
Performance Comparison of KVM, VMware and XenServer using a Large

Telecommunication Application

Sogand Shirinbab, Lars Lundberg, Dragos Ilie
School of Computing, Blekinge Institute of Technology, Sweden

{Sogand.Shirinbab, Lars.Lundberg, Dragos.Ilie}@bth.se

Abstract—One of the most important technologies in

cloud computing is virtualization. This paper presents the

results from a performance comparison of three well-known

virtualization hypervisors: KVM, VMware and XenServer.

In this study, we measure performance in terms of CPU

utilization, disk utilization and response time of a large

industrial real-time application. The application is running

inside a virtual machine (VM) controlled by the KVM,

VMware and XenServer hypervisors, respectively.

Furthermore, we compare the three hypervisors based on

downtime and total migration time during live migration.

The results show that the Xen hypervisor results in higher

CPU utilization and thus also lower maximum performance

compared to VMware and KVM. However, VMware causes

more write operations to disk than KVM and Xen, and Xen

causes less downtime than KVM and VMware during live

migration. This means that no single hypervisor has the best

performance for all aspects considered here.

Keywords-Cloud Computing; KVM; Live Migration; VMware

vMotion; XenMotion.

I. INTRODUCTION

Virtualization has many advantages over non-
virtualized solutions, e.g., flexibility, cost and energy
savings [19][34]. As a more specific example, consider
the cost associated with test hardware used during
professional software development. This includes the
initial price for purchasing the equipment, as well as
operational costs in the form of maintenance,
configuration and consumed electricity. For economic
reasons, organizations often choose to use virtualized test
servers, so that the test hardware can be shared and
maintained in a cost-effective way [20]. In order to
provide maximum resource utilization, there should be no
restrictions on the mapping of VMs to physical
computers, i.e., it should be possible to run a VM on any
physical server. In order to balance the load, it is desirable
that a VM running on a physical host could be restarted on
another physical host, i.e., there is a need for migrating
VMs from one physical server to another [21][22][23].
There is support for migration in many commonly used
virtualization systems, e.g., KVM Live Migration [16],
VMware’s vMotion [18] and XenServers’s XenMotion
[17].

There are three different approaches to VM migration:
cold migration, hot migration and live migration. When
cold migration is used the guest Operating System (OS) is
shut down, the VM is moved to another physical server
and then the guest OS is restarted there. Hot migration
suspends the guest OS instead of shutting it down. The

guest OS is resumed after the VM is moved to the
destination host. The benefit of hot migration is that
application running inside the guest OS can preserve most
of their state after migration (i.e., they are not restarted
from scratch). In the live migration approach [13], the VM
keeps running while its memory pages are copied to a
different host. Live migration reduces the downtime
dramatically for applications executing inside the VM.
Live migration is thus suitable for high-availability
services.

In this paper, we compare the performance of KVM,
VMware and XenServer, for two different scenarios:
when no VM is migrated, and when a VM is migrated
from one physical server to another. The work load is, for
both scenarios, a large real-time telecommunication
application. In the case when no VM is migrated, we
measure the CPU utilization, the disk utilization (the
number of write operations), and the average application
response time. When a VM is migrated we measure the
CPU utilization, the disk utilization (the number of write
operations), and the down time due to live migration.

The rest of the paper is organized as follows. In
Section II the state of the art is summarized. Section III
describes the experimental setup for the different
hypervisors, and, in Section IV, we compare and analyze
the results for KVM, VMware and XenServer. Finally,
related work is discussed in Section V. Section VI
concludes the paper.

II. STATE OF THE ART

A. Virtualization

In its simplest form, virtualization is a mechanism for
several virtual OS instances on a single physical system.
This is typically accomplished using a Hypervisor or
Virtual Machine Monitor (VMM), which lies between the
hardware and the OS. Virtualization is often beneficial for
environments consisting of a large number of servers
(e.g., a datacenter).

A virtualization solution relies on several components,
such as CPU virtualization, memory virtualization, I/O
virtualization, storage virtualization, and so on. In this
paper we focus specifically on CPU and memory
virtualization.

Current approaches to virtualization can be classified
into: full virtualization, paravirtualization and hardware
assisted virtualization [11][12].

Full virtualization uses binary translation which
translates the kernel code so that privileged instructions
can be converted to user-level instructions during run-

time. Detection and translation of privileged instructions
typically carries a large performance penalty. KVM and
VMware support this approach.

