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Abstract—One of the most important technologies in 

cloud computing is virtualization. This paper presents the 

results from a performance comparison of three well-known 

virtualization hypervisors: KVM, VMware and XenServer. 

In this study, we measure performance in terms of CPU 

utilization, disk utilization and response time of a large 

industrial real-time application. The application is running 

inside a virtual machine (VM) controlled by the KVM, 

VMware and XenServer hypervisors, respectively. 

Furthermore, we compare the three hypervisors based on 

downtime and total migration time during live migration. 

The results show that the Xen hypervisor results in higher 

CPU utilization and thus also lower maximum performance 

compared to VMware and KVM. However, VMware causes 

more write operations to disk than KVM and Xen, and Xen 

causes less downtime than KVM and VMware during live 

migration. This means that no single hypervisor has the best 

performance for all aspects considered here. 

Keywords-Cloud Computing; KVM; Live Migration; VMware 

vMotion; XenMotion. 

I. INTRODUCTION 

Virtualization has many advantages over non-
virtualized solutions, e.g., flexibility, cost and energy 
savings [19][34]. As a more specific example, consider 
the cost associated with test hardware used during 
professional software development. This includes the 
initial price for purchasing the equipment, as well as 
operational costs in the form of maintenance, 
configuration and consumed electricity. For economic 
reasons, organizations often choose to use virtualized test 
servers, so that the test hardware can be shared and 
maintained in a cost-effective way [20]. In order to 
provide maximum resource utilization, there should be no 
restrictions on the mapping of VMs to physical 
computers, i.e., it should be possible to run a VM on any 
physical server. In order to balance the load, it is desirable 
that a VM running on a physical host could be restarted on 
another physical host, i.e., there is a need for migrating 
VMs from one physical server to another [21][22][23]. 
There is support for migration in many commonly used 
virtualization systems, e.g., KVM Live Migration [16], 
VMware’s vMotion [18] and XenServers’s XenMotion 
[17]. 

There are three different approaches to VM migration: 
cold migration, hot migration and live migration. When 
cold migration is used the guest Operating System (OS) is 
shut down, the VM is moved to another physical server 
and then the guest OS is restarted there. Hot migration 
suspends the guest OS instead of shutting it down. The 

guest OS is resumed after the VM is moved to the 
destination host. The benefit of hot migration is that 
application running inside the guest OS can preserve most 
of their state after migration (i.e., they are not restarted 
from scratch). In the live migration approach [13], the VM 
keeps running while its memory pages are copied to a 
different host. Live migration reduces the downtime 
dramatically for applications executing inside the VM. 
Live migration is thus suitable for high-availability 
services.  

In this paper, we compare the performance of KVM, 
VMware and XenServer, for two different scenarios: 
when no VM is migrated, and when a VM is migrated 
from one physical server to another. The work load is, for 
both scenarios, a large real-time telecommunication 
application. In the case when no VM is migrated, we 
measure the CPU utilization, the disk utilization (the 
number of write operations), and the average application 
response time. When a VM is migrated we measure the 
CPU utilization, the disk utilization (the number of write 
operations), and the down time due to live migration. 

The rest of the paper is organized as follows. In 
Section II the state of the art is summarized. Section III 
describes the experimental setup for the different 
hypervisors, and, in Section IV, we compare and analyze 
the results for KVM, VMware and XenServer. Finally, 
related work is discussed in Section V. Section VI 
concludes the paper. 

II. STATE OF THE ART 

A. Virtualization 

In its simplest form, virtualization is a mechanism for 
several virtual OS instances on a single physical system.  
This is typically accomplished using a Hypervisor or 
Virtual Machine Monitor (VMM), which lies between the 
hardware and the OS. Virtualization is often beneficial for 
environments consisting of a large number of servers 
(e.g., a datacenter). 

A virtualization solution relies on several components, 
such as CPU virtualization, memory virtualization, I/O 
virtualization, storage virtualization, and so on. In this 
paper we focus specifically on CPU and memory 
virtualization. 

