
Cache Support in a High Performance Fault-tolerant
Distributed Storage System for Cloud and Big Data

Lars Lundberg, Håkan Grahn, Dragos Ilie, Christian Melander
Department of Computer Science and Engineering

Blekinge Institute of Technology
SE-37971 Karlskrona, Sweden

lars.lundberg@bth.se

ABSTRACT
Due to the trends towards Big Data and Cloud Computing,
one would like to provide large storage systems that are
accessible by many servers. A shared storage can, however,
become a performance bottleneck and a single-point of
failure. Distributed storage systems provide a shared
storage to the outside world, but internally they consist of a
network of servers and disks, thus avoiding the
performance bottleneck and single-point of failure
problems. We introduce a cache in a distributed storage
system. The cache system must be fault tolerant so that no
data is lost in case of a hardware failure. This requirement
excludes the use of the common write-invalidate cache
consistency protocols. The cache is implemented and
evaluated in two steps. The first step focuses on design
decisions that improve the performance when only one
server uses the same file. In the second step we extend the
cache with features that focus on the case when more than
one server access the same file. The cache improves the
throughput significantly compared to having no cache. The
two-step evaluation approach makes it possible to quantify
how different design decisions affect the performance of
different use cases.

1. INTRODUCTION
An increasing portion data of will be stored on large servers
in the cloud, thus making the information accessible from
anywhere in the world. Moreover, it is in many cloud-based
systems desirable to provide a storage that is uniformly
accessible by all servers in the system. One reason for this
is that, in order to get good utilization of the hardware
resources, cloud-based systems want to allow live
migration of virtual machines (VMs) from one physical
server to another. If we have a unified storage in the form
of a shared (virtual) disk for all servers, we do not need to
copy any files when a VM is migrated from one server to
another, since all files are accessible by all physical servers.
Having one physical disk (or disk array) that is shared by
many servers becomes a serious performance bottleneck
and a single-point of failure. Distributed storage systems
make it possible to spread out the files on many storage
nodes while still providing a virtual shared disk to the
servers in the system. Since the files are spread out on
several disks in a number of storage nodes, we avoid the

problems with performance bottlenecks and single-point of
failure by using distributed storage systems. In Section 2
we give some examples of distributed storage systems.
One example of a distributed storage system is
Compuverde (www.compuverde.com), and recent
performance evaluations show that the read and write
performance of Compuverde is very competitive [1]. In
order to provide additional performance improvements a
cache system has been added. The cache system stores
frequently used file blocks in fast but relatively small Solid
State Disks (SSDs). Since the Compuverde storage system
is targeted to the high availability market the distributed
storage system, including the cache, needs to be fault
tolerant. The fault tolerant requirement makes it impossible
to use the normal write-invalidate cache consistency
protocols, sine we always need to have multiple copies of
all data in the cache.

A caching system is a common approach to improve the
performance in many systems, such as web servers
[25][28], storage and file systems [26][27][30][31], and
databases [29]. The two main contributions in this study
are: the unusual requirement that the cache needs to be fault
tolerant (which excludes the most common cache
consistency approaches based on so called write-
invalidate), and the two-step evaluation approach that
makes it possible to quantify how different design decisions
affect the performance of different use cases.

2. BACKGROUND AND RELATED WORK
In distributed storage systems, the most common interfaces
are Web Service APIs like Internet Small Computer System
Interface (iSCSI) [2]; REpresentational State Transfer
(REST)-based [3] and Simple Object Access Protocol
(SOAP)-based [4]. REST is a HTTP-based architectural
style to build networked applications that allows access to
stored objects by an Object Identifier (OID), i.e., no file or
directory structures are supported [5]. Object-based storage
systems are often referred to as unstructured storage
systems.
There are other access methods like Network File System
(NFS) and Common Internet File System (CIFS). These
APIs are file-based (variable-size) and use a path to

identify the data; these systems are often referred to as structured storage systems.
Table 1 : Overview of distributed storage systems

	