Paravirtualization attempts to alleviate the
performance of full virtualization by replacing privileged
instructions with specific function calls to the hypervisor,
so called hypercalls. This requires changes to the guest OS
source code, which is not always possible. In particular,
access to the source code of commercial OSs is heavily
restricted. Both XenServer and KVM support
paravirtualization.

Recent innovations in hardware, particularly in CPU,
Memory Management Unit (MMU) and memory
components (notably the Intel VT-x and AMD-V
architectures [12]), provide some direct platform-level
architectural support for OS virtualization. Hardware
assisted virtualization offers one key feature: it avoids the
need to trap and emulate privileged instructions by
enabling guests to run at their native privilege levels.
VMware and KVM support this approach.

B. Live Migration

Live migration is a mechanism that allows a VM to be
moved from one host to another while the guest OS is
running. This type of mobility provides several key
benefits, such as fault tolerance, hardware consolidation,
load balancing and disaster recovery. Users will generally
not notice any interruption in their interaction with the
application, especially in the case of non-real-time
applications. However, if the downtime becomes too long,
users of real-time applications, in particular interactive
ones may experience serious service degradation [4].

To achieve live migration, the state of the guest OS on
the source host must be replicated on the destination host.
This requires migrating processor state, memory content,
local storage and network state. The focus of our study is
on network state migration.
Pre-copy is the memory migration technique adopted by
KVM live migration, vMotion and XenMotion
[13][28][27][32]. With this approach, memory pages
belonging to the VM are transferred to the destination host
while the VM continues to run on the source host.
Transferred memory pages that are modified during
migration are sent again to the destination to ensure
memory consistency. When the memory migration phase
is done the VM is suspended on the source host, and then
any remaining pages are transferred, and finally the VM is
resumed on the destination host [8]. The pre-copy
technique captures the complete memory space occupied
by the VM (dirty pages), along with the exact state of all
the processor registers currently operating on the VM, and
then sends the entire content over a TCP connection to a
hypervisor on the other host. Processor registers at the
destination are then modified to replicate the state at the
source, and the newly moved VM can resume its
operation [7][27][31].

The Kernel-based Virtual Machine (KVM) is a bare-
metal (Type 1) hypervisor. The approach that KVM takes
is to turn the Linux kernel into a VMM (or hypervisor).
KVM provides a dirty page log facility for live migration,
which provides user space with a bitmap of modified
pages since the last call [5][6]. KVM uses this feature for
memory migration.

VMware is bare-metal (Type 1) hypervisor that is
installed directly onto a physical servers without requiring
a host OS. In VMware vSphere, vCenter Server provides
the tools for vMotion (also known as Live Migration).
vMotion allows the administrator to move a running VM
from one physical host to another physical host by
relocating the contents of the CPU registers and memory
[9][10].

XenServer is bare-metal (Type 1) hypervisor and runs
directly on server hardware without requiring host OS.
XenMotion is a feature supported by XenServer, which
allows live migration of VMs. XenMotion works in
conjunction with Resource Pools. A Resource Pool is a
collection of multiple similar servers connected together
in a unified pool of resources. These connected servers
share remote storage and common networking
connections [1][15][30].

KVM, VMware and XenServer aim to provide high
utilization of the hardware resources with minimal impact
on the performance of the applications running inside the
VM. In this study, we compare their performance by
measuring downtime and total migration time during live
migration as well as their CPU utilization, when running
large telecommunication applications in the VMs.

III. EXPERIMENTAL SETUP

Two HP DL380 G6x86 hosts have been used to test
the performance of KVM and VMware ESXi 5.0. On top
of the VMware ESXi 5.0, RedHat Enterprise Linux,
Version 6.2 has been installed as a guest OS. The same
hardware was used to test the performance of Xen for
Linux Kernel 3.0.13 running as part of the SUSE Linux
Enterprise Server 11 Service Pack 2. Each server is
equipped with 24 GB of RAM, two 4-core CPUs with
hyperthreading enabled in each core (i.e., a total of 16
logical cores) and four 146 GB disk. Both servers are
connected via 1 Gbit Fibre Channel (FC) to twelve 400
GB Serial Attached SCSI (SAS) storage units. All devices
are located in a local area network (LAN) as shown in
Figure 1.

