
Algorithms for Automated Live Migration of Virtual Machines

Mattias Forsman, Andreas Glad, Lars Lundberg, Dragos Ilie∗

Blekinge Institute of Technology
Karlskrona, Sweden

Abstract

We present two strategies to balance the load in a system with multiple virtual machines (VMs) through automated
live migration. When the push strategy is used, overloaded hosts try to migrate workload to less loaded nodes. On the
other hand, when the pull strategy is employed, the light-loaded hosts take the initiative to offload overloaded nodes.

The performance of the proposed strategies was evaluated through simulations. We have discovered that the strate-
gies complement each other, in the sense that each strategy comes out as “best” under different types of workload.
For example, the pull strategy is able to quickly re-distribute the load of the system when the load is in the range
low-to-medium, while the push strategy is faster when the load is medium-to-high.

Our evaluation shows that when adding or removing a large number of virtual machines in the system, the “best”
strategy can re-balance the system in 4–15 minutes.

Keywords: live migration, virtualization, load balancing

1. Introduction

The informal interpretation of virtualization is that of
a mechanism for running concurrently several operating
system (OS) instances on a single computer node. We
call these nodes physical machines (PMs). A typical
virtualization architecture is shown in Figure 1. The hy-
pervisor is the core component of a virtualization plat-
form. The main responsibility of the hypervisor is to
delegate computer hardware to virtual-machine moni-
tors (VMMs)1. Each VMM is responsible for provid-
ing hardware abstraction for exactly one running virtual
machine (VM). The VM typically hosts a guest OS.
By running multiple VMs simultaneously on a PM, the
hardware can be used more efficiently.

Several components of a system, such as CPU, mem-
ory, network and storage, can be virtualized. The main
focus here is on CPU virtualization.

Many hypervisors are able to migrate VMs from one
host to another. There are three different approaches to

∗Corresponding author. Tel.: +46 455 38 58 71.
Email addresses: mattias.forsman@gmail.com (Mattias

Forsman), andreas.glad86@gmail.com (Andreas Glad),
lars.lundberg@bth.se (Lars Lundberg), dragos.ilie@bth.se
(Dragos Ilie)

1The terms hypervisor and VMM are treated as equivalent in most
literature. However, in [1], the terms refer to two separate entities, as
described here.

Figure 1: Virtualization architecture

migrate a VM. When cold migration is used, the guest
OS is shut down, the VM is moved to another host and
then the guest OS is restarted there. Hot migration sus-
pends the guest OS instead of shutting it down. The
guest OS is resumed after the VM is moved to the des-
tination host. The benefit of hot migration is that ap-
plications running inside the guest OS are not restarted
from scratch. Some platforms offer a feature called live
migration. This feature allows a VM to be moved from
one host to another while the guest OS is running. Live
migration reduces the downtime dramatically for appli-
cations executing inside the VM. It is highly valuable if
the migrations can be performed automatically, without

Preprint submitted to Elsevier November 19, 2014



the involvement of a human operator. We call this type
of unattended operation automated live migration.

In this paper we investigate two distributed algo-
rithms for automated live migration. The goal of the
algorithms is to achieve a load-balanced system through
node cooperation. The performance of these algorithms
is evaluated by simulations.

The remainder of the paper is organized as follows.
Section 2 provides a brief introduction to virtualization
and live migration techniques. Related work is pre-
sented in Section 3. Details about the migration strate-
gies are available in Section 4. Section 5 provide a
walk-through for the pull and push algorithms. The
simulation testbed as well as simulation scenarios are
described in Section 6. Our simulation results are pre-
sented in Section 7. Finally, we share our conclusions
in Section 8.

2. Live Migration

In live migration, the state of the guest OS on the
source host must be replicated on the destination host.
This requires migrating processor state, memory con-
tent, local storage and network state [2]. We focus on
migration of CPU state and memory content.

The tricky part of live memory migration is that VM
memory pages can be modified on the source host be-
fore the transfer to the destination host is complete. The
dominant technique to handle this problem is called pre-
copy and is the approach used by Xen [3, 2], KVM [4],
and VMware [5]. The memory pages of a virtual ma-
chine are copied in iterations. In the first round all pages
are copied while in the following rounds only modified
(dirty) pages are moved. The modified pages are tracked
via a dirty bitmap maintained by the hypervisor. The
stop-and-copy phase begins after pre-copy. Its purpose
is to halt the VM on the source host and transfer the re-
maining dirty pages. At the end of this phase the VM
can be resumed on the destination host.

VM migration has important applications in dy-
namic resource management for cloud-based systems
and large data centers. In these environments a group
of VMs can begin competing for resources provided by
a single PM. A hot spot occurs when the performance of
VMs degrades because the PM is unable to respond to
the resource demand. The opposite situation, when re-
sources on a PM are underutilized, is termed cold spot.
This happens when the running VMs consume only a
tiny fraction of the resources provided by the hosting
PM. Both hot spots and cold spots can be handled by
moving around one or more VMs. In hot spot mitigation
the selected VMs are moved to a less loaded PM. Server

consolidation is the strategy to handle cold spots by re-
grouping VMs from lightly-loaded hosts to a smaller
subset of PMs, thus freeing up the remaining PMs for
resource-hungry VMs [6].

Load-balanced systems are desirable for several rea-
sons, such as to avoid large discrepancies between the
level of service afforded to various VMs from the same
service class and to keep an even ambient temperature
to reduce cooling cost [7, 8].

Live migration enables hot spot mitigation and server
consolidation with minimal disturbance to applications
running inside the migrating VMs.

3. Related Work

Several research efforts have improved live migration
with respect to the volume of data transfered between
hosts. For example, Jin et al. [9] reduced the migra-
tion time by compressing the memory pages that are
sent over the network during Xen’s pre-copy and stop-
and-copy stages. Their solution exploits inherent re-
dundancy in memory areas (e. g. , large blocks of mem-
ory consisting of zero bytes or identical memory pages
belonging to multiple guest OSes running on the same
host) to achieve high compression ratios. The cost func-
tion used for our migration strategies, described in Sec-
tion 4.1, is proportional to the memory size of the VM.
Therefore our migration strategies are biased against
migrating large VMs. However, a VM with a large
amount of memory is likely to contain more similar
pages than a small VM. If the compression technique
from [9] could be integrated with our cost function, the
probability of selecting large VMs for migration can in-
crease.

In [10], the authors present a technique that mini-
mizes the data volume sent over the WAN during live
migration by avoiding to send redundant memory pages.
When a redundant page is encountered only a hash is
sent to destination host. The host uses the received hash
to lookup and replicate a previously received memory
page. The effect is similar to that of compressing the
pages, as described above. However, the advantage in
this case is that there is typically lower overhead in com-
puting hashes than in compressing data.

In yet another approach to reduce migrated data, the
authors of [11] presents a live migration technique that
combines checkpoints and traces for non-deterministic
events. The results presented by the authors indicate
that this approach greatly reduces migration overhead
while still achieving better average performance for
downtime and total migration time. The advantage of
this approach is that the volume of trace data (i. e. , the

2



events that change CPU state and memory contents) is
smaller than the volume of data transferred in the typi-
cal pre-copy approach described in Section 2. However,
this approach is less successful in multi-core/multi-
processor environments.

Some work aims at reducing the power consumption
in data centers. In [12], the authors present a frame-
work that reduces the power consumption by dynami-
cally re-mapping VMs to PMs at runtime. Their frame-
work is a centralized solution, unlike the distributed ap-
proach presented here. Interestingly, their re-mapping
algorithm uses an auction model in similar vein to our
migration strategies presented in Section 4.1.