Current approaches to virtualization can be classified 
into: full virtualization, paravirtualization and hardware 
assisted virtualization [11][12].  

Full virtualization uses binary translation which 
translates the kernel code so that privileged instructions 
can be converted to user-level instructions during run-



time. Detection and translation of privileged instructions 
typically carries a large performance penalty. KVM and 
VMware support this approach. 

Paravirtualization attempts to alleviate the 
performance of full virtualization by replacing privileged 
instructions with specific function calls to the hypervisor, 
so called hypercalls. This requires changes to the guest OS 
source code, which is not always possible. In particular, 
access to the source code of commercial OSs is heavily 
restricted. Both XenServer and KVM support 
paravirtualization. 

Recent innovations in hardware, particularly in CPU, 
Memory Management Unit (MMU) and memory 
components (notably the Intel VT-x and AMD-V 
architectures [12]), provide some direct platform-level 
architectural support for OS virtualization. Hardware 
assisted virtualization offers one key feature: it avoids the 
need to trap and emulate privileged instructions by 
enabling guests to run at their native privilege levels. 
VMware and KVM support this approach. 

B. Live Migration 

Live migration is a mechanism that allows a VM to be 
moved from one host to another while the guest OS is 
running. This type of mobility provides several key 
benefits, such as fault tolerance, hardware consolidation, 
load balancing and disaster recovery. Users will generally 
not notice any interruption in their interaction with the 
application, especially in the case of non-real-time 
applications. However, if the downtime becomes too long, 
users of real-time applications, in particular interactive 
ones may experience serious service degradation [4]. 

To achieve live migration, the state of the guest OS on 
the source host must be replicated on the destination host. 
This requires migrating processor state, memory content, 
local storage and network state. The focus of our study is 
on network state migration. 
Pre-copy is the memory migration technique adopted by 
KVM live migration, vMotion and XenMotion 
[13][28][27][32]. With this approach, memory pages 
belonging to the VM are transferred to the destination host 
while the VM continues to run on the source host. 
Transferred memory pages that are modified during 
migration are sent again to the destination to ensure 
memory consistency. When the memory migration phase 
is done the VM is suspended on the source host, and then 
any remaining pages are transferred, and finally the VM is 
resumed on the destination host [8]. The pre-copy 
technique captures the complete memory space occupied 
by the VM (dirty pages), along with the exact state of all 
the processor registers currently operating on the VM, and 
then sends the entire content over a TCP connection to a 
hypervisor on the other host. Processor registers at the 
destination are then modified to replicate the state at the 
source, and the newly moved VM can resume its 
operation [7][27][31].  

The Kernel-based Virtual Machine (KVM) is a bare-
metal (Type 1) hypervisor. The approach that KVM takes 
is to turn the Linux kernel into a VMM (or hypervisor). 
KVM provides a dirty page log facility for live migration, 
which provides user space with a bitmap of modified 
pages since the last call [5][6]. KVM uses this feature for 
memory migration. 

VMware is bare-metal (Type 1) hypervisor that is 
installed directly onto a physical servers without requiring 
a host OS. In VMware vSphere, vCenter Server provides 
the tools for vMotion (also known as Live Migration). 
vMotion allows the administrator to move a running VM 
from one physical host to another physical host by 
relocating the contents of the CPU registers and memory 
[9][10].  

XenServer is bare-metal (Type 1) hypervisor and runs 
directly on server hardware without requiring host OS. 
XenMotion is a feature supported by XenServer, which 
allows live migration of VMs. XenMotion works in 
conjunction with Resource Pools. A Resource Pool is a 
collection of multiple similar servers connected together 
in a unified pool of resources. These connected servers 
share remote storage and common networking 
connections [1][15][30].   