A. Test Configurations

Three different test setups were evaluated:

 KVM-based setup

 VMware-based setup

 XenServer-based setup
In each setup, two VMs are created inside hypervisor1

and hypervisor2, resulting in a total of four VMs (see
Figure 1). One large industrial real-time telecommunica-
tion application is installed in the VMs. The application,
referred to as server in the reminder of this paper, handles
billing related requests. The server instances running on
the VMs controlled by hypervisor1 are active in the sense
that they are the primary consumers of the requests. The
remaining two VMs under the control of hypervisor2 are
running one passive instance of the server. Each active
server is clustered together with one passive server. Thus,
two clusters are created. Both the active and the passive
server in a cluster can receive requests. However, all
traffic received by the passive server is forwarded to the
corresponding active server. The active server then sends
the response back to the passive server.

Figure 1. Network Plan

Finally, the passive server sends the response to the
requesting system. Traffic going directly to the active
server is handled without involving the passive server.
Another separate server runs a simulator that impersonates
a requesting system in order to generate load towards the
servers running in the clusters. The simulator is also
located in the same LAN, but is not shown in Figure 1.

B. Test Cases

Two kinds of tests are considered in this study:
performance tests and live migration tests.

1) Performance tests
In these tests, we vary the number of CPU cores

(logical cores) in the VMs as well as the load towards the
application.

We have three different core configurations: 6, 12 and
16 cores. For test cases with 12 cores and 16 cores the
RAM for the VM is set to 24 GB, but for test case with 6
cores, the RAM size set to 14 GB for each of the VMs.
This is an application specific setting that is recommended
by the manufacturer. A single cluster is used for the case
with 12 and 16 cores, respectively. Both clusters are used
when testing the 6 cores configuration in order to assess
the performance of two 6-core systems versus the
performance a single 12-core system.

There are five load levels used in this test: 500, 1500,
3000, 4300, and 5300 incoming requests per second
(req/s).

For each setup the following metrics are measured:
CPU utilization, disk utilization and response time.

CPU utilization and disk utilization are measured
inside the hypervisor on both servers using the commands
presented in Table I. For disk utilization, we consider only
write operations to the shared storage shown in Figure 1.
The response time is measured inside the simulator as the
duration from the instant a request is sent from the
simulator to the application until the simulator receives
the corresponding reply.

2) Live Migration tests
In these tests, we measure CPU and disk utilization

during live migration. Four VMs with 6 cores CPU and 14
GB of RAM were created. For each configuration, a
single VM (active server, e.g., VM1 on Hypervisor1 in
Figure 1) is migrated from the source host to the
destination host while the simulator creates a load of 100
req/s for the VM. At the same time the other VM (e.g.
VM2 on Hypervisor1 in Figure 1) on the source host is
receiving 1500 req/s. The other VMs (VM1 and VM2 on
Hypervisor2 in Figure 1) on the destination host receive
negligible traffic in the form of 100 req/s and thus are not
completely idle.

TABLE I. CPU and DISK UTILIZATION COMMAND API

Virtualization

System
Command Interface

CPU Utilization Disk Utilization

KVM ssh + sar ssh + iostat

VMware
vCenter Server-

performance graphs

vCenter Server-

performance graphs

XenServer ssh + xentop ssh + iostat

Non-virtualized
Server

ssh + sar ssh + iostat

The application manufacturer considered this as a realistic
example when one would like to migrate a VM to load-
balance the system.

In addition to CPU and disk utilization, we measure the
downtime and the total migration time. The total
migration time is obtained from the hypervisor for KVM
and XenServer, and from vCenter for VMware (see Table
I). Downtime is defined as the time from the instant when
the VM is suspended on the source host (Hypervisor1 in
Figure 1) until the VM is restarted on the destination host
(Hypervisor2 in Figure 1). We measured the downtime
inside the simulator and our results indicate that it
corresponds to the maximum response time of the
application.

IV. COMPARISON BETWEEN KVM, VMWARE AND

XENSERVER

In Section IV-A, the KVM, VMware and XenServer
virtualization systems are compared in terms of CPU
utilization (6 cores, 12 cores, and 16 cores), disk
utilization and response time. These values have been
measured for different loads (500, 1500, 3000, 4300, 5300
req/s) except for XenServer, which could not handle the
highest load (5300 req/s).In Section IV-B, we
compare the CPU utilization and the disk utilization
during live migration, and in Section IV-C, we compare
the total migration time and downtime of the VMs during
live migration for the KVM, VMware and Xen Server
setups, respectively.