In [13], the authors propose an energy efficient live
migration system. One of their goals is to find under-
utilized PMs that can be powered down. If the PM that
is to be powered down currently hosts VMs, these vir-
tual machines are forced to migrate. This is also a cen-
tralized solution. Their scheme seems targeted towards
load balancing and server consolidation, whereas our
approach deals with load balancing and hotspot miti-
gation.

In [14], the authors propose a framework to en-
able live migration between different kinds of hyper-
visors. The authors used an actual implementation of
their framework to performed live migrations between
Xen [3] and KVM [4]. The framework uses the pre-
copy technique for live migration. This means that the
cost model presented in Section 4.2, which is also based
on pre-copy, can be used to implement migration strate-
gies between different kind of hypervisors.

In [15], the author describes a couple of load-sharing
schemes. Among these are the sender and the receiver
schemes. In the sender scheme, the overloaded host
takes the initiative to share its load. In the receiver
scheme, the underutilized hosts takes the initiative and
tries to find work. As shown below, our push strategy
resembles the sender scheme while the pull resembles
the receiver scheme.

The authors of [16] use Shannon’s concept of infor-
mation entropy to detect load imbalance between nodes.
Another paper utilizing Shannon’s information entropy
to detect imbalance in a cluster storage system is [17].
Our model for load distribution in a system is based on
these two papers.

In [18], the authors characterize which parameters af-
fect a migration the most. They establish that available
bandwidth and page dirty rate are factors with a great
impact on total migration time and downtime. These
parameters are used by our cost model for live migra-
tion.

Mishra et al. [6] provide an overview of resource

management issues in a cloud environment that are
solved through VM migrations. We include this article
here because it provides a clear and concise description
of tradeoffs for various migration techniques, which was
helpful to us in designing our migration strategies.

Few attempts have been made to dynamically map
VMs to PMs and use the mapping to perform migrations
automatically. One article related to this is [19], where
a framework for automated live migration is presented.
The authors measured both the PMs’ and the VMs’ re-
source utilization to decide when a migration is neces-
sary. The authors use CPU utilization (i. e. , the fraction
of time the CPU is busy) as a metric to determine the
occurrence of hotspots. We believe that the CPU load
metric described in Section 4 is better at describing the
utilization of a system because it reflects the number of
processes competing to use the CPU.

4. Automated load-balancing

We present a solution for system load-balancing
through automated live migration. Our solution handles
the following sub-problems:

i) detect hot spots (i. e. , overloaded PMs),
ii) identify PMs that can take over workload from the

hot spot, without creating a new hot spots,
iii) avoid cold spots,
iv) minimize migration costs.

Most of these sub-problems can be quite difficult to
solve optimally, as illustrated in many of the references
mentioned in Section 3(e. g. , [12, 17, 19]). We used a
pragmatic approach and made the following simplifica-
tions:

• a VM is the smallest workload unit that can be
transferred between hosts,

• no more than one VM is transferred in a single it-
eration of our algorithm,

• PM’s CPU load is the only hot spot indicator used.

A hot spot, in our approach, is defined as a host that
has a CPU load that exceeds a specific utilization thresh-
old λ.

Our notion of load is similar to the load metric used
by the Linux OS, which denotes the number of pro-
cesses competing for CPU at a given time. For a host
with n cores or n processors, a load value l (0 ≤ l < n)
means that the running processes require less than the
available CPU time. When the load value exceeds n,

3



some processes are unable to get a time slice from the
scheduler and CPU run queues start to build up. Con-
secutive load values can exhibit a high degree of vari-
ability, which makes it difficult to discern load trends
over longer time windows. Linux handles this prob-
lem by applying an exponentially weighted moving av-
erage (EWMA) function to the load data to smooth out
large variations and obtain load average values [20].

We have developed two main migration strategies to
handle hot spots. Under the push strategy, overloaded
PMs attempt to migrate workload to less loaded PMs.
When the pull strategy is used, underutilized PMs re-
quest workload from heavier loaded PMs. Each of
these strategies is implemented through a communica-
tion protocol that allows PMs to exchange information
about their CPU load and workload that can be shared.

A PM chooses the destination host and which VM
to migrate based on the following selection factors: av-
erage post-migration CPU load on the destination PM,
cost of the migration, and expected load distribution in
the system after the migration. In addition, checks are
in place to ensure that the destination PM has enough
free memory to accomodate the migrated VM [21].

Selection factors and migration strategies are de-
scribed in detail in the following subsections.

4.1. Migration strategies
Our migration strategies can be modeled as a special

type of multi auction selection process. The process is
based on the first-price sealed-bid auction type [22], but
with several items being auctioned and only one of them
being sold.

In the case of the push strategy, an overloaded PM
plays the role of the seller. The VMs hosted on this
PM constitute the auctioned items. The PM multicasts
information about these items to the potential buyers
(i. e. , the other PMs in the system). The information
shared with the buyers contains the characteristics of
each VM, such as current load and memory usage. The
buyers may bid on one, several, or all auctioned VMs.
A bid consists of the PM’s available resources as well
as of the PM’s past resource usage. The seller selects
the best candidate from the bids and performs the mi-
gration. Only one out of all bids will get selected and a
single VM is migrated. When the pull strategy is used,
the seller is an underutilized PM that advertises free re-
sources. The other PMs in the system are potential re-
source buyers that bid with the characteristics of their
VMs as described above. The seller decides which bid
it accepts and initiates the VM migration.

The first-price sealed-bid auction model is suitable to
use with the the push and pull strategies because the

(a) Failure (b) Success

Figure 2: Auction outcomes under the push strategy for overloaded
host PM1

seller does not know in advance how the auctioned item
is “valued” by the buyers and also because each bidding
PM is unaware of the bids placed by the other PMs [23].
In this case, the “value” is the resources that sellers of-
fer in the pull strategy and the VMs they are willing to
release in the pull strategy.

In the push strategy, an auction will fail if none of
the buyers has sufficient resources to hold any of the
seller’s VMs. In the scenario illustrated in Figure 2a,
the horizontal line located at 0.7 on the y-axis indicates
the load threshold λ. A PM is considered overloaded
if its load exceeds the threshold value, as is the case of
PM1. However, a migration from PM1 to PM2, or from
PM1 to PM3, will overload the destination host instead.
Therefore, the auction will fail.

A successful push scenario is shown in Figure 2b.
Here, PM1 is still overloaded and needs to migrate one
of its VMs. By migrating a VM to PM2, the load on
both PM1 and PM2 will decrease below the threshold
and the system will attain a more balanced state.

Figure 3 depicts the pull strategy. In this case, when
the load on a PM drops below the threshold value, the
host considers itself underutilized and initiates an auc-
tion to sell its free resources. The goal of the action is
to move workload from a potential buyer to the seller,
but without causing the buyer’s load to drop below the
threshold. In Figure 3a we can see that the underuti-
lized host PM1 is unable to acquire any VMs from PM1
or PM2. A success scenario is illustrated in Figure 3b
where PM1 can acquire a VM from either PM2 or PM3,
with the exception of the blue VM on PM3.

Fixed threshold values can lead to situations where
the system is unable to react to obvious load imbalance.
For example, imagine that we have a push-strategy sys-
tem in the state shown in Figure 4. There, PM1 and PM2
are slightly below the high-load threshold while PM3
and PM4 experience light load. Clearly, workload from
PM1 and PM2 could be transferred to PM3 and PM4,

4



(a) Failure (b) Success

Figure 3: Auction outcomes under the pull strategy for underutilized
host PM1

Figure 4: Imbalanced system due to fixed threshold value

but because the thresholds are not reached the system
will continue in an unbalanced state.