KVM, VMware and XenServer aim to provide high 
utilization of the hardware resources with minimal impact 
on the performance of the applications running inside the 
VM. In this study, we compare their performance by 
measuring downtime and total migration time during live 
migration as well as their CPU utilization, when running 
large telecommunication applications in the VMs. 

III. EXPERIMENTAL SETUP 

Two HP DL380 G6x86 hosts have been used to test 
the performance of KVM and VMware ESXi 5.0. On top 
of the VMware ESXi 5.0, RedHat Enterprise Linux, 
Version 6.2 has been installed as a guest OS. The same 
hardware was used to test the performance of Xen for 
Linux Kernel 3.0.13 running as part of the SUSE Linux 
Enterprise Server 11 Service Pack 2. Each server is 
equipped with 24 GB of RAM, two 4-core CPUs with 
hyperthreading enabled in each core (i.e., a total of 16 
logical cores) and four 146 GB disk. Both servers are 
connected via 1 Gbit Fibre Channel (FC) to twelve 400 
GB Serial Attached SCSI (SAS) storage units. All devices 
are located in a local area network (LAN) as shown in 
Figure 1. 

A. Test Configurations 

Three different test setups were evaluated: 

 KVM-based setup 

 VMware-based setup 

 XenServer-based setup 
In each setup, two VMs are created inside hypervisor1 

and hypervisor2, resulting in a total of four VMs (see 
Figure 1). One large industrial real-time telecommunica-
tion application is installed in the VMs. The application, 
referred to as server in the reminder of this paper, handles 
billing related requests. The server instances running on 
the VMs controlled by hypervisor1 are active in the sense 
that they are the primary consumers of the requests. The 
remaining two VMs under the control of hypervisor2 are 
running one passive instance of the server. Each active 
server is clustered together with one passive server. Thus, 
two clusters are created. Both the active and the passive 
server in a cluster can receive requests. However, all 
traffic received by the passive server is forwarded to the 
corresponding active server. The active server then sends 
the response back to the passive server.  



 

Figure 1. Network Plan 

Finally, the passive server sends the response to the 
requesting system. Traffic going directly to the active 
server is handled without involving the passive server. 
Another separate server runs a simulator that impersonates 
a requesting system in order to generate load towards the 
servers running in the clusters. The simulator is also 
located in the same LAN, but is not shown in Figure 1. 

B. Test Cases 

Two kinds of tests are considered in this study: 
performance tests and live migration tests. 

1) Performance tests 
In these tests, we vary the number of CPU cores 

(logical cores) in the VMs as well as the load towards the 
application. 

We have three different core configurations: 6, 12 and 
16 cores. For test cases with 12 cores and 16 cores the 
RAM for the VM is set to 24 GB, but for test case with 6 
cores, the RAM size set to 14 GB for each of the VMs. 
This is an application specific setting that is recommended 
by the manufacturer. A single cluster is used for the case 
with 12 and 16 cores, respectively. Both clusters are used 
when testing the 6 cores configuration in order to assess 
the performance of two 6-core systems versus the 
performance a single 12-core system. 

There are five load levels used in this test: 500, 1500, 
3000, 4300, and 5300 incoming requests per second 
(req/s).  

For each setup the following metrics are measured: 
CPU utilization, disk utilization and response time. 

CPU utilization and disk utilization are measured 
inside the hypervisor on both servers using the commands 
presented in Table I. For disk utilization, we consider only 
write operations to the shared storage shown in Figure 1. 
The response time is measured inside the simulator as the 
duration from the instant a request is sent from the 
simulator to the application until the simulator receives 
the corresponding reply. 

2) Live Migration tests 
In these tests, we measure CPU and disk utilization 

during live migration. Four VMs with 6 cores CPU and 14 
GB of RAM were created. For each configuration, a 
single VM (active server, e.g., VM1 on Hypervisor1 in 
Figure 1) is migrated from the source host to the 
destination host while the simulator creates a load of 100 
req/s for the VM. At the same time the other VM (e.g. 
VM2 on Hypervisor1 in Figure 1) on the source host is 
receiving 1500 req/s. The other VMs (VM1 and VM2 on 
Hypervisor2 in Figure 1) on the destination host receive 
negligible traffic in the form of 100 req/s and thus are not 
completely idle.  