A. CPU, Disk Utilization and Response Time (6 cores,

12 cores, 16 cores)

CPU and disk utilization are measured inside the
hypervisors. We also performed the same measurements
on the non-virtualized (target) server in order to establish
a baseline for our results (see Table I). The response time
is measured in the simulator.

As shown in Figure 2, Xen has the highest CPU
utilization (approximately 80%) in the test case with 16
cores. Because of this high CPU utilization the application
failed for traffic loads higher than 4300 req/s. KVM and
VMware CPU utilization increases proportional to the
load with an increase rate similar to that of the target. In
Figure 3, we can observe that again Xen CPU utilization
is significantly higher compared to VMware, KVM and
the target in case of 12 cores. As shown in Figure 4,
KVM, VMware and the target CPU utilization in case of 6
cores, are almost identical while Xen CPU utilization is
the highest and at the highest point is around 70% which
is the 20% higher CPU utilization compared to KVM,
VMware and the target.

In Figure 5, we can observe that in case of 16 cores,
VMware has the highest disk utilization, up to 25000
KB/s. KVM and Xen the disk utilization is linearly

increasing with a rate similar to that of the disk utilization
of the target. However, for KVM’s and Xen’s disk
utilization is always around 2000 KB/s higher compared
to the target. As shown in Figure 6, in case of 12 cores,
Xen and KVM disk utilization is 5000 KB/s higher
compared to the target while disk utilization for VMware
is the highest, with a maximum around 30000 KB/s. In
Figure 7, we can observe that VMware has the highest
disk utilization compared to KVM and Xen, which show
34000 KB/s at the highest point. Xen’s disk utilization in
case of 6 cores is higher than KVM. The maximum disk
utilization for Xen is around 25000 KB/s while the
maximum KVM disk utilization is around 20000 KB/s.
That is 5000 KB/s higher compared to the target but still
the lowest compared to other virtualization systems.

Figure 8 shows that the response time of the
application when using Xen is the highest for all traffic
loads except for loads higher than 4300 req/s. Since for
loads higher than 4300 req/s the application failed when
using Xen, KVM has the highest response time after Xen,
and at the highest point is around 25 ms in case of 16
cores. The response times of the application when using
VMware is similar to the response times we had on the
target. As shown in Figure 9, the response time of the
application when using Xen reaches 26 ms at the highest
point. In case of KVM the application has also high
response times with a maximum of around 20 ms, which
is higher than VMware’s. The application response times
when using VMware is similar to the response times of
the application on the target. In Figure 10, we can observe
that response time of the application when using Xen at
the highest point is more than 25 ms, which is twice the
application response time in case of the non-virtualized
target. In the case of the 6 cores configuration using KVM
the response time increases with a similar rate to the case
when using VMware. However, for KVM and VMware
the response times are around 5 ms higher compared to
the target.

B. CPU, Disk Utilization and ResponseTime during Live

Migration

CPU utilization is measured inside the hypervisors on
both the source and the destination servers, during the live
migration. Disk utilization is also measured inside both
hypervisors. We initiate a migration after the system has
been running for 15 minutes.

As shown in Figure 12, KVM’s CPU utilization on the
source is around 26% before the live migration begins.
The CPU utilization on the destination is around 6%.
After the live migration has been started, the CPU
utilization first increases to 35% and then decreases to
18% on the source. However, on the destination server the
CPU utilization settles around 13% after the live
migration. As shown in Figure 12, VMware’s CPU
utilization before live migration is around 20% on the
source hypervisor and around 4% on the destination
hypervisor. When the live migration has been started, the
CPU utilization on source increases to about 34% and
remains at that level during the live migration. On the
destination, the CPU utilization becomes around 15%
after the live migration has started. After the live
migration has stopped, the CPU utilization decreases to
around 15% on the source hypervisor and to around 10%

on the destination hypervisor. In Figure 12, we can
observe that the Xen CPU utilization before live migration
is around 34% on the source hypervisor and around 7% on
the destination hypervisor. In the beginning of the live
migration, the CPU utilization on source increases to
around 40% and on the destination the Xen CPU
utilization increases to around 13%. After the live
migration is completed, the CPU utilization on the source
decreases to around 29%, while on the destination’s CPU
utilization increases to 15%.