INTERFACE	
 SOLUTION	
 REPLICATION	
 METADATA	

Unstructured	
 Structured	

DHT	

M
ulticast	

Copying	

Striping	

Centralized	

Distributed	

Web	
 Service	

APIs	
 (REST,	

SOAP)	

Block-­‐based	

APIs	
 (iSCSI)	

File-­‐based	

APIs	
 (CIFS,	
 NFS)	

Other	
 APIs	

(WebDAV,	
 FTP,	

Proprietary	
 API)	

AmpliStor	
 X	
 -­‐	
 -­‐	
 -­‐	
 -­‐	
 -­‐	
 -­‐	
 X	
 	
 X	

Caringo’s	

CAStor	
 X	
 -­‐	
 X	
 -­‐	
 -­‐	
 X	
 X	
 -­‐	
 X	
 -­‐	

Ceph	
 X	
 -­‐	
 -­‐	
 -­‐	
 X	
 -­‐	
 -­‐	
 X	
 -­‐	
 X	

Cleversafe	
 -­‐	
 X	
 -­‐	
 -­‐	
 -­‐	
 -­‐	
 -­‐	
 X	
 X	
 -­‐	

Compuverde	
 X	
 -­‐	
 X	
 X	
 -­‐	
 X	
 X	
 X	
 -­‐	
 X	

EMC	
 Atmos	
 X	
 -­‐	
 X	
 -­‐	
 X	
 -­‐	
 -­‐	
 X	
 -­‐	
 X	

Gluster	
 -­‐	
 -­‐	
 X	
 X	
 X	
 -­‐	
 X	
 -­‐	
 -­‐	
 -­‐	

Google	
 File	

System	
 (GFS)	
 X	
 -­‐	
 X	
 -­‐	
 -­‐	
 -­‐	
 -­‐	
 X	
 X	
 -­‐	

Hadoop	
 -­‐	
 -­‐	
 X	
 -­‐	
 X	
 -­‐	
 -­‐	
 X	
 X	
 -­‐	

Lustre	
 -­‐	
 -­‐	
 X	
 -­‐	
 X	
 -­‐	
 -­‐	
 X	
 X	
 -­‐	

OpenStack’s	

Swift	
 X	
 -­‐	
 -­‐	
 -­‐	
 X	
 -­‐	
 X	
 -­‐	
 -­‐	
 X	

Panasas	
 -­‐	
 -­‐	
 X	
 -­‐	
 -­‐	
 -­‐	
 -­‐	
 X	
 -­‐	
 X	

Scality	
 X	
 -­‐	
 -­‐	
 -­‐	
 X	
 -­‐	
 X	
 -­‐	
 -­‐	
 X	

SheepDog	
 -­‐	
 X	
 -­‐	
 -­‐	
 X	
 -­‐	
 X	
 -­‐	
 -­‐	
 X	

Distributed storage systems use either multicasting or
Distributed Hash Tables (DHTs). Data redundancy is
obtained by either using multiple copies of the stored files
or by so called striping using Reed-Solomon coding [24].
When using striping the files are split into stripes and a
configurable number of extra stripes with redundancy
information are generated. The stripes (in case of Striping)
and file copies (in case of Copying) are distributed to the
storage nodes in the system.
The most well-known distributed storage systems are
Amplistor [6], Caringo’s CAStor [7], Ceph [8],
Cleversafe1, Compuverde, EMC Atmos [9], Gluster [10],
Google File System [11], Hadoop [12], Lustre [13],
OpenStack’s Swift [14], Panasas [15], Scality2 and

1 http://www.cleversafe.com/
2 http://www.scality.com/

Sheepdog3. Some of the distributed file systems could be
used by other applications, i.e., BigTable is a distributed
storage for structured data and it uses GFS to store log and
data files [16].
Ceph provides an S3-compatible REST interface that
allows applications to work with Amazon’s S3 service.
Cleversafe provides an iSCSI device interface, which
enables users to transparently store and retrieve files as if
they were using a local hard drive.
EMC Atmos is a structured distributed storage system that
provides CIFS and NFS interfaces, as well as web standard
interfaces such as SOAP and REST. Other distributed file
systems such as Google File System, Hadoop Distributed
File System (HDFS), Lustre and Panasas provide a

3 http://www.osrg.net/sheepdog/

standard POSIX API. Sheepdog is the only distributed
storage system which is based on Linux QEMU/KVM and
is used for virtual machines.