A fixed threshold value can also be damaging for the
pull strategy. Consider the case where the load of a host
is just above the low-load threshold (e. g. , PM2 or PM3
in Figure 3a). If other PMs in the system become over-
loaded the system will remain in an unbalanced state
because the host, although lightly loaded, will not offer
its resources for auction. In this case, not only are re-
sources poorly utilized, but system services provided to
customers may fall below acceptable levels resulting in
violations of service level agreements [18, 24].

An adaptive threshold value is an obvious solution to
the problems created by fixed thresholds. The thresh-
old λ begins with an initial value and is gradually in-
creased in the pull strategy, while being gradually de-
creased when the push strategy is used. Figure 5 depicts
the adaptive threshold concept applied to a push sce-
nario.

Whenever an auction fails, the threshold for the PM
that started the auction is reset to its initial value. This
approach is similar to how the TCP congestion control
behaves when the congestion window is reset when-
ever a timeout happens [25]. Periodically, each PM in-
creases (or decreases) their threshold value by a con-
stant amount. Each period length is computed as 5 s
plus a random factor uniformly distributed on the set

Figure 5: Balanced system due to active threshold value

[−2, 2] s to avoid synchronization with other PMs.
We have also introduced a binary exponential back-

off algorithm, similar to the one used for local area
networks [26], to ensure conservative use of CPU and
network resources when auction attempts fail repeat-
edly. The algorithm is always initiated by the seller.
If the auction fails, the seller waits a random amount
of time before performing another auction. The range
from which the random time is drawn increases expo-
nentially with each try, but is truncated at 120 s.

4.2. Selection factors for VM migration

A seller uses three factors when selecting which VMs
to migrate:

• buyer’s load after migration,

• expected distribution of load in the system,

• migration cost.

We use an EWMA algorithm to estimate the buyer’s
average load after migration. The EWMA is useful in
smoothing out variations in the average load. Without
it, short-term load variations would generate unneces-
sary migrations. Although the EWMA is unable to fore-
cast trends, it is easy to compute and requires only the
previous estimate and a new sample to produce a new
value [27].

Each PM samples its CPU load periodically (i. e. ,
once per second) as well as the load of the VMs it hosts.
If we denote the n-th load sample by ln, then the esti-
mated load for the (n + 1)-th sample, l̂n+1, is

l̂n+1 =


αln + (1 − α)l̂n, if n > 6

5∑
i=1

li

n
, if n ≤ 5

(1)

The second case in Equation 1 is used to bootstrap the
algorithm by computing the initial estimates l̂1, . . . , l̂5.

5



The actual EWMA algorithm, shown in the first case in
Equation 1, computes the remaining estimates.

The parameter α decides the influence of the current
load sample over the past samples in computing the es-
timate. We have set α = 0.2 as suggested by [28]. This
smoothes out high variability between consecutive sam-
ples, which is why we prefer the estimate over using the
actual load values.

In the push strategy, bids from buyers include PM
load estimates. Similarly, when the pull strategy is used,
bids from buyers include load estimates for their VMs.
The seller uses the estimates to compute the expected
load of the buyer and the load distribution in the system
if the bid is accepted.

We modeled the load distribution using the concept of
entropy, similarly to how it was done in [16] and [17].
The entropy function has several properties [17] that are
useful in capturing the notion of load distribution:

i) it takes on values in the range 0.0–1.0,
ii) it approaches 0.0 when a single element is present

in the system,
iii) it approaches 1.0 for a perfectly load-balanced sys-

tem,
iv) it increases when an element with zero load is

added to the system.

Obviously, the goal is to maximize the entropy metric
when selecting a VM for migration.

The model takes as input the load values of all PMs
and outputs the entropy value. More formally, let li ≥ 0,
be the load of i-th PM in a system with n PMs. The
normalized load 0 ≤ pi ≤ 1 with respect to the total
load in the system is

pi =
li

n∑
i=1

li
(2)

If we let P = {p1, p2, . . . , pn} be the set of the normal-
ized load values pi, the entropy of P can be defined

H(P) = −

n∑
i=1

pi log pi (3)

It is useful if H(P) is also normalized because values
in the range 0.0 – 1.0 are easy to interpret. As shown
in Equation 4, we normalize H(P) with respect to the
maximum entropy value H(P)max = log n, which corre-
sponds to the case where pi = 1/n, for all i [16]. We
refer to E(P) as the normalized entropy metric2.

2It should be noted that in [17] the entropy metric F(P) is defined
as the complement of our entropy function, that is F(P) = 1 − E(P).

Table 1: Parameters for the cost model, adapted from [29]
Vmem ( MB) Total amount of VM memory
Vi ( MB) Size of VM memory to be migrated during

round i, V0 = Vmem

Vmig ( MB) Total amount of network traffic required to
perform a migration

Tmig ( s) Total migration time when the VM is still
operational

Tdown ( s) Total downtime when the VM is not opera-
tional

Vthd ( MB) Threshold value for the remaining memory
due to dirty pages to be transferred in the
last round

R ( MB/ s) Available bandwidth that can be used for
the migration, i. e. , the memory transmis-
sion rate

D ( MB/ s) Page dirty rate during migration
Wi ( MB) Writable working set, frequently changed

memory pages in round i

E(P) =
H(P)

H(P)max
=

n∑
i=1

pi log pi

log
1
n

(4)

To estimate the migration cost of a VM, we use an
algorithm proposed in [29]. The algorithm implements
a performance model which is built on the assumption
that live migration uses the pre-copy technique. This
is a reasonable assumption since the de-facto standard
hypervisors (i. e. , Xen, KVM and VMware) in fact use
pre-copy for migration [3, 2, 4, 5].

All parameters used by the performance model are
summarized in Table 1 and the actual algorithm is
shown in Algorithm 1. The model provides three
cost indicators: migration time Tmig, estimated service
downtime Tdown, and traffic volume due to migration
Vmig (line 1, Algorithm 1). The migration time is the
time required by the pre-copy phase of migration. Dur-
ing this time, the guest OS is still running and services
running on top of it may suffer from performance penal-
ties. Downtime is the time required by the stop-and-
copy phase when the VM is suspended and guest OS
services are not available.

The algorithm uses the Vmem input parameter, which
is the memory size of the VM, to compute T0, the dura-
tion of the first pre-copy round. The duration of a round
i is decided by Vi, the volume of data to be transferred

With this definition, one strives to minimize F(P) to obtain a load-
balanced system. Certain optimization problems can be solved easier
when the goal is to minimize the objective function.

6



Algorithm 1 Cost model algorithm, adapted from [29]
1: Input: Vmem, Vthd, D, R Ouput: Vmig, Tmig, Tdown

2: let V0 ← Vmem /* data moved in the first round */

3: for i = 0 to max rounds do
4: Ti ← Vi/R
5: γ ← ωTi + ξD + ψ
6: Wi+1 ← γTiD
7: Vi+1 ← TiD −Wi+1
8: if Vi+1 ≤ Vthd or Vi+1 > Vi then
9: Vi+1 ← TiD /* data moved in the last round */

10: Ti+1 ← Vi+1/R
11: Tdown ← Ti+1 + Tresume

12: break
13: end if
14: end for
15: Vmig ←

max rounds∑
i=0

Vi

16: Tmig ←
max rounds∑

i=0
Ti

during that round, and R, the achievable transmission
rate between the source host and the destination host.
When i = 0, T0 = Vmem/R (line 1–4, Algorithm 1).