As shown in Figure 13, KVM’s disk utilization on the
source is around 10000 KB/s before live migration. On
the destination, the disk utilization is around 6000 KB/s
before live migration. After the live migration has started,
the disk utilization on the source decreases to 9000 KB/s,
while on the destination’s disk utilization increases to
7000 KB/s. As shown in Figure 13, VMware’s disk
utilization is around 15000 KB/s on the source before live
migration while on the destination the disk utilization is
around 7000 KB/s. After the live migration, the disk
utilization on the source decreases to around 13000 KB/s
and on the destination it increases to around 9000 KB/s. In
Figure 13 we can observe that the Xen disk utilization
before the live migration is around 13000 KB/s on the
source and around 6000 KB/s on the destination. When
the live migration has started, the disk utilization increases
to around 30000 KB/s on the source and to around 23000
KB/s on the destination. After the live migration has
completed, the disk utilization on the source decreases to
around 9000 KB/s and on the destination the disk
utilization increases to around 10000 KB/s.

C. DowntimeandTotal Migration Time

The downtime has been obtained from the maximum
response time, which is measured inside simulator during
the live migration. Downtime corresponds to the time that
application is not available and the VM is suspended.

As shown in Figure 11, the response time of the
application when using KVM as hypervisor is around 1
ms before the live migration is started, but when the VM
is suspended the response time increases to 700 ms. So the
application was down for less than 700 ms. In Figure 11,
we can observe that the response time of the application
when using VMware as hypervisor is around 1 ms, but
when the VM is totally down the application response
time increases to 3000 ms. So the application downtime
was around 3000 ms. As shown in Figure 11, before the
live migration starts the application response time when
using Xen is around 4 ms. When the live migration
begins, the response time increases to 280 ms. So the
application was down for less than 4 ms.

The total migration time is calculated inside the source
hypervisor. It corresponds to the time that the VM started
to be migrated until the complete VM state has been
transferred to the destination hypervisor (see Figures 12-
13). The total migration time for VMware, KVM and Xen
is around 2 minutes.

V. RELATED WORK

In recent years, there have been several efforts to
compare different live migration technologies. Xiujie et
al. [1] compare the performance of vMotion and
XenMotion under certain network conditions defined by
varying the available bandwidth, link latency and packet

loss. Their results show that vMotion produces less data
traffic than XenMotion when migrating identical VMs.
However, in networks with moderate packet loss and
delay, which are typical in a Virtual Private Network
(VPN), XenMotion outperforms vMotion in total
migration time.

Tafa et al. [2] compare the performance of three
hypervisors: XEN-PV, XEN-HVM and Open-VZ. They
simulated the migration of a VM using a warning failure
approach. The authors used a CentOS tool called
“Heartbeat” that monitors the well-being of high-
availability hosts through periodic exchanges of network
messages. When a host fails to reply to messages the tool
issues a failure notification that causes the hypervisor to
migrate the VM from the “dead” host to one that is
“alive”. Further, they compared CPU usage, memory
utilization, total migration time and downtime. The
authors have also tested the hypervisor’s performance by
changing the packet size from 1500 bytes to 64 bytes.
From these tests they concluded that Open-VZ has a
higher CPU usage than XEN-PV, but the total migration
time is smaller for Open-VZ (3.72 seconds for packet size
of 64 bytes) than for XEN-PV (5.12 seconds for packet
size of 64 bytes). XEN-HVM has lower performance than
XEN-PV; especially regarding downtime. XEN-HVM
had16 ms downtime while XEN-PV had 9 ms downtime
for packet size of 64 bytes compared to our results with
the large application we have got 300 ms downtime for
Xen and total migration time of around 2 minutes.

In Chierici et al. [3] and Che et al. [29] present a
quantitative and synthetically performance comparison
between Xen, KVM and OpenVZ. They used several
benchmarks (NetIO, IOzone, HEP-Spec06, Iperf and
bonnie++) to measure CPU, network and disk accesses.
According to their measurements, the OpenVZ has the
best performance; also Xen hypervisor offers good
performance while KVM has apparently low performance
than OpenVZ and Xen.

There has been a similar study to our work carried out
by Hicks, et al. [14], in which the authors focused only on
memory migration and storage migration in the KVM,
XenServer, VMware and Hyper-V virtualization systems.
However, they did not consider CPU utilization of
hypervisor during live migration in their study.