Some of the distributed file systems are also used for
computing purposes, e.g., the Hadoop Distributed File
System (HDFS) which distributes storage and computation
across many servers. HDFS stores file system metadata and
application data separately and users can reference files and
directories by paths in the namespace (a HTTP browser can
be used to browse the files of an HDFS instance). Lustre is
an object-based file system used mainly for computing
purposes, in particular High Performance Computing
(HPC). Panasas is also used for computing purposes and
similar to Lustre, it is designed for HPC.
Scality uses a ring storage system which is based on a
Distributed Hashing Mechanism with transactional support
and failover capability for each storage node. The Sheepdog
architecture is fully symmetric and there is no central node
such as a meta-data server (Sheepdog uses the Corosync
cluster engine [17] to avoid metadata servers). Sheepdog
provides an object (variable-sized) storage and assigned a
global unique id to each object. In Sheepdog’s object
storage, target nodes calculated based on consistent hashing
algorithm which is a schema that provides hash table
functionality and each object is replicated to 3 nodes to
avoid data loss [18].
The remaining distributed storage systems in Table 1 are
Compuverde, Gluster and OpenStack’s Swift. OpenStack’s
Swift is an unstructured distributed storage system that uses
distributed hash tables (DHTs) and replication based on
copying. Gluster is a structured (file based) distributed
storage system that uses DHTs and replication based on
copying. Compuverde offers a structured and an
unstructured version of their system (see next section for
details). The Compuverde system uses multicasting instead
of DHTs and the replication can be configured for either
copying or striping using Reed-Solomon coding [24].
These three systems have previously been compared in a
performance evaluation [1]; Compuverde unstructured was
compared to OpenStack’s Swift and Compuverde structured
was compared to Gluster. One major architectural difference
between these systems is that Gluster and OpenStack’s
Swift use DHTs whereas Compuverde uses multicasting.
One advantage of DHTs compared to multicasting is that we
do not need to broadcast (or multicast) requests to all nodes;
the hash table gives us the address of the node that stores the
requested data, and we can thus avoid communication
overhead. However, the disadvantage with DHTs is that we
need to run a hash function to obtain the address of the data,
which introduces processing overhead. This means that the
architectural decision of whether to use DHTs or
multicasting will introduce different kinds of overheads:
processing overhead for DHTs and communication
overhead for multicasting. The previous performance
evaluation [1] shows that multicasting seems to result in
higher performance, i.e., the communication overhead
introduced by multicasting does not affect the performance
as negatively as the processing overhead introduced by
DHTs.

3. DISTRIBUTED STORAGE SYSTEM
ARCHITECTURE
The Compuverde distributed storage consists of a set of
storage nodes providing unstructured data storage. This is
called the Object Store. Structured data storage is available
through a set of gateway nodes, which offer access to data
located on storage nodes through standardized protocols
such as NFS, CIFS, CDMI, OpenStack and Amazon S3.
The internal structure of the storage node is composed of
four main elements (see lower part of Figure 1): frontend,
cache, backend and hard drives (labeled HD in Figure 1).
The cache in the storage nodes already exists and this is not
the target in this project. The frontend handles RPC-like
read/write requests from gateway nodes. Frequently used
data are placed in the cache in order to improve the response
time of the node. In case of a cache miss, the backend
satisfies the request by accessing the data on the hard drives.
Structured data access is provided by a set of gateway nodes
arranged in an array as shown in the upper part of Figure 1.
Each gateway node implements four layers: structured data
access API, gateway service, cache service (the focus of his
paper), and the Object Store API.
Gateways keep information about the structure of each data
item (e.g., files) in envelope objects. An envelope contains
metadata in the form of unstructured data that are stored on
the storage nodes; envelope data contain information about
other envelopes and other files. An envelope can have only
one owner gateway at each time instant. Only the owner has
the authority to access the storage to read or write the
envelope. A consequence of this is that when a read request
arrives to a non-owner gateway node (the servicing
gateway), the request is first forwarded to the owner
gateway, the owner fetches the data from a storage node,
forwards the data to the servicing gateway node, which then
finally can respond with the data to the outside requester.
The owner can change over time, for example when the
current owner fails and another gateway takes over. In the
case of a directory, the directory and corresponding files
have the same owner. However, a subdirectory and
corresponding files can have a different owner. It is
therefore possible to establish a hierarchical chain of
ownership.
The purpose of the gateway service layer is to maintain and
share information about envelopes. In order to improve the
system response time it is desirable to add a cache layer in
each gateway node, thus essentially building a distributed
cache. The architecture and design of the gateway cache
layer is described in this paper.
It is also possible to implement the gateway service layer
directly on the storage nodes. In that case the gateway and
storage functionalities are integrated in the same hardware
server (see Figure 1).
The response time for a request is dominated by two
components: data transfer from the storage node to the data
owner gateway and transfer from the owner of the data to