TABLE I. CPU and DISK UTILIZATION COMMAND API 

Virtualization 

System 
Command Interface 

CPU Utilization Disk Utilization 

KVM ssh + sar ssh + iostat 

VMware 
vCenter Server- 

performance graphs 

vCenter Server- 

performance graphs 

XenServer ssh + xentop ssh + iostat 

Non-virtualized 
Server 

ssh + sar ssh + iostat 

 
The application manufacturer considered this as a realistic 
example when one would like to migrate a VM to load-
balance the system. 

In addition to CPU and disk utilization, we measure the 
downtime and the total migration time. The total 
migration time is obtained from the hypervisor for KVM 
and XenServer, and from vCenter for VMware (see Table 
I). Downtime is defined as the time from the instant when 
the VM is suspended on the source host (Hypervisor1 in 
Figure 1) until the VM is restarted on the destination host 
(Hypervisor2 in Figure 1). We measured the downtime 
inside the simulator and our results indicate that it 
corresponds to the maximum response time of the 
application. 

IV. COMPARISON BETWEEN KVM, VMWARE AND 

XENSERVER 

In Section IV-A, the KVM, VMware and XenServer 
virtualization systems are compared in terms of CPU 
utilization (6 cores, 12 cores, and 16 cores), disk 
utilization and response time. These values have been 
measured for different loads (500, 1500, 3000, 4300, 5300 
req/s) except for XenServer, which could not handle the 
highest load (5300 req/s).In Section IV-B, we 
compare the CPU utilization and the disk utilization 
during live migration, and in Section IV-C, we compare 
the total migration time and downtime of the VMs during 
live migration for the KVM, VMware and Xen Server 
setups, respectively. 

A. CPU, Disk Utilization and Response Time (6 cores, 

12 cores, 16 cores) 

CPU and disk utilization are measured inside the 
hypervisors. We also performed the same measurements 
on the non-virtualized (target) server in order to establish 
a baseline for our results (see Table I). The response time 
is measured in the simulator. 

As shown in Figure 2, Xen has the highest CPU 
utilization (approximately 80%) in the test case with 16 
cores. Because of this high CPU utilization the application 
failed for traffic loads higher than 4300 req/s. KVM and 
VMware CPU utilization increases proportional to the 
load with an increase rate similar to that of the target. In 
Figure 3, we can observe that again Xen CPU utilization 
is significantly higher compared to VMware, KVM and 
the target in case of 12 cores. As shown in Figure 4, 
KVM, VMware and the target CPU utilization in case of 6 
cores, are almost identical while Xen CPU utilization is 
the highest and at the highest point is around 70% which 
is the 20% higher CPU utilization compared to KVM, 
VMware and the target.  

In Figure 5, we can observe that in case of 16 cores, 
VMware has the highest disk utilization, up to 25000 
KB/s. KVM and Xen the disk utilization is linearly 



increasing with a rate similar to that of the disk utilization 
of the target. However, for KVM’s and Xen’s disk 
utilization is always around 2000 KB/s higher compared 
to the target. As shown in Figure 6, in case of 12 cores, 
Xen and KVM disk utilization is 5000 KB/s higher 
compared to the target while disk utilization for VMware 
is the highest, with a maximum around 30000 KB/s. In 
Figure 7, we can observe that VMware has the highest 
disk utilization compared to KVM and Xen, which show 
34000 KB/s at the highest point. Xen’s disk utilization in 
case of 6 cores is higher than KVM. The maximum disk 
utilization for Xen is around 25000 KB/s while the 
maximum KVM disk utilization is around 20000 KB/s. 
That is 5000 KB/s higher compared to the target but still 
the lowest compared to other virtualization systems. 