Computing the volume of data in subsequent rounds
is a bit more complicated. Some memory pages that
change very frequently are part of what is called the
writable working set (WWS). Hypervisors should avoid
copying these pages during pre-copy to conserve re-
sources, and instead transfer them during the stop-and-
copy phase [2]. Liu et al. [29] assume that the WWS in
round i is proportional to Vi, the memory pages dirtied
in the previous round

Wi = γVi−1, (5)

where γ is related to the dirtying rate D and the round
duration Ti (line 6, Algorithm 1). The authors described
this relationship through a linear model

γ = ωTi−1 + ξD + ψ, (6)

where ω = −0.0463, ξ = −0.001, and ψ = 0.3586 (line
5, Algorithm 1). The coefficient values were estimated
by training the model with the DaCapo benchmark [29].

Using the arguments above, the volume of data to be
transferred in round i is (line 2 and line 7, Algorithm 1)

Vi =

Vmem, if i = 0,
D × Ti−1 −Wi, otherwise,

(7)

which, in turn, can be used to compute the duration of
round i (line 10, Algorithm 1):

Ti =
Vi

R
=

D × Ti−1 −Wi

R
(8)

The algorithm ends the pre-copy phase when one of
the following conditions is met (line 3 and line 8, Algo-
rithm 1):

• the remaining volume of dirty pages reaches or de-
creases below the threshold Vthd,

• the remaining volume of dirty pages exceeds the
volume from previous round,

• the maximum number of pre-copy rounds is
reached.

At this point the algorithm can compute Tmig, the du-
ration of the pre-copy phase, by summing together the
duration of each round (line 16, Algorithm 1).

The duration of the stop-and-copy phase, Tdown has
two additive components: Tn = Vn−1/R, the time it takes
to transfer the remaining amount of dirty pages in the
final round n, and Tresume, the time it takes to resume the
VM on the destination host (line 9–11, Algorithm 1).
Tresume is assumed to be constant.

We define the total cost to migrate VMi as

Ci = Tmig + Tdown = Tmig + Tn + Tresume. (9)

Here it is useful to summarize what has been de-
scribed so far in this section. Buyers use Equation 1 to
compute load estimates for their PMs and VMs. Seller
use the estimates to discard bids that, if accepted, would
cause the buyer to become overloaded or underutilized.
Sellers also compute an expected entropy value for each
VM in the remaining bids. The value serves as a metric
for how well the load would be distributed if the cor-
responding VM is migrated. Additionally, sellers use
Algorithm 1 together with Equation 9 to compute the
migration cost for each VM in the remaining bids.

The aim of these three selection factors is to allow
a seller to choose a VM for migration such that the
load distribution in the system is improved while keep-
ing the migration cost reasonable. We take a pragmatic
approach in defining “reasonable” and discard all bids
with a cost exceeding the average cost of all bids

Cmean =

n∑
i=1

Ci

n
. (10)

The remaining bids are sorted based on the entropy
value and the candidate yielding the highest entropy is
selected as the final candidate:

VMcandidate = max(E(P)) (11)

where E(P) is defined in Equation 4.

7



Algorithm 2 Push strategy - Source node
1: if Event then
2: if Event = hotspot then
3: for all PMs do
4: Multicast hotspotMessage containing

resource usage and list of hosted VMs
5: end for

/* Waiting for bids */

6: while bids < PMs − 1
and elapsedTime < maxTime do

7: Receive bids
8: end while
9: for all bids do

10: Calculate the utility for all V MCandidates
and append to utilityArray

11: end for
12: for all utilites in utilityArray do
13: Calculate migration cost
14: end for
15: Sort utilityArray based on utility
16: Remove candidates that have a high cost
17: Set winningBid to the highest value in

utilityArray
18: for all PMs do
19: Multicast information about winningBid
20: end for
21: Listen for a confirmation message from

the winning PM
22: if none or negative response then
23: Run backoff algorithm and exit
24: else
25: Run migration and exit
26: end if

5. Algorithms

In this section we provide a thorough description of
the algorithms for the push and pull strategies and con-
clude with an analysis of their computational complex-
ity.

5.1. Push algorithm walk-through

When a PM becomes overloaded (line 2, Algo-
rithm 2), it initiates an auction by multicasting its re-
source usage and a list of hosted VMs to the other PMs
in the network (line 3–5, Algorithm 2). The overloaded
host collects bids until all other PMs have replied or un-
til the waiting time (elapsedTime) has exceeded its limit
(maxTime) (line 6–8, Algorithm 2). Each bid contains a
set of VMs (VMcandidates) from the auctioned list that
would fit within the bidding PM’s available resources

Algorithm 3 Push strategy (Continued) - Candidate
node(s)
27: else if Event = hotspotMessage then
28: if resources are not locked then
29: Lock resources
30: for all VMs in hotspotMessage do
31: if VM fits the available resources then
32: Add VM to the array V Mcandidates
33: end if
34: end for
35: Reply with V Mcandidates and resource

usage to sender
36: else
37: Reply with an empty message
38: end if

39: else if Event = winningBidAnnouncement then
40: if winner then
41: Reply with acknowledgment
42: Wait for the VM to be migrated
43: Release resource lock
44: else
45: Release resource lock
46: end if
47: end if
48: end if

(line 28–35, Algorithm 3). The overloaded node com-
putes the load entropy (utility) and the cost due to each
VMCandidate from the bids and stores these in the util-
ityArray (line 9–14, Algorithm 2). The best candidate
from the utilityArray is sent as an announcement (win-
ningBid) to all PMs (line 17–20, Algorithm 2). The
winner must reply with an acknowledgment and wait
for the migration to be initiated. All the other candi-
dates will release their locks3 (line 39–47, Algorithm 3)
after receiving the winning announcement. If any unex-
pected errors occur, the backoff algorithm described in
Section 4.1 will be triggered. Otherwise, the migration
will be initiated (line 21–26, algorithm 2).

5.2. Pull algorithm walk-through

When a PM becomes underutilized (line 2, Algo-
rithm 4), it initiates an auction by multicasting its re-
source usage to the other PMs in the network (line 3–
5, Algorithm 4). The selling host collects bids until
all other PMs have replied or until the waiting time

3A resource lock is a mechanism to prevent resources negotiated
under an auction from being used in other concurrent auctions.

8



(elapsedTime) has exceeded its limit (maxTime) (line 6–
8, Algorithm 4). Each bid lists all the VMs running on
the bidding PM (line 34, Algorithm 5). The underuti-
lized PM verifies each VM from the bids for its suitabil-
ity. A suitable VM is one that fits within PM’s available
resources and does not make the bidding node underuti-
lized if a migration would occur. The underutilized PM
computes the load entropy (utility) for each VM from
the bids as well as its migration cost and stores these
in the utilityArray (line 9–16, Algorithm 4). As long
as the utilityArray contains candidates, the PM will at-
tempt to retrieve the VM with the highest utility from
the bidding PM. If the attempt times out (timeout) or is
denied by the buyer, the VM entry is removed from the
utilityArray and the PM attempts to retrieve the second
best candidate (line 19–27, Algorithm 4). If the attempt
succeeds, the VM is migrated.

