
related to policy routing will disappear in the near future.

In summary, the Internet landscape today consists of a number of “islands”
where QoS is provided by IntServ, DiffServ or other customized architectures. As
long as peering agreements exist QoS services can be extended beyond the “is-
land” borders. Otherwise, QoS is limited to IP’s best-effort service. Consequently,
some researchers are investigating the possibility to deploy QoS in overlay net-
works on top of IP. Overlay networks are more flexible to change architecturally,
less dependent on network providers and cheaper to deploy. On the other hand,
they face many challenges in the form of fluctuating QoS resources, coordination
and scalability.

The remainder of this article is structured as follows. An overview of the cur-
rent state-of-the-art in overlay networks for QoS is presented in Section 2. That
is followed by a brief presentation of essential principals of QoS routing in Sec-
tion 3. Section 4 introduces basic models for path selection and flow allocation.
Simulation results for overlay routing protocols developed at BTH in Sweden
are described in Section 5. We conclude with a brief summary and suggestions
for future work. This article is based on the work presented in [10].

2 Overlay Networks for QoS

An overlay network utilizes the services of an existing network in an attempt
to implement new or better services. Each overlay node establishes virtual links
with a subset of its peers according to rules specific to the overlay. A virtual link
consists of a sequence of one or more physical links (i. e. , a physical path). The
physical path is selected by inter-domain (e. g. , BGP) and intra-domain routing
protocols such as the Routing Information Protocol (RIP) and the Open Shortest
Path First (OSPF). Virtual paths are selected by overlay routing protocols.

An example of an overlay network is shown in Figure 1. The physical intercon-
nections of three ASs are depicted at the bottom of the figure. The gray circles
denote nodes that use the physical interconnections to construct virtual paths
used by the overlay network at the top of the figure.

The nodes participating in the overlay network perform active measurements
to discover the QoS metrics associated with the virtual paths. As an example,
assume that an overlay node in AS1 wishes to communicate with another overlay
node in AS2. Assume further that AS1 always routes packets to AS2 by using the
direct link between them, due to some policy or performance metric. The overlay
node in AS1 may discover through active measurements that the path crossing
AS3 can actually provide better QoS (e. g. , smaller delay), than the direct link
to AS2. In this specific case, the AS1 node forwards its traffic to the AS3 node,

Unicast QoS Routing in Overlay Networks 1021

AS 1
AS 3

AS 2

Physical Network

Overlay Network

Fig. 1. Overlay network

which in turn forwards the traffic to the destination node (or to the next node on
the path if multiple hops are necessary). It is worth to emphasis that the overlay
network can choose its routes automatically, without involving the autonomous
systems into its decisions. This is the basic argument to motivate routing in
overlay networks. Examples of such overlays are the Resilient Overlay Network
(RON), OverQoS, the QoS-aware routing protocol for overlay networks (QRON)
and the QoS overlay network (QSON).

In RONs [11], strategically placed nodes in the Internet are organized in an
application-layer overlay. Nodes belonging to the overlay aid each other in rout-
ing packets in such a way as to avoid path failures in the Internet. Each RON
node carefully monitors the quality of Internet paths to his neighbors through
active measurements. In order to discover the RON topology, RON-nodes ex-
change routing tables and various quality metrics (e. g. , latency, packet loss
rate, throughput) using a link-state routing protocol. The path selection is done
at the source, which signals to nodes downstream the chosen path. Nodes along
the path signal to the source nodes information about link failures pertaining
to the selected path. Results involving thirteen sites scattered widely over Inter-
net showed the feasibility of this solution. RON’s routing mechanism was able
to detect and route around all 32 outages that occurred during the time frame
for the experiment, 1% of the transfers doubled their Transmission Control
Protocol (TCP) throughput and 5% had their loss rate reduced with 5 % .

Following the success of RONs, the authors of [12] propose OverQoS, an
overlay-based QoS architecture for enhancing Internet QoS. The key part of
the architecture is the controlled-loss virtual link (CLVL) abstraction, which
provides statistical loss guarantees to a traffic aggregate between two overlay
nodes in the presence of changing traffic dynamics. They demonstrate that their

1022 D. Ilie and A. Popescu

architecture can supply the following QoS enhancements with as Little as 5 %
bandwidth overhead: smoothing losses, packet prioritization, as well as statistical
bandwidth and loss guarantees.

Another approach involving strategically placed nodes in the Internet is pre-
sented in [13]. The authors propose an architecture where each AS has one or
more overlay brokers. The overlay brokers are organized into clusters that inter-
connect with each other to form an overlay service network that runs a QRON.
The purpose of QRON is to find an overlay path satisfying a bandwidth con-
straint. QRON nodes use source routing and a number of backup paths to cope
with bandwidth fluctuations. The authors were able to show that the QRON
algorithms perform well under a variety of traffic loads while balancing the load
among overlay brokers.

In a similar spirit, the QSON architecture[14] advocates a backbone overlay
network for QoS routing. This architecture relies on well-established business
relationships of two kinds. The first type of business relationships is defined
by end-users who purchase QoS services from the QSON provider. The QSON
provider is able to supply these services by engaging in SLAs with several Inter-
net service providers (ISPs). This is the second kind of business relationships.
The QSON overlay is spanned by QSON proxies located between ISP domains.
Each proxy stores a list of paths to the other proxies. The proxies use probes
to reserve bandwidth and to inform each other about changes in available band-
width. Simulation results have shown that QSON is able to provide bandwidth
reservation with low control overhead.

3 Principles of QoS Routing

In QoS networks every link and every node has a state described by specific QoS
metrics. The link state can consist of available bandwidth, delay and cost whereas
the node state can be a combination of available memory, central processing
unit (CPU) utilization and harddisk storage. The link state and the node state
may be considered separately or they may be combined. The focus here is on
link state.

Routing is the process of finding a path between two hosts in a network. In QoS
routing, the path must be selected such that QoS metrics of interest stay within
specific bounds. The routing process relies on a routing algorithm for computing
constrained paths and on a routing protocol for distributing state information. In
general, the algorithm is independent from the protocol. The coupling between
them is decided when the QoS routing architecture is specified. For example, the
QoS-enabled OSPF (QOSPF) protocol suggests that a modified Bellman-Ford
algorithm should be used for pre-computed paths and Dijkstra’s algorithm for
on-demand paths [15].

There are three basic forms of storing state information: local state, global
state and aggregated (partial) state [16].

When a node keeps local state, it maintains information about its outgoing
links only. No information about the rest of the network is available.

Unicast QoS Routing in Overlay Networks 1023

A global state is the combination of local states for all nodes in a graph.
Global states are imprecise (i. e. , they are merely approximations of the global
state) due to non-negligible delay in propagating information about local states2.
When the network size grows, the imprecision grows as well. This makes it hard
to maintain an accurate picture about resource availability in the network and
in turn has a severe impact on QoS routing.

Aggregated state aims to solve scalability issues in large networks. The basic
idea is to group together adjacent nodes into a single logical node. The local
state of a logical node is the aggregation of local states for physical nodes that
are part of the logical node. Similar to the case of global state, this leads to
imprecision that grows with the amount of state information aggregated in the
logical node.