Figure 8 shows that the response time of the 
application when using Xen is the highest for all traffic 
loads except for loads higher than 4300 req/s. Since for 
loads higher than 4300 req/s the application failed when 
using Xen, KVM has the highest response time after Xen, 
and at the highest point is around 25 ms in case of 16 
cores. The response times of the application when using 
VMware is similar to the response times we had on the 
target. As shown in Figure 9, the response time of the 
application when using Xen reaches 26 ms at the highest 
point. In case of KVM the application has also high 
response times with a maximum of around 20 ms, which 
is higher than VMware’s. The application response times 
when using VMware is similar to the response times of 
the application on the target. In Figure 10, we can observe 
that response time of the application when using Xen at 
the highest point is more than 25 ms, which is twice the 
application response time in case of the non-virtualized 
target. In the case of the 6 cores configuration using KVM 
the response time increases with a similar rate to the case 
when using VMware. However, for KVM and VMware 
the response times are around 5 ms higher compared to 
the target. 

B. CPU, Disk Utilization and ResponseTime during Live 

Migration 

CPU utilization is measured inside the hypervisors on 
both the source and the destination servers, during the live 
migration. Disk utilization is also measured inside both 
hypervisors. We initiate a migration after the system has 
been running for 15 minutes. 

As shown in Figure 12, KVM’s CPU utilization on the 
source is around 26% before the live migration begins. 
The CPU utilization on the destination is around 6%. 
After the live migration has been started, the CPU 
utilization first increases to 35% and then decreases to 
18% on the source. However, on the destination server the 
CPU utilization settles around 13% after the live 
migration. As shown in Figure 12, VMware’s CPU 
utilization before live migration is around 20% on the 
source hypervisor and around 4% on the destination 
hypervisor. When the live migration has been started, the 
CPU utilization on source increases to about 34% and 
remains at that level during the live migration. On the 
destination, the CPU utilization becomes around 15% 
after the live migration has started. After the live 
migration has stopped, the CPU utilization decreases to 
around 15% on the source hypervisor and to around 10% 

on the destination hypervisor. In Figure 12, we can 
observe that the Xen CPU utilization before live migration 
is around 34% on the source hypervisor and around 7% on 
the destination hypervisor. In the beginning of the live 
migration, the CPU utilization on source increases to 
around 40% and on the destination the Xen CPU 
utilization increases to around 13%. After the live 
migration is completed, the CPU utilization on the source 
decreases to around 29%, while on the destination’s CPU 
utilization increases to 15%. 

As shown in Figure 13, KVM’s disk utilization on the 
source is around 10000 KB/s before live migration. On 
the destination, the disk utilization is around 6000 KB/s 
before live migration. After the live migration has started, 
the disk utilization on the source decreases to 9000 KB/s, 
while on the destination’s disk utilization increases to 
7000 KB/s. As shown in Figure 13, VMware’s disk 
utilization is around 15000 KB/s on the source before live 
migration while on the destination the disk utilization is 
around 7000 KB/s. After the live migration, the disk 
utilization on the source decreases to around 13000 KB/s 
and on the destination it increases to around 9000 KB/s. In 
Figure 13 we can observe that the Xen disk utilization 
before the live migration is around 13000 KB/s on the 
source and around 6000 KB/s on the destination. When 
the live migration has started, the disk utilization increases 
to around 30000 KB/s on the source and to around 23000 
KB/s on the destination. After the live migration has 
completed, the disk utilization on the source decreases to 
around 9000 KB/s and on the destination the disk 
utilization increases to around 10000 KB/s. 

C. DowntimeandTotal Migration Time 

The downtime has been obtained from the maximum 
response time, which is measured inside simulator during 
the live migration. Downtime corresponds to the time that 
application is not available and the VM is suspended.  