the gateway serving the request. Disk access times in the
storage nodes are magnitudes slower than the network
transfer times between gateway nodes.
A cache shortens the response time caused by the first
component, since frequently used data will be readily
available at the owner gateway. Allowing the serving
gateway to replicate data from the owner gateway into its
own cache could also alleviate the second response time
component. However, this requires the system to implement
methods that ensure cache consistency across multiple
gateway nodes.
The storage system provides fault tolerance, either by
keeping a configurable number of copies of each file, or by
using Reed-Solomon coding [24]. In order to keep the fault
tolerance qualities also when using the cache, we will have a
configurable number of copies of each data item in the

cache. We refer to such extra copies of cache entries as
shadow copies. If the gateway node containing the main
copy goes down, the content can be recreated from the
shadow copies. This means that we need to keep a number
of copies of each cache entry at all times. Standard write-
invalidate cache consistency protocols can therefore not be
used.
Designing a distributed cache module is complex and the
architect is faced with many decisions, such as but not
limited to cache synchronization methods, snoopy- versus
directory-based protocols, local cache configurations (e.g.,
block size, prefetching and associativity) and consistency
checking during cold start [19][20][21].

Figure 1: Overview of the Compuverde distributed storage system. The upper part shows the gateway nodes (where we implemented
the cache) and the lower part shows the storage nodes. The dashed lines indicate that it is possible (but not necessary) to implement a

logical storage server and gateway server on the same physical server.

4. FIRST VERSION OF THE CACHE
IMPLEMENTATION
There is SSD memory in each gateway node. A small
portion of the space on the SSDs is reserved for metadata
and the remaining part is used for user data. The user data
are stored in blocks of 128 kB. The metadata consist of a set
of 4 kB blocks, where each block of metadata describes one
block of user data (not all 4 kB metadata is actually used).
Figure 2 shows contents of a cache entry (metadata are blue
and actual data are purple). Each file stored on the
Compuverde system receives a unique FileID handle. The
system maintains a mapping between path and filename and
the corresponding FileID, which is transparent to the users.
When a file is stored, its contents are divided into a set of
128 kB data blocks, where all blocks are fully occupied,
with perhaps the exception of the last one (when the file size
is not a multiple of 128 kB).
The Size entry specifies the length of the data block.
The BlockIndex entry denotes the offset in the file where the
data block belongs.
The BlockVersion entry is incremented each time the data
block is changed. This is used to ensure that all peers use the
correct version of the data.
The isDirty flag indicates that the data in the cache entry is
changed but the change is not yet flushed to the storage
cluster.

Figure 2: A cache entry.