Clark et al. [27] introduced a method for the migration
of entire operating system when using Xen as a
hypervisor. They have tested different applications and
recorded the service downtime and total migration time.
Their results show 210 ms downtime for SPECweb99
(web-server) and 60 ms downtime for Quake3 (game
server) during the migration.

Du et al. [24] proposed new method called Microwiper
which makes less dirty pages for live migration. They
implemented their method on the pre-copy based live
migration in Xen hypervisor. They’ve tested two different
programs with one with fixed memory writes and the
other one with very quick memory writes. They compared
the downtime and total migration time when using their
method (Microwiper) versus the original Xen live
migration (XLM). Their results show the original Xen live
migration gets 40 ms downtime for VM memory size of
1024 MB when running quick memory writes program
and total migration time of 11 seconds while their

technique (Microwiper) decreases the downtime so it
became around 10 ms but they got the same total
migration time.

Web 2.0 application [33] has been evaluated by
Voorsluys et al. [25] in terms of downtime and total
migration time during live migration. They run XenServer
as a hypervisor on their VM hosts. According to their
experiments downtime of their system when serving 600
concurrent users is around 3 seconds and their total
migration time is around 44 seconds which is much higher
compared to our results because of the application that
they’ve used also their setup is different.

Jo et al. [26] implemented a technique to reduce the
duplication of data on the attached storage. They used
different applications, RDesk I and II, Admin I, etc. and
they measured the down time and total migration time
during live migration when using XenServer as
hypervisor. Their experiment shows 350 seconds total
migration time for the original Xen live migration when
the maximum network bandwidth is 500 megabits per
second while using their proposed technique reduces this
number to 50 seconds when duplication ratio is up to 85
percent.

VI. CONCLUSION AND FUTURE WORK

The results of the performance tests for different
configurations of number of CPU cores show that KVM
and VMware CPU utilization is almost identical and
similar to CPU utilization on the target machine (non-
virtualized) while XenServer has the highest CPU
utilization with a maximum around 80%. In terms of disk
utilization, the results indicate that KVM and Xen have
similar disk utilization while VMware has the highest disk
utilization (around 30000 KB/s for the highest load). The
response time of the application is the highest when using
Xen as hypervisor showing around 25 ms at the highest
point. For KVM and VMware, the response time is almost
similar (around 20 ms).

In general, KVM and VMware perform better in terms
of CPU utilization while Xen CPU utilization is the
highest. In terms of disk utilization KVM and Xen have
similar performance while VMware has the highest disk
utilization. Further, in terms of response time Xen has the
longest response times compared to KVM and VMware.

As the results have shown, the CPU utilization during
live migration is lower for KVM than for VMware while
Xen had the highest CPU utilization during live migration.
The disk utilization when KVM is used is 1000 KB/s
lower compared to VMware during the migration.

For VMware, the downtime is measured to 3 seconds
during live migration. For KVM and Xen the measured
downtime are only 0.7 seconds and 0.3 seconds,
respectively.

In general, the results presented in this study show that
both VMware and KVM perform better in terms of
application response time and CPU utilization for a
configuration of two VMs with 6 cores each, compared to
a configuration with a single VM with 16 or 12 cores.
Xen’s performance is below that of the two other
virtualization systems tested. However, Xen’s live
migration technology, XenMotion, performs better than
VMware’s vMotion and KVM live migration technology
in terms of downtime.

REFERENCES

[1] F. Xiujie, T. Jianxiong, L. Xuan, and J. Yaohui, “A
Performance Study of Live VM Migration Technologies:
vMotion vs XenMotion,” Proceedings of the International
Society for Optical Engineering, Shanghai, China, 2011,
pp. 1-6.

[2] I. Tafa, E. Kajo, A. Bejleri, O. Shurdi, and A. Xhuvani,
”The Performance between XEN-HVM, XEN-PV And
OPEN-VZ During Live Migration,” International Journal of
Advanced Computer Science and Applications, 2011, pp.
126-132.

[3] A. Chierici and R. Veraldi, “A Quantitative Comparison
between Xen and KVM,” 17th International Conference on
Computing in High Energy and Nuclear Physics, Boston,
2010, pp. 1-10.

[4] D. Huang, D. Ye, Q. He, J. Chen, and K. Ye, “Virt-LM: a
benchmark for live migration of virtual machine,” ACM
SIGSOFT Software Engineering Notes, USA, 2011, pp.
307-316.