As shown in Figure 11, the response time of the 
application when using KVM as hypervisor is around 1 
ms before the live migration is started, but when the VM 
is suspended the response time increases to 700 ms. So the 
application was down for less than 700 ms. In Figure 11, 
we can observe that the response time of the application 
when using VMware as hypervisor is around 1 ms, but 
when the VM is totally down the application response 
time increases to 3000 ms. So the application downtime 
was around 3000 ms. As shown in Figure 11, before the 
live migration starts the application response time when 
using Xen is around 4 ms. When the live migration 
begins, the response time increases to 280 ms. So the 
application was down for less than 4 ms. 

The total migration time is calculated inside the source 
hypervisor. It corresponds to the time that the VM started 
to be migrated until the complete VM state has been 
transferred to the destination hypervisor (see Figures 12-
13). The total migration time for VMware, KVM and Xen 
is around 2 minutes.  

V. RELATED WORK 

In recent years, there have been several efforts to 
compare different live migration technologies. Xiujie et 
al. [1] compare the performance of vMotion and 
XenMotion under certain network conditions defined by 
varying the available bandwidth, link latency and packet 



loss. Their results show that vMotion produces less data 
traffic than XenMotion when migrating identical VMs. 
However, in networks with moderate packet loss and 
delay, which are typical in a Virtual Private Network 
(VPN), XenMotion outperforms vMotion in total 
migration time.  

Tafa et al. [2] compare the performance of three 
hypervisors: XEN-PV, XEN-HVM and Open-VZ. They 
simulated the migration of a VM using a warning failure 
approach. The authors used a CentOS tool called 
“Heartbeat” that monitors the well-being of high-
availability hosts through periodic exchanges of network 
messages. When a host fails to reply to messages the tool 
issues a failure notification that causes the hypervisor to 
migrate the VM from the “dead” host to one that is 
“alive”. Further, they compared CPU usage, memory 
utilization, total migration time and downtime. The 
authors have also tested the hypervisor’s performance by 
changing the packet size from 1500 bytes to 64 bytes. 
From these tests they concluded that Open-VZ has a 
higher CPU usage than XEN-PV, but the total migration 
time is smaller for Open-VZ (3.72 seconds for packet size 
of 64 bytes) than for XEN-PV (5.12 seconds for packet 
size of 64 bytes). XEN-HVM has lower performance than 
XEN-PV; especially regarding downtime. XEN-HVM 
had16 ms downtime while XEN-PV had 9 ms downtime 
for packet size of 64 bytes compared to our results with 
the large application we have got 300 ms downtime for 
Xen and total migration time of around 2 minutes.  

In Chierici et al. [3] and Che et al. [29] present a 
quantitative and synthetically performance comparison 
between Xen, KVM and OpenVZ. They used several 
benchmarks (NetIO, IOzone, HEP-Spec06, Iperf and 
bonnie++) to measure CPU, network and disk accesses. 
According to their measurements, the OpenVZ has the 
best performance; also Xen hypervisor offers good 
performance while KVM has apparently low performance 
than OpenVZ and Xen. 

There has been a similar study to our work carried out 
by Hicks, et al. [14], in which the authors focused only on 
memory migration and storage migration in the KVM, 
XenServer, VMware and Hyper-V virtualization systems. 
However, they did not consider CPU utilization of 
hypervisor during live migration in their study. 

Clark et al. [27] introduced a method for the migration 
of entire operating system when using Xen as a 
hypervisor. They have tested different applications and 
recorded the service downtime and total migration time. 
Their results show 210 ms downtime for SPECweb99 
(web-server) and 60 ms downtime for Quake3 (game 
server) during the migration.  