Imprecision, also called uncertainty, is not generated by aggregation only.
Other sources of uncertainty are network dynamics (churn), information kept
secret by ISPs due to business reasons, as well as approximate state information
due to systematic or random errors in the measurement process [17]. An interest-
ing solution suggested for mitigating these problems is to replace the determin-
istic state information metrics with random variables. In this case, the routing
algorithm must be changed such as to select feasible paths on a probabilistic
basis, with the result that the selected paths are those most likely to satisfy the
QoS constraints [18]. However, a non-trivial problem with this approach lies in
the estimation of the probability distributions for state variables [19].

There are three different classes of routing strategies, each corresponding
roughly to one form of maintaining state information: source routing, (flat) dis-
tributed routing and hierarchical routing [20].

In source routing the nodes are required to keep global state and the feasible
path is computed at the source node. The main advantage in this case is that
route computation is performed in a centralized fashion, avoiding some of the
problems associated with distributed computation. The centralized computation
can guarantee loop-free routes. One disadvantage of source routing is the require-
ment to maintain global state. In a network where the QoS metrics often change,
this requires large communication overhead in order to keep the state informa-
tion updated. Additionally, due to the propagation delay, the state information
may become stale before reaching the destination. This leads to imprecise state
information, as explained above. Furthermore, depending on the network size
and the number of paths to compute, the source routing algorithm can result in
very high computational overhead [20].

Distributed routing, typically, also relies on nodes maintaining global states,
but the path computation is performed in a distributed fashion. This dimin-
ishes computational overhead and also allows concurrent computation of multiple
routes in search for a feasible path. Distributed computation suffers from prob-
lems related to distributed state snapshot, deadlock and loop occurrence [16].

2 Link state information is said to become stale when network latency prevents timely
updates.

1024 D. Ilie and A. Popescu

Additionally, when global state is maintained, distributed routing shares with
source routing the problems related to imprecise state information.

Some suggestions on using flooding-based algorithms, require nodes to main-
tain local state only [21,22]. This mitigates problems related to imprecise state
information. However, flooding-based algorithms tend to generate large volumes
of traffic compared to the other forms of routing.

In hierarchical routing, the network is divided into groups of nodes and the
state information is aggregated for the nodes participating in a group. With this
form of aggregation, a group appears as a logical node. One node in the group is
designated leader or border node and acts as a gateway for the communication
with other logical nodes. Each group can in turn be divided into smaller groups.
Using this form of recursion, several hierarchical levels can be created. Nodes
maintain global state information for peers within a group and aggregated state
information about the other groups. The major advantage of hierarchical routing
is scalability[20,23]. In particular, since nodes maintain aggregated state infor-
mation there is less state information to be transmitted to other nodes, hence
less communication overhead. For the same reason, there is also less computa-
tional overhead. However, each level of hierarchy induces additional uncertainty
in the state information. This problem becomes more difficult when several QoS
metrics must be aggregated, since for some topologies there can be no meaning-
ful way to combine the metrics [16]. Some solutions for topology aggregation are
presented in [24,25].

In large overlay networks such as Skype, Vuze3 DHT and Gnutella, the nodes
are computers controlled by regular users instead of a central authority. This
type of decentralized network is appealing to service providers because the cost
of bandwidth and computation required to deliver the service is shifted towards
the end-users. Unfortunately, such an overlay network tends to be an unreliable
infrastructure. By this, we mean that end-nodes are at owner’s whim, and users
can turned them off at any time. When a node is turned off a set of links is
removed from the overlay network. If the links belong to established QoS paths,
their removal will trigger path re-computations. Additionally, traffic flows may
need to be reallocated to new paths. This type of node churn is similar to the
topology dynamics occurring in mobile ad-hoc networks, when stations move
out of radio range. Routing protocols that handle topology dynamics can be
classified as proactive or reactive protocols.

Proactive protocols, such as destination sequence distance vector (DSDV) pe-
riodically update the routing tables [26]. In contrast, reactive protocols (e. g. , dy-
namic source routing (DSR) and ad-hoc on-demand distance vector (AODV))
update the routing tables only when routes need to be created or adjusted due to
changes to topology [26]. Proactive protocols are in general better at providing
QoS guarantees for real-time traffic such as multimedia. Their disadvantage lies
in the traffic volume overhead generated by the protocol itself. Reactive pro-
tocols scale better than proactive protocols, but will experience higher latency
when setting up a new route [26].

3 Formerly known as Azureus.

Unicast QoS Routing in Overlay Networks 1025

The focus of this section has been so far placed on single path routing. Mul-
tipath routing exploits path diversity in the network to find several paths that
can satisfy a flow demand. In single path routing, a flow demand is dropped
if no suitable path is found. With multipath routing, there is still a chance to
satisfy the flow demand, particularly in the case of bandwidth, by spreading the
flow over several paths. The ability to spread demands over multiple paths of-
fers additional advantages for load balancing, congestion control, reliability and
security [27]. However, multipath routing introduces additional overhead in the
form of bandwidth usage and processing requirements. The bandwidth overhead
is due to extra link state information that nodes must share. A multipath router
must compute and store in memory more than one path for each known source-
destination pair. This is the reason for higher processing requirements than in
the case of single-path routing.

QoS routing in overlay networks faces additional challenges such as those
related to estimation of link state parameters and selfish behavior. We describe
them briefly below.

A typical overlay networks consist of nodes, which are computer processes
executing at the application layer, and of virtual links4 implemented on top of
TCP or the User Datagram Protocol (UDP). In this scenario, the link state
parameters are not readily available but must be estimated through active mea-
surements.

Although active measurement methods exist for most metrics of interest [28,29]
there are still open questions to be answered before they can used in practice.
One of these issues is that of finding an adequate measurement frequency. In
other words, we are asking how long should we wait after obtaining data from
one measurement until we start the next measurement. Ideally, one wants to
capture all significant changes in the measured metric while keeping the vol-
ume of injected traffic at a minimum. Another issue is that of estimating the
validity of the measurements when all nodes in the overlay execute them con-
currently or when active measurements for different metric types are performed
simultaneously.

In fact, the issues related to active measurements are related to a bigger
problem: the likely mismatch in the interaction between overlay routing and
traffic engineering [30,31]. The goal of overlay routing is to satisfy in an optimal
way the flow demands within the overlay network. On the other hand, the goal of
traffic engineering is to optimize the performance of the whole network, including
any existing overlays. Whereas traffic engineering addresses the needs of all nodes
under a common administrative domain (e. g. , an AS), overlay routing caters
for a subset of the Internet, with nodes from many different networks.

The traffic matrix concept is central to traffic engineering. A traffic matrix con-
tains estimates of the traffic volumes exchanged by all source-destination pairs in
the network. These estimates include both overlay and non-overlay traffic. The
traffic matrix is used as input for the inter- and intra-domain routing algorithms.

4 Also called logical links.

1026 D. Ilie and A. Popescu

If the traffic matrix changes, flows within the network can be re-routed as a result.
The overlay routing algorithm reacts to changes in the network layer routes by re-
adjusting the overlay traffic to repair flow demands that are no longer satisfied.
Thus, two closed-loop control mechanisms modify each other’s input. The selfish
behavior of the overlay network can lead to traffic oscillations. Results presented
in [30,31] indicate that the price for optimizing the traffic in the overlay can be
severe performance degradation in the rest of the network. Gaining a better un-
derstanding of the interaction between traffic engineering and selfish routing is an
important research topic.