5.3. Algorithm complexity

If we assume that the maximum number of VMs on
each PM will not exceed some (potentially large) con-
stant value, the complexity of our five algorithms can
be expressed in terms of n (the number of PMs). Mod-
ern datacenters contain a lot of PMs, and it is therefore
important to consider the complexity of our algorithms,
i. e. , how the execution times of the algorithms scale
when the number of PMs increases.

In Algorithm 1 we do (in the worst case) max rounds
iterations, and since max rounds was set to 27 in our
case, the algorithm has constant complexity (O (1)). Al-
gorithm 3 is executed by the hosts that are (potentially)
prepared to receive a VM in the push strategy. This al-
gorithm iterates over the list of VMs sent by the over-
loaded host, and since we assume that the maximum
number of VMs on each PM will not exceed some
constant value, Algorithm 3 has constant complexity
(O (1)). Algorithm 5 contains no loops, and has also
constant complexity (O (1)).

The complexity of Algorithm 2 is quadratic (O
(
n2

)
),

since the iterations in lines 9–11 potentially calculate
the utility (normalized entropy) when moving each VM
in the system, and the complexity for calculating the
normalized entropy when moving one VM is linear in
n (see Equation 4). The two loops in lines 3–5 and 6–8
both have linear complexity (O (n)). Since the utility ar-
ray cannot exceed the number of VMs, the loop in lines
12–14 has linear complexity (O (n)). The sort operation
in line 15 has complexity O

(
n2

)
or O

(
n ∗ log n

)
depend-

ing on which sort algorithm we use. Finally, the loop in
lines 18–20 has linear complexity (O (n)).

The complexity of Algorithm 4 is also quadratic

Algorithm 4 Pull strategy - Source node
1: if Event then
2: if Event = Underutilized then
3: for all PMs do
4: Send stealMessage containing resource

usage
5: end for

/* Waiting for bids */

6: while bids < PMs − 1
and elapsedTime < maxTime do

7: Receive bids
8: end while
9: for all PMs do

10: Calculate suitability for each VMs
11: Calculate utility for the suitable VMs and

append to utilityArray
12: end for
13: Remove candidates from utilityArray that

would worsen the load distribution in the
system

14: for all utilites in utilityArray do
15: Calculate migration cost
16: end for
17: Sort utilityArray based on utility
18: Remove candidates that have a high cost
19: while utilityArray , empty do
20: Select VM with highest utility from

utilityArray
21: Send stealAttemptMessage to PM hosting

the VM
/* Waiting for ack */

22: Receive ack
23: if elapsedTime > timeout

or ack , ”OK” then
24: Remove VM from utilityArray
25: if utilityArray , empty then
26: Reset timeout
27: end if
28: else
29: Wait for the VM to be migrated
30: end if
31: end while
32: Run backoff algorithm

(O
(
n2

)
), since the iterations in lines 9–12 potentially

calculate the utility (normalized entropy) when moving
each VM in the system, and the complexity for calculat-
ing the normalized entropy when moving one VM is lin-
ear in n (see Equation 4). The two loops in lines 3–5 and
6–8 both have linear complexity (O (n)). Since the util-

9



Algorithm 5 Pull strategy (Continued) - Candidate
node(s)
33: else if Event = stealMessage then
34: Reply with information about PM and hosted

VMs
35: else if Event = stealAttemptMessage then
36: if requested VM is locked then
37: Set ack to ”NOT OK”
38: Send ack to steal initiator
39: Exit
40: end if
41: Lock requested VM
42: Set ack to ”OK”
43: Send ack to steal initiator
44: Initiate migration of requested VM
45: Remove VM lock when the migration is done
46: end if
47: end if

ity array cannot exceed the number of VMs, the loop in
lines 14–16 has linear complexity (O (n)). The sort op-
eration in line 17 has complexity O

(
n2

)
or O

(
n ∗ log n

)
depending on which sort algorithm we use. Finally, the
loop in lines 19–31 has linear complexity (O (n)).

6. Test Setup

We evaluated the proposed algorithms using a simu-
lation testbed4 based on OMNeT++ v4.3, a powerful,
open-source, discrete-event simulator [30].

Table 2 shows the main configuration settings for dif-
ferent scenarios that were simulated. A complete list of
simulation settings can be found in Appendix A.

In all scenarios, we have used the normalized load
values 0.3 and 0.7 as thresholds for low load (i. e. , un-
derutilized PMs) and high load (i. e. , overloaded PMs),
respectively. When the threshold is adaptive these val-
ues are used as initial values. We compute the load level
of the system as the average load for all PMs in the sim-
ulated system. We have defined the load ranges 0.0–0.3,
0.3–0.5, 0.5–0.7 and 0.7–1.0 as minimal, low, medium
and high system load level, respectively. The system
load changes due to the simulated load in existing VMs
and also due to VMs being added or removed from the
system.

Each simulation run requires an initial load level. The
simulations begin by creating VMs until the load of the

4The simulation source code developed during our study is avail-
able from http://www.bth.se/com/dil.nsf/pages/alm.

system reaches the desired level. The VMs are then ran-
domly distributed to the PMs.

We have experimented with three scenario types. In
a burst scenario, at a certain time during the simulation,
the load level is suddenly raised to the high threshold
level of the system. The drain scenario is the oppo-
site of the burst scenario. In this case, at a certain time
during the simulation, the load is suddenly dropped to
the low threshold level of the system. The purpose of
the burst and drain scenarios is to allow us to observe
how long it takes for the two different strategies, push
and pull, to bring the system back to a state similar to
the one before the sudden load change occurred. Bursts
and drains can occur when IT strategies such as cloud
bursting and “follow-the-sun” are in use. In cloud burst-
ing, enterprises handle temporary periods of peak load
by moving some of their virtual servers to rented com-
puting resources in the cloud. In the “follow-the-sun”
strategy, virtual servers and workstations are moved pe-
riodically between different geographical sites and time
zones so that various teams can collaborate in operating
projects and services around the clock (i. e. , one team
pick from where the other has left off) [10].

The normal scenario represents a system where the
system load will not be exposed to any sudden drain or
burst, but only changes slightly over time.

The physical machines parameter defines the number
of PMs used in a scenario. We have conducted simula-
tions with 19, 49 and 99 PMs.

The VMs added parameter defines how many VMs
will be added during the simulation. The VMs are added
at random points in time as decided by an exponential
distribution. The VMs removed parameter defines how
many virtual machines will be removed during the sim-
ulation run. The VMs are removed at uniformly dis-
tributed points in time.

For each scenario, we have performed 30 simulation
runs with different seeds for the random number gener-
ators. This provided us with data to compute averages
and corresponding 95% confidence intervals.

The push and pull strategies were tested indepen-
dently in every scenario.

The specification of each PM is chosen at the begin-
ning of a simulation run from one of the configurations
shown in the list below:

• 4 cores, 4 GB of RAM, 1 Gbps network bitrate

• 4 cores, 8 GB of RAM, 1 Gbps network bitrate

• 8 cores, 8 GB of RAM, 1 Gbps network bitrate

• 8 cores, 16 GB of RAM, 1 Gbps network bitrate

10



Table 2: Simulated scenarios
Scenario

#
Type Physical

machines
VMs
added

VMs
removed

Adaptive
threshold

1 Normal 19 0 0 No
2 Normal 19 0 0 Yes
3 Normal 49 0 0 No
4 Normal 49 0 0 Yes
5 Normal 99 0 0 No
6 Normal 99 0 0 Yes
7 Burst 19 0 0 Yes
8 Burst 49 0 0 Yes
9 Burst 99 0 0 Yes
10 Drain 19 0 0 Yes
11 Drain 49 0 0 Yes
12 Drain 99 0 0 Yes
13 Normal 19 60 60 Yes
14 Normal 49 150 150 Yes
15 Normal 99 300 300 Yes

• 16 cores, 16 GB of RAM, 1 Gbps network bitrate

The configurations are selected with a probability of 1/6
except for the combination 4 cores and 4 GB of RAM,
which is selected with the probability of 1/3. These
configurations represent typical hardware choices for
low- to mid-priced blade servers.