Du et al. [24] proposed new method called Microwiper 
which makes less dirty pages for live migration. They 
implemented their method on the pre-copy based live 
migration in Xen hypervisor. They’ve tested two different 
programs with one with fixed memory writes and the 
other one with very quick memory writes. They compared 
the downtime and total migration time when using their 
method (Microwiper) versus the original Xen live 
migration (XLM). Their results show the original Xen live 
migration gets 40 ms downtime for VM memory size of 
1024 MB when running quick memory writes program 
and total migration time of 11 seconds while their 

technique (Microwiper) decreases the downtime so it 
became around 10 ms but they got the same total 
migration time. 

Web 2.0 application [33] has been evaluated by 
Voorsluys et al. [25] in terms of downtime and total 
migration time during live migration. They run XenServer 
as a hypervisor on their VM hosts. According to their 
experiments downtime of their system when serving 600 
concurrent users is around 3 seconds and their total 
migration time is around 44 seconds which is much higher 
compared to our results because of the application that 
they’ve used also their setup is different. 

Jo et al. [26] implemented a technique to reduce the 
duplication of data on the attached storage. They used 
different applications, RDesk I and II, Admin I, etc. and 
they measured the down time and total migration time 
during live migration when using XenServer as 
hypervisor. Their experiment shows 350 seconds total 
migration time for the original Xen live migration when 
the maximum network bandwidth is 500 megabits per 
second while using their proposed technique reduces this 
number to 50 seconds when duplication ratio is up to 85 
percent. 

VI. CONCLUSION AND FUTURE WORK 

The results of the performance tests for different 
configurations of number of CPU cores show that KVM 
and VMware CPU utilization is almost identical and 
similar to CPU utilization on the target machine (non-
virtualized) while XenServer has the highest CPU 
utilization with a maximum around 80%. In terms of disk 
utilization, the results indicate that KVM and Xen have 
similar disk utilization while VMware has the highest disk 
utilization (around 30000 KB/s for the highest load). The 
response time of the application is the highest when using 
Xen as hypervisor showing around 25 ms at the highest 
point. For KVM and VMware, the response time is almost 
similar (around 20 ms). 

In general, KVM and VMware perform better in terms 
of CPU utilization while Xen CPU utilization is the 
highest. In terms of disk utilization KVM and Xen have 
similar performance while VMware has the highest disk 
utilization. Further, in terms of response time Xen has the 
longest response times compared to KVM and VMware.   

As the results have shown, the CPU utilization during 
live migration is lower for KVM than for VMware while 
Xen had the highest CPU utilization during live migration. 
The disk utilization when KVM is used is 1000 KB/s 
lower compared to VMware during the migration. 

For VMware, the downtime is measured to 3 seconds 
during live migration. For KVM and Xen the measured 
downtime are only 0.7 seconds and 0.3 seconds, 
respectively.  

In general, the results presented in this study show that 
both VMware and KVM perform better in terms of 
application response time and CPU utilization for a 
configuration of two VMs with 6 cores each, compared to 
a configuration with a single VM with 16 or 12 cores. 
Xen’s performance is below that of the two other 
virtualization systems tested. However, Xen’s live 
migration technology, XenMotion, performs better than 
VMware’s vMotion and KVM live migration technology 
in terms of downtime. 
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Figure 2. KVM, VMware and Xen CPU utilization for 16 cores 

 
Figure 3. KVM, VMware and Xen CPU utilization for 12 cores 

 
Figure 4. KVM, VMware and Xen CPU utilization for 6 cores 

 
Figure 5. KVM, VMware and Xen disk utilization for 16 cores 

 
Figure 6. KVM, VMware and Xen disk utilization for 12 cores 

 
Figure 7. KVM, VMware and Xen disk utilization for 6 cores 



 
Figure 8. KVM, VMware and Xen response time for 16 cores 

 
Figure 9. KVM, VMware and Xen response time for 12 cores 

 
Figure 10. KVM, VMware and Xen response time for 6 cores 

 
Figure 11. KVM , VMware and Xen response time during live migration 

 
Figure 12. KVM , VMware and Xen CPU utilization during live migration 

 



 
Figure 13. KVM , VMware and Xen disk utilization during live migration 

 