4 Optimization Models

In Section 1 it was stated that QoS routing is a mechanism for optimizing net-
work performance by constrained-path selection and traffic flow allocation. Given
one flow demand and information about the network, the goal of constrained-
path selection is to find a path such that the flow demand is satisfied. For multi-
ple flow demands, the constrained-path selection algorithm must be run several
times, once for each flow demand. In contrast, the goal of flow allocation is to
satisfy multiple demands simultaneously. This is the same goal as that of traffic
engineering. In fact, flow allocation is one of the components required by traffic
engineering. Other required components are topology and state discovery, traffic
demand estimation and configuration of network elements [7].

Flow allocation algorithms tend to utilize resources more efficiently since all
routes are recomputed when the demands change. When used in combination
with multipath routing the efficiency can be increased by exploiting path redun-
dancy. However, a major disadvantage of flow allocation is that ongoing flows
can be temporarily disrupted when routes change [7]. Constrained-path selection
algorithms handle each changing flow demand by itself, without disrupting other
flows. Although different, these two types of algorithms can be combined as it
is shown in Section 5.

The algorithms assume that information about network topology is available
in the form of a weighted digraph G(V , E), where V is the set of nodes (vertices)
in the network and the set E contains the links (edges). The weight of each link
represents a set of metrics of interest, such as bandwidth, delay, jitter, packet
loss and cost. In addition to the graph and link weights, information about the
flow demands is available as well. A flow demand is expressed as a set of path
constraints for the path P (s, d), where s ∈ V is the source node and d ∈ V is the
destination (sink) node. In its simplest form, the flow demand contains only the
bandwidth required to transfer data from s to d. It is assumed here that flow
demands are tied to the direction of the path.

In the case of a multi-constrained path (MCP) problem we attempt to find
one constrained path at a time. This is a feasibility problem. Each link weight
in G(V , E) is a vector of QoS metrics, where each metric belongs to one of the
following types:

Unicast QoS Routing in Overlay Networks 1027

additive: delay, jitter, cost
multiplicative: packet loss
min-max: bandwidth, policy flags

Multiplicative weights can be turned into additive weights by taking the loga-
rithm of their product. The constraints on min-max metrics can be dealt with by
pruning the links of the graph that do not satisfy the constraints [32]. Therefore,
in the remainder of this section we focus on additive link weights only.

For i = 1, . . . , m we denote by wi(u, v) the ith additive metric for the link
(u, v) between nodes u and v such that (u, v) ∈ E . The MCP optimization
problem for m constraint values Li on the requested path is shown in Table 1.

Table 1. Multi-constrained path selection problem (MCP)

find path P

subject to wi(P) =
∑

(u,v)∈P

wi(u, v) ≤ Li for i = 1, . . . , m and (u, v) ∈ E

The MCP selection problem problem can be converted to a multi-constrained
optimal path (MCOP) selection problem by minimizing or maximizing over one
of the metrics wi. It is also possible to define a path-weight function f over all
metrics and to optimize over the path-weight function itself, as shown in Table 2.

Table 2. Multi-constrained optimal path selection problem (MCOP)

minimize f (w(P))

subject to wi(P) =
∑

(u,v)∈P

wi(u, v) ≤ Li for i = 1, . . . , m and (u, v) ∈ E

Wang and Crowcroft proved in [33] that MCP problems with two or more
constraints are NP-complete. By extension, MCOP problems with two or more
constraints are NP-complete as well. The apparent intractability of these prob-
lems suggests abandoning the search for exact solutions in the favor of heuristics
that have a better chance of running in polynomial time. Chen and Nahrstedt
suggest a O (2L) heuristic [21] for the MCP problem, where L is the length of
the feasible path.

The results of a study [34] on the NP-complexity of QoS routing found four
conditions leading to its appearance:

– graphs with long paths (large hop-count),
– link weights with infinite granularity, or excessively large or small link weights,
– strong negative correlation among link weights,
– “critically constrained” problems, which are problems with constraint values

close to the center of the feasible region.

1028 D. Ilie and A. Popescu

The authors of the study consider that these conditions are unlikely to occur in
typical networks. If they are right, the consequence is that the exponential run
time behavior of exact algorithms occurs very seldom.

In the flow allocation problem, it is assumed that we know about one or more
directed paths connecting a source node s and a destination node d. These paths
can be discovered automatically, for example with a K shortest paths (KSP) al-
gorithm [10,35]. Due to space constraints we restrict our focus to bandwidth
allocation problems only. We consider the following type of optimization prob-
lems: given a digraph G(V , E), a set P of directed paths and a set D of flow
demands for bandwidth, we would like to allocate bandwidth on the paths in P
such as to simultaneously satisfy all demands.

If the traffic volume pertaining to a specific flow is allowed to be distributed
over several paths to the destination, this is said to be a feasibility problem for
bifurcated flows. On the other hand, if the problem includes the requirement
that the entire traffic flow between two nodes must be transmitted on a single
path, we have a feasibility problem for non-bifurcated flows. This problem is
known to be computationally intractable [36] for large networks (it is in fact
NP-complete). The remainder of this article considers only feasibility problems
for bifurcated flows.

We adopt a notation called link-path formulation [36] to formalize our prob-
lem statement. Using this notation, we let the variable xdp denote bandwidth
allocated to demand d on path p. Recall that a demand is a request for a specific
amount of bandwidth, hd, from a source node to a destination node. The source
node and the destination node can be connected by more than one path, which
explains the use of the index variable p. We use the variables D and E to denote
the number of demands in the demand set D and the number of edges (links)
in the set E , respectively. Further, the capacity of a link e is denoted by ce. The
indicator variable δedp is defined as

δedp =

{
1 if link e is used by demand d on path p,
0 otherwise.

(1)

Our problem statement can now be written as shown in Table 3.
In [36], it is suggested that the pure allocation problem (PAP) described in

Table 3 can be reformulated in the form of the linear optimization problem
shown in Table 4. The new problem, PAP with modified link-path formulation
(PAP-MLPF), has an additional variable z to be modified. Unlike the PAP, this
problem always has a feasible solution in the sense that a minimum value for z

Table 3. Pure allocation problem (PAP)

find xdp for all d ∈ D, p ∈ P
subject to

∑
p xdp = hd, d = 1, 2, . . . , D∑
d

∑
p δedpxdp ≤ ce, e = 1, 2, . . . , E

Unicast QoS Routing in Overlay Networks 1029

Table 4. PAP with modified link-path formulation (PAP-MLPF)

minimize z for all d ∈ D, p ∈ P
subject to

∑
p xdp = hd, d = 1, 2, . . . , D∑
d

∑
p δedpxdp ≤ z + ce, e = 1, 2, . . . , E

can be found. If z < 0 in the solution, we have a successful bandwidth allocation.
Otherwise the value of z indicates how much additional bandwidth is required
to obtain feasibility.

5 A Framework for Overlay Routing Protocols

In this section we present performance results for a couple of routing protocols
that combine theoretical concepts presented earlier in this paper.

The Overlay Routing Protocol (ORP) framework was developed at BTH
in Karlskrona, Sweden as part of the Routing in Overlay Networks (ROVER)
project. The framework consists of two protocols: the Route Discovery Protocol
(RDP) and the Route Management Protocol (RMP).