A VM’s specification is decided at the instant it is
created in the simulation. The number of virtual cores
are selected from a discrete uniform distribution con-
sisting of values 2, 4 and 8. The VM memory size is
also chosen from a discrete uniform distribution with
values 256 MB, 512 MB, 768 MB or 1024 MB. Finally,
the page dirty rate is also chosen from a discrete uniform
distribution with values 5000, 10000, 15000, . . . , 60000
pages5 per second. This allows for a total of 144 differ-
ent VM configurations.

We have performed a basic evaluation of the simu-
lator by verifying that the simulator output follows the
expected outcome in simple scenarios. Such a scenario
contained a small number of PMs and VMs so that the
implemented algorithms could easily be traced. Further-
more, the initial load as well as later changes in the load
of PMs and VMs were chosen such that triggered auc-
tions and their outcome could be predicted by inspecting
the algorithm descriptions from Section 5. More details
are available in [21].

7. Results

We will use the term profile to refer to the combina-
tion of a migration strategy with an initial system load

5We used 4 KB for the size of a memory page.

level. We have the following profiles: pull-low, pull-
medium, pull-high, push-low, push-medium, and push-
high. Also, we use the term system performance to de-
note the load entropy of the system.

7.1. Fixed and Adaptive Thresholds

Figure 6 shows results from Scenario 1 (see Table 2).
In Figure 6a, we can see that most migration attempts
take place for push-high and pull-low. We can also see,
in Figure 6b, that these profiles show many more suc-
cessful migrations than the other profiles. This is not
surprising because in a highly loaded push-based sys-
tem there will be many overloaded PMs trying to auc-
tion load away. Similarly, in a lightly loaded pull-based
system there will be many underutilized PMs offering
resources for auction. When the load in these systems
moves towards the other end of the spectrum, the PMs’
willingness to migrate work decreases because the cor-
responding load thresholds are not reached. A comple-
mentary view of this behaviour is provided by the sys-
tem performance metric (i. e. , load entropy) shown in
Figure 6c. There, we can observe that the push-low and
pull-high profiles have less success in balancing the load
in the system.

In Scenario 2 the adaptive threshold is activated. We
can see in Figure 7a and Figure 7b that for the pull-
low and push-high profiles the curves for the number of
migration attempts and the number of successful migra-
tions are almost identical to those in scenario 1 (c. f. ,
Figure 6a and Figure 6b). The adaptive threshold does
not improve the performance of the system for these
profiles. The reason is that in the pull-low profile no
PM is willing to release workload because a new cold
spot would be created. On the other hand, in the push-
high profile no PM is interested in accepting workload
because it will cause them to become overloaded.

However, for the remaining profiles we can observe a
significant increase in the number of migration attempts
and successful migrations, in particular from simulation
time 2000 s and onwards. This is even more visible in
Figure 7c where we can observe that the load entropy
corresponding to these profiles is closer to 1.0 than in
Scenario 1.

The results from scenarios 3–6 show similar be-
haviour in terms of effects due to fixed thresholds and
adaptive thresholds.

Based on the results for the scenarios 1–6, we de-
cided to enable the adaptive threshold for the rest of the
experiments, as can be observed in Table 2.

11



(a)

(b)

(c)

Figure 6: Scenario 1: Normal, 19 PMs, fixed threshold

12



(a)

(b)

(c)

Figure 7: Scenario 2: Normal, 19 PMs, adaptive threshold.

13



7.2. Burst and Drain Scenarios

This section presents results for the burst and drain
scenarios 9 and 12. The results for the scenarios 7–8 and
10–11 show a similar pattern and are omitted in order to
save space.

We simulate a burst by suddenly increasing the sys-
tem load level from low to high, or from medium to
high, depending on the profile. This is done by adding
VMs to the system. We exclude the pull-high and push-
high profiles from burst scenarios because their load is
already set to a high level.

Similarly, we simulate a workload drain by suddenly
decreasing the system load level from high to low, or
from medium to low, depending on the profile. This is
done by removing VMs from the system. In this case,
we exclude the pull-low and push-low profiles from
drain scenarios because their load is already low.

We have scheduled the burst to occur 10000 s after
the simulation has started. In Figure 8a we can see that
before the burst occurs most migration attempts are per-
formed by the pull-low profile. This happens because
in this profile many PMs are underutilized, which trig-
gers them to initiate auctions to retrieve more work. As
soon as the burst enters the system, the hosts become
more loaded and are less willing to pull additional work-
load. Therefore, we see a drastic decrease in the number
of migration attempts for the pull-low profile. By con-
trast, the push-based profiles are quite passive before
the burst, but become more active afterwards. In Fig-
ure 8b we can see a similar behaviour for the number
of successful migrations performed. If we compare the
pre-burst region of Figure 8b with the same region in
Figure 8a we notice that the ratio of successful migra-
tions to attempted migrations is very low for the pull-
low profile. Most hosts in this profile are lightly loaded
and willing to acquire work. However, they are also un-
willing to release work to other PMs.

Figure 8c shows how fast the system is able to dis-
tribute a burst of workload among the PMs. We can
observe that the push profiles require about 15 minutes
to balance the system load after a burst, whereas the pull
profiles need 30–50 minutes for the same purpose. It is
interesting to note that the pull-medium profile requires
less time to bring the system back to a good state than
the pull low profile does. This behaviour is caused by
the adaptive threshold mechanism. The initial load in
the system was already balanced before the burst oc-
curs. As a result, for the pull-low profile there is very
little workload that can be shuffled between the nodes. It
means that auctions typically fail causing nodes to reset
(i. e. , lower) the adaptive threshold to the initial value.

Consequently, the threshold for most PMs stays around
0.3. In the pull-medium profile, there is more work to
be moved between hosts, which means that the adaptive
threshold can increase well beyond 0.3. Immediately
after the burst occurs, most hosts in a pull-profile are
not interested to start an auction because their load ex-
ceeds the threshold. The auctions begin first after the
adaptive threshold is raised above the current load. This
happens faster for PMs in the pull-medium profile be-
cause the adaptive threshold was already set to a higher
value than in the case of the pull-low profile.

The results for the drain scenarios are almost a mirror
image to those from the burst scenarios. For example,
we can observe in Figure 9a and Figure 9b that the push-
high profile in the initial phase of the simulation has
both the largest number of migration attempts as well as
successful migrations. After the drain occurs the level
of activity in the push-profile drops steeply while in-
creasing for the pull-profiles. Also, we see again a low
ratio for migration attempts to successful migrations for
the pull profiles. In this case, it occurs in the post-burst
region of the graph. However, the cause is slightly dif-
ferent than in the burst scenario. Here, the adaptive
thresholds of the PMs had adapted to a medium or high
load level. After the drain occurs, most PMs return to a
low level of load and begin auctioning their resources.
But most auctions fail, because there are very few hosts
that are willing to give up workload.

In Figure 9c we can observe that the pull profiles
are able to redistribute the load after a drain in just 4
minutes compared to the 30–40 minutes required by the
push profiles.