[5] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori,
”KVM: the linux virtual machine monitor,” OLS, Ottawa,
2007, pp. 225-230.

[6] Red Hat. (2009). “KVM- Kernel based virtual
machine,”[Online]. Available from:
http://www.redhat.com/rhecm/rest-
rhecm/jcr/repository/collaboration/jcr:system/jcr:versionSto
rage/5e7884ed7f00000102c317385572f1b1/1/jcr:frozenNo
de/rh:pdfFile.pdf

2014-03-10

[7] M.R. Hines and K. Gopalan, “Post-copy based live virtual
machine migration using adaptive pre-paging and dynamic
self-ballooning,” international conference on virtual
execution environments, USA, 2009, pp. 51-60.

[8] P. Svärd, B. Hudzia, J. Tordsson, and E. Elmorth,
”Evaluation of delta compression techniques for efficient
live migration of large virtual machines,” 7th ACM
SIGPLAN/SIGOPS International conference on Virtual
execution environments, USA, 2011, pp. 111-120.

[9] S. Lowe, “Mastering VMware vSphere 5,” Book, 2011.

[10] E. L. Haletky, “VMware ESX and ESXi in the
Enterprise:Planning Deployment of Virtualization Servers,”
Upper Saddle River, NJ: Prentice Hall, 2011.

[11] A.Kovari and P.Dukan, ”KVM & OpenVZ virtualization
based IaaS Open Source Cloud Virtualization Platform,”
10th Jubilee International Symposium on Intelligent Systems
and Informatics, Serbia, 2012, pp. 335-339.

[12] A.J. Younge, R. Henschel, and J.T. Brown, “Analysis of
Virtualization Technologies for High Performance
Computing Environments,” 4th IEEE International
Conference on Cloud Computing, Washington, DC, 2011,
pp. 9-16.

[13] A. Warfield, et al., ”Live Migration of Virtual Machines,”
Proceedings of the 2nd conference on Symposium on
Network Systems Design and Implementation, USA, 2005,
pp. 273-286.

[14] A. Hicks, et al., “A Quantitative Study of Virtual Machine
Live Migration,” Proceedings of the ACM Cloud and
Autonomic Computing Conference, USA, 2013, pp. 1-10.

[15] J. Wang, L. Yang, M. Yu, and S. Wang, ”Application of
Server Virtualization Technology Based on Citrix
XenServer in the Infromation Center of the Public Security
Bureau and Fire Service Department,” Proceedings of the
Computer Science and Society, Kota Kinabalu, 2011, pp.
200-202.

[16] KVM. [Online]. Available from: http://www.linux-
kvm.org/page/Main_Page

2014-03-10

[17] XenServer. [Online]. Available from:
http://www.citrix.com/products/xenserver/overview.html

2014-03-10

[18] VMware. [Online]. Available from:
http://www.vmware.com/

2014-03-10

[19] Ch. Cai and L. Yuan, ”Research on Energy-Saving-Based
Cloud Computing Scheduling Strategy,” Journal of
Networks, 2013, pp. 1153-1159.

[20] E.Michael and F. Janos, “A Survey of Desktop
Virtualiztion in Higher Education: An Energy-and Cost-
Savings Perspective,” 19th Americas conference on
Information Systems, 2013, pp. 3139-3147.

[21] X. Li, Q. He, J. Chen, K. Ye, and T. Yin, “Informed Live
Migration Strategies of Virtual Machines for Cluster Load
Balancing” Proceedings of the 8th IFIP International
Conference, 2011, pp. 111-122.

[22] Z. Wenyu, Y. Shaoubao, F.Jun, N. Xianlong, and S. Hu,
“VMCTune: A Load Balancing Scheme for Virtual
Machine Cluster Based on Dynamic Resource Allocation”
Proceedings of the 9th International Conference on Grid
and Cloud Computing, 2010, pp. 81-86.

[23] P. Riteau, C. Morin, and T. Priol, “Shrinker: Efficient Live
Migration of Virtual Machines” Concurrency and
Computation: Practice and Experience, 2013, pp. 541-555.

[24] Y. Du, H. Yu, G. Shi, J. Chen, and W. Zheng, ”Microwiper:
Efficient Memory Propagation in Live Migration of Virtual
Machines,” 39th International Conference on Parallel
Computing, 2010, pp. 141-149.