RDP is used to find network paths subject to various QoS constraints [10,37].
To achieve this goal, RDP uses a form of selective diffusion based on ideas
presented in [21,38].

The purpose of RMP is to alleviate changes in the path QoS metrics, due to
node and traffic dynamics. This is done through a combination of path restora-
tion and optimization algorithms for traffic flow allocation on bifurcated paths.
The purpose of the flow allocation is to spread the demand on multiple paths
towards the destination. The design of RMP is influenced by ideas presented
in [23,39].

5.1 Route Discovery Protocol

RDP is a distributed routing protocol relying on local state information. It’s
distributed path computation is achieved by selective diffusion. RDP uses two
different kinds of packets: control packets (CPs), which are used to explore avail-
able paths from a source to a destination, and acknowledgement packets (APs)
that transport data about available paths back to the source node.

When a node in the overlay wants to open a route to another overlay node it
assembles a CP with the desired QoS constraints. The CP is sent to all adjacent
nodes connected by links satisfying the QoS constraints. If at least one feasible
link is found, the CP is added to the sender’s list of active CPs and a timer is
started accordingly. If no information is received before the timer expires, the
CP is considered lost and it is removed from the active CP list.

If no feasible link exists, the CP is dropped and no further actions are taken.
The receive and forward process is repeated at several nodes until one or more
CPs reach the destination node, or all CPs are dropped by intermediate nodes.

1030 D. Ilie and A. Popescu

If all CPs are lost, the nodes on the feasible path eventually experience timeouts
and thus are able to free any reserved resources.

The feasible path defined by the first CP that arrives at the destination is
copied into an AP. The AP is sent back to the source node over the reverse fea-
sible path5. All subsequent CPs that arrive to the destination node are dropped.

Chen and Nahrstedt [21,16] provide worst-case complexity results for the time
and communication overhead required to establish a constrained path with this
algorithm. For a path length L, the time complexity is O (2L). In the case of
RDP, the path length is bounded by the time-to-live (TTL) value carried by CPs
and APs. Hence, RDP’s time complexity for one QoS request is O (2 TTL). The
communication complexity for one QoS request is on the order O (E + TTL)
according to [10].

5.2 RDP Simulation Results

The focus of the simulations is entirely on bandwidth reservations. In what fol-
lows, the term QoS session is used to denote a request for a directed path with
a constraint on minimum available bandwidth. Each session has an associated
session duration, which specifies the life length of the path. If a path is suc-
cessfully established, the amount of bandwidth specified by the path constraint
is reserved for the entire session duration. The links in these experiments are
error-free and no churn occurs.

We present here results for the following metrics:

call blocking ratio: ratio between the number of infeasible QoS sessions and
the total number of QoS sessions arrived at the network,

low-TTL blocking ratio: ratio between infeasible sessions due to low TTL
value and the total number of infeasible sessions6,

bandwidth overhead: ratio between the average number of RDP bytes per
second and network capacity (i. e. , the aggregated volume of every link in
the network).

Results involving additional metrics are available in [10].
The results shown in Figure 2 and Figure 3 are plotted against increasing

values of network utilization. The network utilization, ρ, is defined as [13,40]

ρ =
λTQH∑

e∈E
be

(2)

where T is the average session duration, Q is the average amount of QoS (band-
width) requested, H is the average path length across all node pairs, and be is
the available bandwidth on link e. The simulation parameters are summarized
in Table 5.
5 Traveling on the reverse feasible path between node v1 and node vN means traveling

in the opposite direction on the feasible path (i. e. , over hops vN , vN−1, . . . , v1).
6 Low-TTL blocking occurs when an AP is dropped because it has traveled the maxi-

mum number of hops allowed. The metric does not take into account the possibility
that a feasible path may exist for higher TTL values.

Unicast QoS Routing in Overlay Networks 1031

Table 5. Simulation parameters

Parameter Assigned value

Network utilization, ρ 0.1, 0.25, 0.50, 0.75, 1.00

Session duration Generalized Pareto with mean 180 s and 600 s

Requested bandwidth ranges Uniform, 16–64 Kbps , 128–512 Kbps and 1–2 Mbps

Network size 100 nodes

Topology Barabási-Albert[41,10]

Link bandwidth Uniform, 10–10000 Kbps

TTL 8 hops

In the plots the blue color is used for sessions with mean duration of 180 sec-
onds, while red color denotes sessions with mean duration of 600 seconds. Plots
for 16-64Kbps sessions are drawn with solid lines, those for 128–512Kbps are
drawn with dashed lines, and 1-2Mbps session plots use alternating dots and
dashes. Each hollow circle indicates the simulated utilization factor pertaining
to the value on the y-axis.

The call blocking ratio and the low-TTL blocking ratio are shown side by side
in Figure 2. It can be noticed by observing Figure 2(a) that 180 seconds sessions
consistently experience higher call blocking ratio than 600 seconds sessions. The
explanation is found in Equation 2. This equation is used to compute the uti-
lization factor, ρ, by adjusting the arrival rate, λ, while the other parameters are
kept fixed. For a given ρ value, the arrival rate must be higher for short sessions
than for long sessions. A higher arrival rate implies that more feasible paths
must be found. This leads to higher bandwidth overhead since more CPs are in
the network, as it can be observed in Figure 3. Since less network capacity is
available in this case than in the case of low arrival rate, the call blocking ratio
is higher. Further support for this assertion is found in Figure 2(b). There it can

●

●

●

●

●

0.2 0.4 0.6 0.8 1.0

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

Utilization factor, ρρ

C
a

ll
b

lo
ck

in
g

 r
a

tio

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

16−64 Kbps, 180s
128−512 Kbps, 180s
1−2 Mbps, 180s
16−64 Kbps, 600s
128−512 Kbps, 600s
1−2 Mbps, 600s

(a) Call blocking ratio.

●

●
●

●
●

0.2 0.4 0.6 0.8 1.0

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

Utilization factor, ρρ

L
o

w
−

T
T

L
 b

lo
ck

in
g

 r
a

tio

●

●
●

●
●

●

●
●

●
●

●

●

● ●
●

●

●

● ●
●

●

●

● ●
●

16−64 Kbps, 180s
128−512 Kbps, 180s
1−2 Mbps, 180s
16−64 Kbps, 600s
128−512 Kbps, 600s
1−2 Mbps, 600s

(b) Low-TTL blocking ratio.

Fig. 2. RDP call blocking

1032 D. Ilie and A. Popescu

●

●

●

●

●

0.2 0.4 0.6 0.8 1.0

0
.0

0
2

0
.0

0
4

0
.0

0
6

0
.0

0
8

Utilization factor, ρρ

B
a

n
d

w
id

th
 o

ve
rh

e
a

d

●

●

●
● ●

16−64 Kbps, 180s
16−64 Kbps, 600s

(a) 16–64 Kbps .

●

●

●

●

●

0.2 0.4 0.6 0.8 1.0

Utilization factor, ρρ

B
a

n
d

w
id

th
 o

ve
rh

e
a

d

0
2

××
1

0
−−4

4
××

1
0

−−4
6

××
1

0
−−4

8
××

1
0

−−4
1

0
××

1
0

−−4

●

●

● ●
●

●

● ● ● ●

●
● ● ● ●

128−512 Kbps, 180s
1−2 Mbps, 180s
128−512 Kbps, 600s
1−2 Mbps, 600s

(b) 128–512 Kbps and 1–2 Mbps .