7.3. Normal Operation
Scenarios 13–15 reflect a more typical form of oper-

ation for our automated migration system, at least more
normal than in the burst and drain scenarios, which were
meant to examine extreme behaviour. In scenarios 13–
15, workload, in the form of new VMs, arrives at the
system at exponentially distributed time instants. The
result is that the arriving VMs are more likely to ap-
pear in the beginning of the simulation and have a more
rare occurrence towards the end. We use a uniform dis-
tribution for the time instants when a VMs are removed
from the system. Figure 10 show the system load for the
low, medium, and high profiles when VMs are dynam-
ically added and removed from the system, as describe
here. The slightly curved appearance of the plots resem-
bles the load variations throughout the day, for example
when going towards peak hour and then away from it.

As in the previous cases, the results are quite similar
between the three scenarios and therefore we choose to

14



(a)

(b)

(c)

Figure 8: Scenario 9: Burst, 99 PMs

15



(a)

(b)

(c)

Figure 9: Scenario 12: Drain, 99 PMs

16



Figure 10: System load for profiles in scenario 13–15

focus on Scenario 15 only.
In Figure 11a we can see the number of migration

attempts for each profile. The profiles push-high and
pull-low perform a large number of migration attempts
immediately after the simulation starts. The other pro-
files are less active because the adaptive thresholds need
time to adjust themselves to the existing load.

It is interesting to note that the pull-low profile show
a peak at the beginning and at the end of the simula-
tion with a trough in between. The initial peak was
observed also in the previous scenarios and is there-
fore less surprising than the other two items. These are
caused by the interaction between adaptive thresholds
and the changing system load shown in Figure 10. Af-
ter the initial load is distributed, the load of most PMs
is slightly above the threshold. Thus, most PMs do not
initiate any auctions. The little amount of migration at-
tempts that takes place is due to VMs that are added and
removed from the system and to adaptive thresholds be-
ing slowly raised. Because the system is lightly loaded
and because the thresholds are set higher than the ini-
tial values, the attempts have a high rate of success, as
can be seen in Figure 11b. Eventually, the system load
decrease as shown in the bottom graph in Figure 10.
At that point, many PMs see their load drop below the
threshold and begin auctioning their resources. How-
ever, because the threshold of potential buyers is high,
the auctions fail. This triggers seller to reset their adap-
tive thresholds to the initial value. In turn, this makes
them less willing to release own VMs to other buyers.

The push-high profile shows a different behaviour.
In this case, there is also an initial peak in Figure 11a
where workload is distributed in the system. The sys-

tem load level is gradually increased causing the load
of individual hosts to raise near or above the threshold.
Overloaded PMs begin auctions to offload VMs but the
auctions fail because the potential buyers are not inter-
ested in acquiring additional work. The drop in success-
ful migrations can be observed in Figure 11b. Eventu-
ally, the system load begins decreasing as shown by the
top curve in Figure 10. At this point the number of suc-
cessful migrations increases again.

Figure 11c shows that once the initial load is dis-
tributed in the system, the slow change in the system
load level has little effect on the system performance
(i. e. , on the load entropy). The push-medium profile
shows the best performance overall. This is not surpris-
ing because medium load level is an optimal condition
to avoid both hot spots and cold spots. Also, we see
a dip in the curve for the profiles push-low and pull-
low, in the end of the simulation runs, roughly around
17000 s on the time axis. For the push-low profile this is
caused by the combination of underutilized PMs and the
time it takes for the adaptive threshold to reach a level
where migrations can be performed. For the pull-low
profile the cause is a decrease in the number of VMs
while most of the PMs are underutilized. When this
happens there will be fewer and fewer migrations be-
cause additional migrations do not improve the perfor-
mance of the system.

8. Conclusions

An important quality metric for the proposed strate-
gies is the time required to re-balance the load when
VMs are added to or removed from the system. From

17



(a)

(b)

(c)

Figure 11: Experiment 15: Normal, 99 PMs, normal operation

18



the simulation results we can conclude that the pull and
push strategies require more time when the system load
level is high and low, respectively. In these cases, the
adaptive thresholds require time to adjust themselves to
load level, which is the main reason for the slow re-
sponse.

On the other hand, the push strategy will not perform
well if the load level is very high. In this case, many
auctions will be triggered but most of them will fail be-
cause the hosts are overloaded. This situation is very
detrimental to the well-being of the system, because the
large number of migration attempts will increase the
load, and network capacity will be wasted.

If the system load level is close to the initial threshold
value, the migration strategies will be able to re-balance
load quickly. However, this will still generate bursts of
high volume of network traffic because migrations are
“packed” together. This may also increase the load of
the nodes participating in auctions.

Our results show that the push and pull strategies
complement each other. One could, therefore, consider
running both in parallel, i. e. , initiate auctions if the load
is either under a low threshold or over a high threshold.
Another alternative would be to let the system switch
between using push or pull strategies based on the cur-
rent system load level. Similar approaches have shown
promising results in previous studies [15].

Appendix A. Simulation Settings

These are the configurable settings together with the
values used for the simulations described in the article.
Table A.3 shows the random generators connected to
different random variables used by the simulations. The
PM parameter are listed in Table A.4. The remaining
parameters are displayed in Table A.5.

Table A.3: Random number generators.
Parameter Description
rng-0 Used for the backoff algorithm.
rng-1 Sets the size of PM memory.
rng-2 Sets VM ids.
rng-3 Sets VM load pointer initialization.
rng-4 Sets a VMs memory limit.
rng-5 Sets the VM memory page dirty rate.
rng-6 Selects which host to send the initial VMs to.
rng-7 Sets the number of virtual cores on a VM.
rng-8 Sets the creation times for the dynamically created VMs.
rng-9 Used to select a PM and dynamically create a VM on it.
rng-10 Used to decide at what time to update the adaptive thresh-

old.
erng-11 Used to decide how much the adaptive threshold will in-

crease/decrease.
rng-12 Used to decide when to remove a VM from a PM.

References

[1] VMware, “Understanding full virtualization, paravirtualization,
and hardware assist,” VMware, Inc., White Paper, Nov. 2007.

[2] C. Clark, K. Fraser, S. Hand, and J. G. Hansen, “Live migra-
tion of virtual machines,” in Proceedings of NSDI, Boston, MA,
USA, May 2005.

[3] I. Pratt, K. Fraser, S. Hand, C. Limpach, A. Warfield, D. Ma-
genheimer, J. Nakajima, and A. Mallick, “Xen 3.0 and the art of
virtualization,” in Linux Symposium, Ottawa, Ontario, Canada,
Jul. 2005.

[4] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori, “kvm:
the linux virtual machine monitor,” in Proceedings of the Linux
Symposium, vol. 1, Ottawa, Canada, Jul. 2007.

[5] M. Nelson, B.-H. Lim, and G. Hutchins, “Fast transparent mi-
gration for virtual machines,” in Proceedings of USENIX, Ana-
heim, CA, USA, apr 2005.

[6] M. Mishra, A. Das, P. Kulkarni, and A. Sahoo, “Dynamic re-
source management using virtual machine mgrations,” IEEE
Communications Magazine, vol. 50, no. 9, pp. 34–40, Sep.
2012.

[7] J. Moore, J. Chase, P. Ranganathan, and R. Sharma, “Making
scheduling ”cool”: Temperature-aware workload placement in
data centers,” in Proceedings of USENIX, Anaheim, CA, USA,
Apr. 2005.