[25] W. Voorsluys, J. Broberg, S.Venugopal, and R. Buyya,
“Cost of Virtual Machine Live Migration in Clouds: A
Performance Evaluation,” Proccedings of the 1st
International Conference on Cloud Computing, 2009, pp.
254-265.

[26] Ch. Jo, E. Gustafsson, J. Son, and B. Egger, “Efficient Live
Migration of Virtual Machines Using Shared Storage,”
Proceedings of the 9th International Conference on Virtual
Execution Environments, 2013, pp. 41-50.

[27] C. Clark, et al., “Live Migration of Virtual Machines,”
Proceedings of the 2nd symposium on Networked Systems
Design and Implementation, 2005, pp. 273-86.

[28] S. Akoush, R. Sohan, A. Rice, A.W. Moore, and A.
Hopper, “Predicting the Performance of Virtual Machine
Migration,” Proceedings of the 18th IEEE/ACM
international symposium on Modelling, Analysis and
Simulation of Computer and Telecommunication Systems,
2010, pp. 37-46.

[29] J. Che, Y. Yu, C. Shi, and W. Lin, “A Synthetical
Performance Evaluation of OpenVZ, Xen and KVM,”
Proceedings of the IEEE conference on Asia-Pacific
Services Computing, 2010, pp. 587-594.

[30] S. Kikuchi and Y. Matsumoto, “Impact of Live Migration
on Multi-tier Application Performance in Clouds,”
Proceedings of the 5th IEEE international conerence on
Cloud Computing, 2012, pp. 261- 268.

[31] H. Liu, H. Jin, Ch. Xu, and X. Liao, “Performance and
Energy Modelling for Live Migration of Virtual Machines,”
Proceedings of the conference on Cloud Computing, 2013,
pp. 249-264.

[32] S. Kikuchi and Y. Matsumoto, “Performance Modelling of
Concurrent Live Migration Operations in Cloud Computing
Systems using PRISM Problemabilistic Model Checker,”
Proceedings of the IEEE 4th international conference on
Cloud Computing, 2011, pp. 49-56.

[33] L. Wang, et al., “Cloud Computing: a Prespective Study,”
Proceedings of the New Generation Computing conference,
2010, pp. 137-146.

[34] J. Che, Q. He, Q. Gao, and D. Huang, “Performance
Measuring and Comparing of Virtual Machine Monitors,”
Proceedings of the 5th interantional conference on
Embedded and Ubiquitous Computing, 2008, pp. 381-386.

http://www.redhat.com/rhecm/rest-rhecm/jcr/repository/collaboration/jcr:system/jcr:versionStorage/5e7884ed7f00000102c317385572f1b1/1/jcr:frozenNode/rh:pdfFile.pdf
http://www.redhat.com/rhecm/rest-rhecm/jcr/repository/collaboration/jcr:system/jcr:versionStorage/5e7884ed7f00000102c317385572f1b1/1/jcr:frozenNode/rh:pdfFile.pdf
http://www.redhat.com/rhecm/rest-rhecm/jcr/repository/collaboration/jcr:system/jcr:versionStorage/5e7884ed7f00000102c317385572f1b1/1/jcr:frozenNode/rh:pdfFile.pdf
http://www.redhat.com/rhecm/rest-rhecm/jcr/repository/collaboration/jcr:system/jcr:versionStorage/5e7884ed7f00000102c317385572f1b1/1/jcr:frozenNode/rh:pdfFile.pdf

Figure 2. KVM, VMware and Xen CPU utilization for 16 cores

Figure 3. KVM, VMware and Xen CPU utilization for 12 cores

Figure 4. KVM, VMware and Xen CPU utilization for 6 cores

Figure 5. KVM, VMware and Xen disk utilization for 16 cores

Figure 6. KVM, VMware and Xen disk utilization for 12 cores

Figure 7. KVM, VMware and Xen disk utilization for 6 cores

Figure 8. KVM, VMware and Xen response time for 16 cores

Figure 9. KVM, VMware and Xen response time for 12 cores

Figure 10. KVM, VMware and Xen response time for 6 cores

Figure 11. KVM , VMware and Xen response time during live migration

Figure 12. KVM , VMware and Xen CPU utilization during live migration

Figure 13. KVM , VMware and Xen disk utilization during live migration