Fig. 3. RDP bandwidth overhead

be observed that, when the utilization factor exceeds 0.25, most call blocking
is due to failure to satisfy the constraints of the QoS session, and not due to
low-TTL blocking.

Two different graphs are used in Figure 3 to show the RDP bandwidth over-
head. This is done because in the case of a single graph, the high bandwidth
overhead of 16-64Kbps sessions would make it hard to distinguish the band-
width overhead of the remaining sessions. Indeed, for 16-64Kbps sessions the
bandwidth overhead is 40–80 times higher than that of 1–2Mbps sessions.

The results suggest that one needs to carefully consider the interaction be-
tween the TTL value and the bandwidth overhead. This is in fact a trade-off be-
tween success in finding feasible paths and efficiency in keeping the overhead low.
In our simulations the worst-case cost in the case of RDP, namely 0.9% band-
width overhead, occurs for 16–64Kbps flow demands with 180 seconds mean
session duration when the utilization factor is one.

5.3 Route Maintenance Protocol

RMP combines path restoration and flow allocation to handle the type of re-
source fluctuations described in Section 3. In this paper the focus is on band-
width constraints, but the protocol as such has support for different types of QoS
constraints. RMP relies on two main components: an algorithm for distributing
link-state information and an optimization algorithm for flow allocation.

Link-state information is distributed using the link vector algorithm proposed
by Behrens and Garcia-Luna-Aceves [23]. The difference between a link-state
algorithm and a link vector algorithm is that the link-state algorithm is require to
broadcast complete topology information. When a link vector algorithm is used,
a node uses selective diffusion to disseminate link-state information pertaining
only to its preferred paths. This reduces the communication overhead associated
with traditional link-state algorithms.

Unicast QoS Routing in Overlay Networks 1033

In the case of RMP, the preferred paths are setup using RDP. The QoS
information provided by RDP ensures that a node has link-state information
about each link in each of its preferred paths. The set of links belonging to a
node’s preferred paths is called the source graph of that node. Nodes exchange
source graph information with their neighbors. Additionally, nodes have link-
state information about their own outgoing links. The topology information
known to a node consists of its own links, its own source graph and the source
graphs reported by its neighbors [23].

Nodes report incremental source graph information to their neighbors. Obvi-
ously, when a node joins the overlay it receives complete source graphs from its
neighbors. Beyond that, information is transmitted only if the link-state changes
(i. e. , triggered updates). In other words, RMP is a reactive protocol.

A node enters restoration mode when a path is broken. A path is considered
broken when one or several links are deleted from the source graph or when
their updated state information makes it impossible to satisfy the path QoS
constraints. In restoration mode the following actions are taken:

i) a broken path error message is sent to the source node of each affected flow,
ii) Yen’s KSP algorithm [35] is executed to find the K backup paths to the

destinations affected by the topology updates,
iii) the corresponding flow demands and the backup paths are used to construct

a PAP-MLPF optimization problem as described in Section 4,
iv) the simplex method [42] is used to solve the PAP-MLPF problem,
v) if the simplex method is successful, the links on the new paths are added

to the source graph; otherwise the affected flows are dropped (i. e. , packets
belonging to them are not forwarded further).

The time complexity of the link vector algorithm after a single link change
is O (n), where n is the number of nodes affected by the change. The upper
bound for n is given by the length of the longest path in the network. The
communication complexity O (E) is asymptotic in the number of links in the
network [23].

5.4 RMP Simulation Results

The purpose of the experiments is to evaluate RMP’s performance for different
levels of churn. In the experiments we focus entirely on bandwidth reservations.
A network topology with 100 nodes and 780 links is used for all experiments.
The links in these experiments are error-free.

We denote by pt the total number of preferred paths, by pr the number of
restored paths, and finally by pf the number of path failures (i. e. , paths that
could not be restored). The relation 0 ≤ pr + pf ≤ pt always holds.

We focus on the following simulation metrics:

path failure ratio: ratio between the number of path failures and the total
number of preferred paths in the network, pf/pt,

1034 D. Ilie and A. Popescu

restored paths ratio: ratio between the number of restored paths and the
number of broken paths, pr/(pr + pf) for pr + pf > 07,

bandwidth overhead: ratio between the average number of RDP bytes per
second and network capacity (i. e. , the aggregated volume of every link in
the network),

Additional metrics are available in [10].
We simulate 50 random flow demands (i. e. , pt = 50). This value provides

an acceptable trade-off between link utilization and the time required to run
the simulations. The flow demand bandwidth is uniformly distributed over three
different ranges: 16–64Kbps , 128–512Kbps and 1–2Mbps , as in the case of
RDP. The source and destination node of each flow demand is selected randomly.

Link bandwidth is interpreted in our simulations as residual capacity after
bandwidth is reserved on preferred paths. The residual capacity determines the
amount of path diversity within the network. Here, the residual capacity is expo-
nentially distributed with mean value equal to the maximum bandwidth demand
multiplied by an integer scaling factor. For example, for the bandwidth range 1–
2Mbps and a scaling factor of 2, the link bandwidth is exponentially distributed
with mean value 4Mbps . Intuitively, a scaling factor of 1 means that 63% of
the links have less capacity than the maximum value of the demand range. For a
scaling factor of 5 only 18% of the links have less bandwidth than the maximum
value of the demand range.

The following scaling factors are used: 1, 2, 3, 4, and 5. The use of exponential
distribution with mean value based on the maximum bandwidth demand results
in a good mix of links with very little bandwidth as well as links with lots of
residual capacity. Using the upper bound of the bandwidth range is a matter of
preference. In fact, any value within the bandwidth range can be selected and
the mean link bandwidth is scaled accordingly. The residual network capacity
increases proportionally with the integer multiple value.

We present simulation results for two different levels of churn: one based on the
Gnutella session durations with mean duration of 130 seconds [10] and another
based on exponential session durations with mean duration of 30 seconds. The
two types of churn correspond roughly to the following scenarios:

Gnutella churn: general purpose peer-to-peer (P2P) overlay network,
Exp(30 s): wireless network with moving stations.

RMP is configured to use 3, 5, and 7 backup paths, respectively. They are ab-
breviated as 3SPs, 5SPs and 7SPs in the text and figures. A higher number of
backup paths increases the chances for successful flow allocation in situations
with low residual network capacity.