[8] O. Sarood, P. Miller, E. Totoni, and V. K. Laxmikant, “”Cool”
load balancing for high performance computing data centers,”
IEEE Transactions on Computers, vol. 61, no. 12, pp. 1752–
1764, Dec. 2012.

[9] H. Jin, L. Deng, S. Wu, X. Shi, and X. Pan, “Live virtual ma-
chine migration with adaptive, memory compression,” in Pro-
ceedings of IEEE CLUSTER, New Orleans, LA, USA, Sep.
2009.

[10] T. Wood, P. Shenoy, K. K. Ramakrishnan, and J. Van der Merwe,
“CloudNet: Dynamic pooling of cloud resources by live WAN
migration of virtual machines,” in Proceedings of ACM VEE,
Newport Beach, California, USA, Mar. 2011.

[11] H. Liu, H. Jin, X. Liao, L. Hu, and C. Yu, “Live migration of
virtual machine based on full system trace and replay,” in Pro-
ceedings of ACM HPDC, Munich, Germany, Jun. 2009.

[12] X. Liao, H. Jin, and H. Liu, “Towards a green cluster through dy-
namic remapping of virtual machines,” Future Generation Com-
puter Systems, vol. 28, no. 2, pp. 469–477, 2012.

Table A.4: Physical machine parameters.
Parameter Value(s) Description
maxMemory 20|1|2 ∗ 4096 Sets the maximum pri-

mary memory of a PM (4,
8, 16 GB).

linkSpeed 1024 The bandwidth capacity
for each PM.

PageSize 4 The memory page size
(KB)

PageDirtyRateMultiplier 5000 Steps for the page dirty
rate.

PageDirtyRateMax 12 Maximum multiplier
value, i. e. 5000 ∗ 12

Threshold 256 Used for the cost model
to determine when the
pre-copy algorithms ter-
minates (KB).

TransmissionRateMultiplier 0.5 The amount of bandwidth
that should be available
for a migration, 0.5 =

50%.

19



Table A.5: General parameters.
Parameter Default value(s) Description
repeat 30 The number of times an experiment will be repeated with different seeds.
num-rng 13 The number of RNG’s.
seed-set runnumber The seed for the RNG’s is based on the runnumber (0-29).
sim-time-limit 20000 The number of seconds a simulation run will last.
backoffLimit 120 The maximum time allowed for the backoff algorithm (s).
EWMALambda 0.2 The factor of how much historical data points will affect the predicted value.
loadWindow 100 The number of samples stored that the EWMA will make its predictions on.
hotspotReplyTimeout 10 How many seconds a node will wait for a reply of the initial broadcast.
recordHotspotInterval 1000 How often the number of attempted migrations and successful migration will be sampled (s).
initialSystemLoad low/medium/high 0.3, 0.5 and 0.7 system load at startup.
burstHigh true/false Decides whether a burst should occur.
burstLow true/false Decides whether a drain should occur.

burstHighTime
sim − time − limit

2
The time when a burst will occur.

burstLowTime
sim − time − limit

2
The time when a drain will occur.

DynamicVM 0 The number of VMs that will be dynamically created.
VMsToRemove 0 The number of VMs that will be dynamically removed.
variableThreshold 1 Decides whether the adaptive threshold should be used.
requiredSystemStateImprovement 0 How much better (%) the predicted system performance is required to be to perform a migration.
variableUpdateTime 300 The mean time when the adaptive threshold should be updated.
CPUThreshold 0.7 The upper CPU threshold.
minCPUThresholdLimit 0.3 The lower CPU threshold.
numNodes 19/49/99 The number of PMs that will be used.
loadLevel 5 The load values will be an average over 5 minutes.
pushOrPull 0/1 Decides whether the Push or Pull strategy is used.

[13] K. Sammy, R. Shengbing, and C. Wilson, “Energy efficient se-
curity preserving VM live migration in data centers for cloud
computing,” International Journal of Computer Science Issues,
vol. 9, no. 2, pp. 33–39, Mar. 2012, ISSN: 694-0814.

[14] P. Liu, Z. Yang, X. Song, Y. Zhou, H. Chen, and B. Zang, “Het-
erogeneous live migration of virtual machines,” in Proceedings
of IWVT, Beijing, China, Jun. 2008.

[15] A. Svensson, “Dynamic alternation between load sharing al-
gorithms,” in Proceedings of the Twenty-Fifth Hawaii Inter-
national Conference on System Sciences, Kaual, Hawaii, Jan.
1992.

[16] X. Qin, W. Zhang, W. Wang, J. Wei, X. Zhao, and T. Huang,
“Towards a cost-aware data migration approach for key-value
stores,” in Proceedings of IEEE CLUSTER, Beijing, China, Sep.
2012, pp. 551–556.

[17] D. Kunkle and J. Schindler, “A load balancing framework for
clustered storage systems,” in Proceedings of IEEE HiPC, Ban-
galore, India, Dec. 2008.

[18] S. Akoush, R. Sohan, A. Rice, A. Moore, and A. Hopper, “Pre-
dicting the performance of virtual machine migration,” in Pro-
ceedings of IEEE/ACM MASCOTS, Miami Beach, FL, USA,
Aug. 2010.

[19] T. Wood, P. Shenoy, A. Venkataramani, and M. Yousif, “Black-
box and gray-box strategies for virtual machine migration,” in
Proceedings of USENIX NSDI, Cambridge, MA, USA, Apr.
2007.

[20] R. Walker, “Examining load average,” Linux Journal, vol. 152,
Dec. 2006. [Online]. Available: http://www.linuxjournal.com/

article/9001
[21] M. Forsman and A. Glad, “Automated live migration of virtual

machines,” Master’s thesis, Blekinge Institute of Technology
(BTH), Karlskrona, Sweden, Sep. 2013, MCS-2013:14.

[22] M. Wooldridge, An Introduction to MultiAgent Systems, 2nd ed.
Chichester, West Sussex, United Kingdom: John Wiley & Sons,
2009, ISBN: 978-0470519462.

[23] J. Kleinberg and D. Easley, Networks, Crowds, and Markets:
Reasoning About a Highly Connected World. Cambridge, UK:

Cambridge University Press, 2010, ISBN: 978-0521195331.
[24] K. Schmidt, High Availability and Disaster Recovery. Berlin

Heidelberg, Germany: Springer-Verlag, 2010, ISBN: 978-
3642063794.

[25] J. F. Kurose and K. W. Ross, Computer Networking: A Top-
Down Approach, 6th ed. Harlow, UK: Pearson Education,
2012, ISBN:978-0273768968.

[26] IEEE std 802.3 - Part 3: Carrier sense multiple access with
Collision Detection (CSMA/CD) Access Method and Physical
Layer Specifications, IEEE Computer Society Std., Dec. 2008.

[27] C. C. Holt, “Forecasting seasonals and trends by exponentially
weighted moving averages,” International Journal of Forecast-
ing, vol. 20, no. 1, pp. 5–10, Jan. 2004.

[28] J. S. Hunter, “The exponentially weighted moving average,”
Journal of Quality Technology, vol. 18, no. 4, pp. 203–210,
1986.

[29] H. Liu, C.-Z. Xu, H. Jin, J. Gong, and X. Liao, “Performance
and energy modeling for live migration of virtual machines,”
Cluster Computing, vol. 16, no. 2, pp. 249–264, Jun. 2013.

[30] A. Varga and R. Hornig, “An overview of the OMNeT++ sim-
ulation environment,” in Proceedings of Simutools, Marseille,
France, Mar. 2008.

20