4.1 Data read and cache entry creation
When data are requested from the outside, e.g., when
accessing a file, there are two cases:
1. The data have not been read before (or it was so long time
since the last access so the cache entry has been evicted)
When data are read, the servicing gateway node must first
check if any other gateway node is the owner of this data. In
case 1, this is the first time data are read and the gateway
node takes ownership of the data, and a cache entry is
allocated in the gateway node, which now is the owner
gateway of the data. Data are then fetched from a storage

node. When data arrive to the owner gateway, data are put
in the gateway cache, and then returned to the requester.
2. The data have been read recently so there is already an
owner gateway node for the data.
When data are read, the servicing gateway node must first
check if any other gateway node is the owner of this data. In
case 2, data are read previously and thus there exists an
owner gateway. If the servicing gateway node also is the
owner, it just returns the data to the requester. If the
servicing gateway node is not the owner of the data, the read
request is forwarded to the owner node. The owner node
gets the data from its local cache and returns it to the
servicing gateway. Finally, the servicing gateway can
respond with the data to the outside requester.

4.2 Data write and cache replication
In the Compuverde system, data replication in the first
version of the cache is done for fault tolerance, while in
most other systems data replication in the caches is done for
performance reasons. If one gateway node goes down the
information in the storage caches on that node should be
replicated to so called shadow caches on other nodes, thus
avoiding loss of data. The shadow caches/copies are spread
out on the gateway nodes at random; no shadow copies are
stored on the same gateway.
Upon a write (we assume that it is the owner gateway,
otherwise it is forwarded similarly to case 2 for reads), the
data are first written to the gateway cache. In the case of a
synchronous write, data are replicated to a configurable
number of shadow copies / caches to achieve redundancy.
At the same time, data are also written to the storage node.
When data are safely stored in the shadow copies, a write
acknowledge is returned by the gateway node to the outside
writer. The replication and transfer to the Object Store is
scheduled to a background task.
The shadow caches are used if the ownership gateway
crashes. In the case of a crash, a new owner gateway is
selected among the shadow caches / gateways.

5. FINAL VERSION OF THE CACHE
IMPLEMENTATION
The evaluations of the first version of the cache showed that
the performance was very good for many important cases
(see Section 6 for details). However, the case when multiple
users want to access a shared file showed insufficient
performance in the first cache implementation. The case
when multiple users want to read a shared file is an
important case [22][23], and to obtain high performance
also for this case we did the following improvements when
we implemented the final version of the cache:
We now read from shadow caches instead of forwarding
read requests to the owner of the cache block. Also, new
shadow copies are created dynamically when a data item is
read. This means that for read only files, there will be local

FileID

BlockIndex

BlockVersion

Size

isDirty

Data (128 kB)

shadow copies on all gateways that share the file. By
allowing concurrent reads from these shadow copies we will
increase the read performance when multiple users share the
same file. This means that the shadow caches now serve two
purposes: they provide fault tolerance through redundancy
and they speed up read accesses.
As long as there are only reads, there is no owner of the
cache block (which is a difference between the final and the
first versions). In the final version, ownership is only
introduced when someone wants to write to the cache block.
The first gateway that writes to the block becomes the
owner, and the information that there now is an owner of the
block is broadcasted to all gateways. The same gateway
remains the owner unless a node goes down; in that case the
ownership is transferred to one of the shadow copies. There
is also a long time-out; if no node has written any
information to the block for a time-out period (20-30
minutes), the ownership of the block is removed (we did not
have time-outs in our tests).
When there is an owner, write requests are forwarded to the
owner in the same way as in the first version of the cache.
However, in the final version we have introduced an
optimization when reading data that has an owner. The
requesting gateway node sends a read request to the owner
(like in the first version), but this time the requesting
gateway includes the version number (see Figure 2) of its
cache block (provided that it has a local copy of the block).
If the version number is up to date the owner of the block
responds with an ‘OK’, and no data are transferred,
otherwise the owner responds with the data and the latest
version number. Besides returning the requested data to the
user, the data and the latest version number are stored in the
local cache on the gateway servicing the user requests.
Responding with an ‘OK’ is much faster than transferring
the actual data, and this optimization improves the
performance of access patterns with a mix of reads and
writes to shared data (see Section 6 for details).