Figure 4 shows the performance of path restoration for each type of churn.
The solid black line at the top of each sub-figure indicates the ratio of path
failures to the total number of paths (pt = 50) when no path restoration is in
use. Lower path failure ratio values indicate higher RMP success in restoring

7 Instances where pr + pf = 0 are not used in computing the average.

Unicast QoS Routing in Overlay Networks 1035

●

●

●
●

●

1 2 3 4 5

0
.1

0
0

.1
5

0
.2

0
0

.2
5

0
.3

0

Scaling factor for residual capacity

P
a

th
 f

a
ilu

re
 r

a
tio

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Without RMP
16−64 Kbps, 3SP
16−64 Kbps, 5SP
16−64 Kbps, 7SP
128−512 Kbps, 3SP
128−512 Kbps, 5SP
128−512 Kbps, 7SP
1−2 Mbps, 3SP
1−2 Mbps, 5SP
1−2 Mbps, 7SP

(a) Gnutella churn

● ● ● ● ●

1 2 3 4 5

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

Scaling factor for residual capacity

P
a

th
 f

a
ilu

re
 r

a
tio

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Without RMP
16−64 Kbps, 3SP
16−64 Kbps, 5SP
16−64 Kbps, 7SP
128−512 Kbps, 3SP
128−512 Kbps, 5SP
128−512 Kbps, 7SP
1−2 Mbps, 3SP
1−2 Mbps, 5SP
1−2 Mbps, 7SP

(b) Exp(30 s) churn

Fig. 4. RMP path restoration

●

●

●

●

●

1 2 3 4 5

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

Scaling factor for residual capacity

R
e

st
o

re
d

 p
a

th
s

ra
tio

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

16−64 Kbps, 3SP
16−64 Kbps, 5SP
16−64 Kbps, 7SP
128−512 Kbps, 3SP
128−512 Kbps, 5SP
128−512 Kbps, 7SP
1−2 Mbps, 3SP
1−2 Mbps, 5SP
1−2 Mbps, 7SP

(a) Gnutella churn

●

●

●

●

●

1 2 3 4 5

0
.0

0
.2

0
.4

0
.6

0
.8

Scaling factor for residual capacity

R
e

st
o

re
d

 p
a

th
s

ra
tio

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

16−64 Kbps, 3SP
16−64 Kbps, 5SP
16−64 Kbps, 7SP
128−512 Kbps, 3SP
128−512 Kbps, 5SP
128−512 Kbps, 7SP
1−2 Mbps, 3SP
1−2 Mbps, 5SP
1−2 Mbps, 7SP

(b) Exp(30 s) churn

Fig. 5. RMP restored paths ratio

paths. The path failure ratio is lower in the case of Gnutella churn because the
session durations are longer on the average, which translates in fewer link failures
per time unit.

In both cases of churn, the path failure ratio decreases when RMP is used.
Clearly, RMP’s success is directly proportional to the amount of residual capac-
ity. In terms of reduced path failure ratio, the largest gains are registered for
Exp(30 s) scenarios. In this scenarios, the path failure ratio is very high in the
absence of RMP, which means that there is a lot of room for improvement.

Using more backup paths (i. e. , 5SPs or 7SPs) shows most gain in the case of
Exp(30 s) scenarios for bandwidth range 1–2Mbps . With less aggressive churn,
the usefulness of additional backup paths decreases.

1036 D. Ilie and A. Popescu

●

●

●

●

●

1 2 3 4 5

Scaling factor for residual capacity

B
a

n
d

w
id

th
 o

ve
rh

e
a

d

0
2

××
1

0
−−4

4
××

1
0

−−4
6

××
1

0
−−4

8
××

1
0

−−4
1

0
××

1
0

−−4

●

●

●

●

●

●

●

●

●

●

●

●
● ● ●

●

●
● ● ●

●

●
● ● ●● ● ● ● ●

● ● ● ● ●
● ● ● ● ●

16−64 Kbps, 3SP
16−64 Kbps, 5SP
16−64 Kbps, 7SP
128−512 Kbps, 3SP
128−512 Kbps, 5SP
128−512 Kbps, 7SP
1−2 Mbps, 3SP
1−2 Mbps, 5SP
1−2 Mbps, 7SP

(a) Gnutella churn

●

●

●

●

●

1 2 3 4 5

0
.0

0
0

0
.0

0
1

0
.0

0
2

0
.0

0
3

0
.0

0
4

0
.0

0
5

0
.0

0
6

Scaling factor for residual capacity

B
a

n
d

w
id

th
 o

ve
rh

e
a

d

●

●

●

●

●

●

●

●

●

●

●

●
● ● ●

●

●
● ● ●

●

●
● ● ●● ● ● ● ●

● ● ● ● ●
● ● ● ● ●

16−64 Kbps, 3SP
16−64 Kbps, 5SP
16−64 Kbps, 7SP
128−512 Kbps, 3SP
128−512 Kbps, 5SP
128−512 Kbps, 7SP
1−2 Mbps, 3SP
1−2 Mbps, 5SP
1−2 Mbps, 7SP

(b) Exp(30 s) churn

Fig. 6. RMP bandwidth overhead

A complementary view of RMP’s path restoration success is shown in Figure 5
in terms of the ratio of number of restored paths to the number of broken paths.
RMP’s largest success in restoring broken paths is experienced in the case of 16-
64Kbps scenarios. In Figure 5(b) for scaling factor 4 and 5, the restored paths
ratio for 128-512Kbps scenarios with 7SPs is slightly higher than the restored
path ratio for 16-64Kbps scenarios with 7SPs. These minimal differences are due
to the random selection of source and destination node for each flow demand.

The bandwidth overhead shown in Figure 6 is computed by dividing the band-
width utilization with the network capacity (i. e. , the sum of residual capacity
and used capacity). In contrast to RDP’s bandwidth overhead, the RMP band-
width overhead is biased. For example, the 16–64Kbps scenarios dominate in
each of the churn scenarios. This happens because the amount of average resid-
ual capacity per link is determined by the product between the scaling factor
in use and the upper bound of the bandwidth range. Hence, the network capac-
ity for 16–64Kbps scenarios is always lower than for the other two bandwidth
ranges. Comparison of bandwidth overhead is fair only for graphs within the
same bandwidth range.

For each bandwidth range, the largest bandwidth overhead occurs in 7SPs
scenarios with Exp(30 s) churn when the scaling factor is equal to one: 0.6% in
the case of 16–64Kbps scenarios, 0.07% in the case of 128–512Kbps scenarios,
and 0.02% in the case of 1–2Mbps scenarios.

6 Summary

This paper has introduced fundamental concepts related to QoS routing in over-
lay networks. Furthermore, the paper has reported on performance results for
RDP and RMP, which are two protocols under the ORP framework. The fo-
cus of the performance results has been on the cost in the form of bandwidth
overhead incurred from running these protocols.

Unicast QoS Routing in Overlay Networks 1037

The worst-case cost in the case of RDP, namely 0.9% bandwidth overhead,
occurs for 16–64Kbps flow demands with 180 seconds mean session duration
when the utilization factor is one. For RMP, the worst-case cost, 0.6% , occurs in
Exp(30 s) scenarios with 16-64Kbps flow demands, 7SPs and scaling factor one
for residual capacity. Assuming an additive cost when RDP and RMP are being
used together, the worst-case cost is estimated to be as high as 1.5% protocol
overhead in terms of bandwidth.

RMP can be quite efficient in restoring broken paths provided enough residual
capacity is available. For example in Exp(30 s) scenarios, in spite of aggressive
churn, RMP is able to restore up to 40% of broken paths used for transporting
1–2Mbps flows, with approximately 0.02% bandwidth overhead.

We plan to run similar tests in a more realistic environment, such as Plan-
etLab. However, a realistic PlanetLab implementation requires that ORP is ex-
tended to include two important elements: an overlay network that organizes
nodes and transports ORP messages and the ability to measure link-state vari-
ables (e. g. , available bandwidth, delay and loss).

All experiments presented here focus on a single QoS metric: bandwidth.
Additional experiments should be performed to evaluate ORP’s performance
when several QoS metrics are combined. For RMP, this requires that Yen’s KSP
algorithm is replaced by the Self-Adaptive Multiple Constraints Routing Algo-
rithm (SAMCRA) [32] or another similar algorithm.

References

1. Crawley, E.S., Nair, R., Rajagopalan, B., Sandick, H.: RFC 2386: A Framework for
QoS-based Routing in the Internet, IETF, category: Informational (August 1998),
http://www.ietf.org/ietf/rfc2386.txt

2. Braden, R., Clark, D.D., Shenker, S.: RFC 1633: Integrated Services in the Internet
Architecture: an Overview, IETF, category: Informational (June 1994),
http://www.ietf.org/ietf/rfc1633.txt

3. Wroclawski, J.: RFC 2210: The Use of RSVP with IETF Integrated Services, IETF,
category: Standards Track (Septmeber 1997),
http://www.ietf.org/ietf/rfc2210.txt

4. Thompson, K., Miller, G.J., Wilder, R.: Wide-area Internet traffic patterns and
characteristics. IEEE Network 11(6), 10–23 (1997)

5. Blake, S., Black, D.L., Carlson, M.A., Davies, E., Wang, Z., Weiss, W.: RFC 2475:
An Architecture for Differentiated Services (December 1998),
http://www.ietf.org/ietf/rfc2475.txt

6. Bouras, C., Sevasti, A.: Service level agreements for DiffServ-based services’ pro-
visioning. Journal of Computer Networks 28(4), 285–302 (2005)

7. Wang, Z.: Internet QoS: Architectures and Mechanisms for Quality of Service.
Morgan Kaufman Publishers, San Francisco (2000), ISBN: 1-55860-608-4

8. Burgsthaler, L., Dolzer, K., Hauser, C., Jähnert, J., Junghans, S., Macián, C.,
Payer, W.: Beyond technology: The missing pieces for QoS success. In: Proceedings
ot the ACM SIGCOMM Workshops, Karlsruhe, Germany, August 2003, pp. 121–
130 (2003)

9. Rekhter, Y., Li, T., Hares, S.: RFC 4271: A Border Gateway Protocol 4 (BGP-4),
IETF (January 2006), http://www.ietf.org/ietf/rfc4271.txt

http://www.ietf.org/ietf/rfc2386.txt
http://www.ietf.org/ietf/rfc1633.txt
http://www.ietf.org/ietf/rfc2210.txt
http://www.ietf.org/ietf/rfc2475.txt
http://www.ietf.org/ietf/rfc4271.txt

1038 D. Ilie and A. Popescu

10. Ilie, D.: On unicast QoS routing in overlay networks. Ph.D. dissertation, Blekinge
Institute of Technology (BTH), Karlskrona, Sweden (October 2008)

11. Andersen, D.G.: Resilient overlay networks. Master’s thesis, Dept. of Electrical
Engineering and Computer Science, Massachusetts Institute of Technology (May
2001)

12. Subramanian, L., Stoica, I., Balakrishnan, H., Katz, R.: OverQoS: An overlay based
architecture for enhancing Internet QoS. In: Proceedings of NSDI, San Francisco,
CA, USA (March 2004)

13. Li, Z., Mohapatra, P.: QRON: QoS-aware routing in overlay networks. IEEE Jour-
nal on Selected Areas in Communications 22(1), 29–40 (2004)

14. Lao, L., Gokhale, S.S., Cui, J.-H.: Distributed QoS routing for backbone overlay
networks. In: Proceedings of IFIP Networking, Coimbra, Portugal (May 2006)

15. Apostolopoulos, G., Williams, D., Kamat, S., Guerin, R., Orda, A., Przygienda,
T.: RFC 2676: QoS Routing Mechanisms and OSPF Extensions, IETF, category:
Experimental (August 1999), http://www.ietf.org/rfc2676.txt

16. Chen, S.: Routing support for providing guaranteed end-to-end quality-of-service.
Ph.D. dissertation, Engineering College of the University of Illinois, Urbana, IL,
USA (1999)

17. Lorenz, D.H.: QoS routing and partitioning in networks with per-link performance-
dependent costs. Ph.D. dissertation, Israel Institute of Technology, Haifa, Israel
(2004)

18. Lorenz, D.H., Orda, A.: QoS routing in networks with uncertain parameters.
IEEE/ACM Transactions on Networking 6(6), 768–778 (1998)

19. Chen, S., Nahrstedt, K.: Distributed QoS routing with imprecise state information.
In: Proceedings of ICCCN, Lafayette, LA, USA (October 1998)

20. Shigang, C., Klara, N.: An overview of quality of service routing for the next
generation high-speed networks: Problems and solutions. IEEE Network 12(6),
64–79 (1998)

21. Shigang, C., Nahrstedt, K.: Distributed quality-of-service routing in high-speed
networks based on selective probing. In: Proceedings of LCN, Lowell, MA, USA,
October 1998, pp. 80–89 (1998)

22. Gelenbe, E., Lent, R., Nunez, A.: Self-aware networks and QoS. Proceedings of the
IEEE 92, 1478–1489 (2004)

23. Behrens, J., Garcia-Luna-Aceves, J.J.: Distributed, scalable routing based on link-
state vectors. In: Proceedings of SIGCOMM, London, UK, August 1994, pp. 136–
147 (1994)

24. Lee, W.C.: Topology aggregation for hierarchical routing in ATM networks. ACM
SIGCOMM Computer Communications Review 25(2), 82–92 (1995)

25. Lui, K.-S., Nahrstedt, K., Chen, S.: Routing with topology aggregation in delay-
bandwith sensitive networks. IEEE/ACM Transactions on Networking 12(1), 17–29
(2004)

26. Schiller, J.: Mobile Communications, 2nd edn. Addison Wesley, Boston (2003)
ISBN: 0-321-12381-6

27. He, J., Rexford, J.: Towards internet-wide multipath routing. IEEE Network 22(2),
16–21 (2008)

28. Gummadi, K.P., Saroiu, S., Gribble, S.D.: King: Estimating latency between ar-
bitrary internet end hosts. In: Proceedings of IMW, Marseille, France (November
2002)

29. Prasad, R., Dovrolis, C., Murray, M., Claffy, K.C.: Bandwidth estimation: Metrics,
measurement techniques, and tools. IEEE Network 17(6), 27–35 (2003)

http://www.ietf.org/rfc2676.txt

Unicast QoS Routing in Overlay Networks 1039

30. Liu, Y., Zhang, H., Gong, W., Towsley, D.: On the interaction between overlay
routing and traffic engineering. In: Proceedings of IEEE Infocom, Miami, FL, USA
(March 2005)

31. Qiu, L., Yang, R., Shenker, S.: On selfish routing in internet-like environments.
IEEE/ACM Transactions on Networking 14(4), 725–738 (2006)

32. Van Mieghem, P., Kuipers, F.A.: Concepts of exact QoS routing algorithms.
IEEE/ACM Transactions on Networking 12(5), 851–864 (2004)

33. Wang, Z., Crowfort, J.: Quality-of-service routing for supporting multimedia ap-
plications. IEEE Journal on Selected Areas in Communications 14(7), 1228–1234
(1996)

34. Kuipers, F.A., Van Mieghem, P.F.A.: Conditions that impact the complexity of
QoS routing. IEEE/ACM Transactions on Networking 13(4), 717–730 (2005)

35. Yen, J.Y.: Finding the k shortest loopless paths in a network. Management Sci-
ence 17(11), 712–716 (1971)

36. Pióro, M., Medhi, D.: Routing, Flow, and Capacity Design in Communication and
Computer Networks. Morgan Kaufman Publishers, San Francisco (2004), ISBN:
0-12-557189-5

37. De Vogeleer, K., Ilie, D., Popescu, A.: Constrained-path discovery by selective
diffusion. In: Proceedings of HET-NETs, Karlskrona, Sweden (February 2008)

38. Gelenbe, E., Lent, R., Montuori, A., Xu, Z.: Cognitive packet networks: QoS and
performance. In: Proceedings of IEEE MASCOTS, Ft. Worth, TX, USA, October
2002, pp. 3–12 (2002)

39. Garcia-Luna-Aceves, J.J.: Loop-free routing using diffusing computations.
IEEE/ACM Transactions on Networking 1(1), 130–141 (1993)

40. Shaikh, A.A.: Efficient dynamic routing in wide-area networks. Ph.D. dissertation,
University of Michigan, Ann Arbor, MI, USA (1999)

41. Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. Science 286,
509–512 (1999)

42. Luenberger, D.G.: Linear and Nonlinear Programming. Kluwer Academic Publish-
ers, Dordrecht (2004), ISBN: 1-4020-7593-6

	Unicast QoS Routing in Overlay Networks
	Introduction
	Overlay Networks for QoS
	Principles of QoS Routing
	Optimization Models
	A Framework for Overlay Routing Protocols
	Route Discovery Protocol
	RDP Simulation Results
	Route Maintenance Protocol
	RMP Simulation Results

	Summary

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A0648062706410642062900200644064406370628062706390629002006300627062A002006270644062C0648062F0629002006270644063906270644064A06290020064506460020062E06440627064400200627064406370627062806390627062A00200627064406450643062A0628064A062900200623064800200623062C06470632062900200625062C06310627062100200627064406280631064806410627062A061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0020064506390020005000440046002F0041060C0020062706440631062C062706210020064506310627062C063906290020062F0644064A0644002006450633062A062E062F06450020004100630072006F006200610074061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d044204380020043704300020043a0430044704350441044204320435043d0020043f04350447043004420020043d04300020043d043004410442043e043b043d04380020043f04400438043d04420435044004380020043800200443044104420440043e043904410442043204300020043704300020043f04350447043004420020043d04300020043f0440043e0431043d04380020044004300437043f0435044704300442043a0438002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b0020006e0061002000730074006f006c006e00ed006300680020007400690073006b00e10072006e00e100630068002000610020006e00e1007400690073006b006f007600fd006300680020007a0061015900ed007a0065006e00ed00630068002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006c006100750061002d0020006a00610020006b006f006e00740072006f006c006c007400f5006d006d006900730065007000720069006e0074006500720069007400650020006a0061006f006b00730020006b00760061006c006900740065006500740073006500740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003b303b903b1002003b503ba03c403cd03c003c903c303b7002003c003bf03b903cc03c403b703c403b103c2002003c303b5002003b503ba03c403c503c003c903c403ad03c2002003b303c103b103c603b503af03bf03c5002003ba03b103b9002003b403bf03ba03b903bc03b103c303c403ad03c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f006200650020005200650061006400650072002000200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405D305E405E105D4002005D005D905DB05D505EA05D905EA002005D105DE05D305E405E105D505EA002005E905D505DC05D705E005D905D505EA002005D505DB05DC05D9002005D405D205D405D4002E002005DE05E105DE05DB05D9002005D4002D005000440046002005E905E005D505E605E805D905DD002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0061007400610020007a00610020006b00760061006c00690074006500740061006e0020006900730070006900730020006e006100200070006900730061010d0069006d006100200069006c0069002000700072006f006f006600650072002000750072006501110061006a0069006d0061002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF004d0069006e0151007300e9006700690020006e0079006f006d00610074006f006b0020006b00e90073007a00ed007400e9007300e900680065007a002000610073007a00740061006c00690020006e0079006f006d00740061007400f3006b006f006e002000e9007300200070007200f300620061006e0079006f006d00f3006b006f006e00200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002c00200068006f007a007a006f006e0020006c00e9007400720065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00610074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002c00200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002000e9007300200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c00200020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b007500720069006500200073006b00690072007400690020006b006f006b0079006200690161006b0061006900200073007000610075007300640069006e007400690020007300740061006c0069006e0069006100690073002000690072002000620061006e00640079006d006f00200073007000610075007300640069006e007400750076006100690073002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0074007500730020006b00760061006c0069007400610074012b0076006100690020006400720075006b010101610061006e00610069002000610072002000670061006c006400610020007000720069006e00740065007200690065006d00200075006e0020007000610072006100750067006e006f00760069006c006b0075006d0075002000690065007300700069006500640113006a00690065006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f3007700200050004400460020007a002000770079017c0073007a010500200072006f007a0064007a00690065006c0063007a006f015b0063006901050020006f006200720061007a006b00f30077002c0020007a0061007000650077006e00690061006a0105006301050020006c006500700073007a01050020006a0061006b006f015b0107002000770079006400720075006b00f30077002e00200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000700065006e007400720075002000740069007001030072006900720065002000640065002000630061006c006900740061007400650020006c006100200069006d007000720069006d0061006e007400650020006400650073006b0074006f00700020015f0069002000700065006e0074007200750020007600650072006900660069006300610074006f00720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f044004350434043d04300437043d043004470435043d043d044b044500200434043b044f0020043a0430044704350441044204320435043d043d043e04390020043f043504470430044204380020043d04300020043d043004410442043e043b044c043d044b04450020043f04400438043d044204350440043004450020043800200443044104420440043e04390441044204320430044500200434043b044f0020043f043e043b044304470435043d0438044f0020043f0440043e0431043d044b04450020043e0442044204380441043a043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e00200020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f00620065002000500044004600200070007200650020006b00760061006c00690074006e00fa00200074006c0061010d0020006e0061002000730074006f006c006e00fd0063006800200074006c0061010d00690061007201480061006300680020006100200074006c0061010d006f007600fd006300680020007a006100720069006100640065006e0069006100630068002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e000d000a>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f0062006500200050004400460020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020006e00610020006e0061006d0069007a006e006900680020007400690073006b0061006c006e0069006b0069006800200069006e0020007000720065007600650072006a0061006c006e0069006b00690068002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF004d00610073006100fc0073007400fc002000790061007a013100630131006c006100720020007600650020006200610073006b01310020006d0061006b0069006e0065006c006500720069006e006400650020006b0061006c006900740065006c00690020006200610073006b013100200061006d0061006301310079006c0061002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043404400443043a04430020043d04300020043d0430044104420456043b044c043d043804450020043f04400438043d044204350440043004450020044204300020043f04400438044104420440043e044f044500200434043b044f0020043e044204400438043c0430043d043d044f0020043f0440043e0431043d0438044500200437043e04310440043004360435043d044c002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200039002000280039002e0033002e00310029002e000d00500072006f00640075006300650073002000500044004600200062006f006f006b00200069006e006e006500720077006f0072006b002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