6. PERFORMANCE MEASUREMENTS

6.1 Experimental setup
We used 8 gateway servers with integrated storage
functionality (see Figure 1). Each server had two Intel Xeon
E5-2620 (2 GHz) processors (i.e., a total of 12 cores). Each
gateway server had eight 320 GB disks and six Intel SSDs
with 60 GB storage each. The SSDs are configured as RAID
10 and there is a LSI 9265-8i RAID controller card with 1
GB of storage with battery backup.
We have eight load generators; each load generator runs on
a separate machine, i.e., not on any of the gateway servers.
Each load generator sends load in the form of read and write
requests to one of the eight gateway servers over a 10 Gb
network. In the tests we have used nine files, each with a
size of 4 GB. One of these files is accessed by all eight
gateway nodes and the other eight files are accessed

exclusively by one gateway node each. There are 16
outstanding (parallel) memory requests in each load
generator. We have looked at three different cases:

• All 16 requests only access the file that is
exclusively accessed from the corresponding
gateway. We refer to this case as private, since
each of the eight files is only accessed from one
gateway, i.e., the file that is shared between the
gateways is not accessed at all.

• All 16 requests only access the file that is shared
between the gateways, i.e., all gateways access the
same file. We refer to this case as shared.

• Eight requests access the file that is only accessed
from the corresponding gateway, and the other
eight requests access the file that is shared between
the gateways, i.e., all nine files are accessed in this
case. We refer to this case as mixed.

We investigated three different block sizes for read and
write requests from the load generators:

• Each read or write request is 0.5 kB
• Each read or write request is 4 kB
• Each read or write request is 128 kB (i.e. the same

size as the block size used in the cache system)

We looked at three different mixes of read and write
requests:

• 100% read requests
• 100% write requests
• 95% read requests and 5% write requests

Finally, we considered the case when all accesses from each
of the load generators are done sequentially, and the case
when the accesses from each of the load generators are done
to random places in the file.
We used the IOmeter tool (iometer.org) on the load
generators to generate the data accesses.
The measurements have been done:

• without the cache
• with the first version of the cache
• with the final version of the cache

Figure 3: Throughput in MB/s for Read (upper: 0.5 kb blocks, middle: 4 kb blocks, lower: 128 kb blocks,
left: sequential, right: random).

6.2 Results
All values in this section are for one gateway, i.e.,
in order to see the capacity of the entire system,
consisting of 8 gateways, the values should be
multiplied by a factor of eight.

6.2.1 Read accesses
Figure 3 shows the results for 100% read accesses.
The figure shows that the first version of the cache
(#1 cache) improved the mixed and private cases
significantly, for random accesses (right side of
Figure 3). For sequential accesses (left part of
Figure 3) the mixed and private cases were also
improved for large blocks (128 kb). For small
blocks (0.5 and 4 kb) and sequential accesses, the
first version of the cache only showed limited
improvement.

Figure 3 shows that the first version of the cache
does, however, not improve the shared case (at
least not in any significant way) for any block size.
Compared to the first version of the cache, the final
version of the cache (#2 cache) provides limited
improvement for the private and mixed cases. It is,
however, very clear that compared to the first
version of the cache, the final version of the cache
results in very significant improvements for the
shared case.
Compared to the case with no cache, the final
version of the cache shows very significant
improvements for all Read cases considered here.
When looking at the performance figures, one
should remember that the cache system as well as
the storage nodes support fault tolerance through
replication.

Figure 4: Throughput in MB/s for Write (upper: 0.5 kb, middle: 4 kb, lower: 128 kb, left: sequential, right: random).

6.2.2 Write accesses
Figure 4 shows the results for 100% write accesses.
The figure shows that the first version of the cache
(#1 cache) improved the mixed and private cases
significantly, for both sequential and random
accesses, and for all block sizes. The first version
of the cache does, however, not improve the shared
case (at least not in any significant way) for any
block size.
Compared to the first version of the cache, the final
version of the cache (#2 cache) provides very
limited improvement for the mixed and private
cases. It is, however, very clear that the final
version of the cache results in very significant
improvements for the shared case.
Compared to the case with no cache, the final
version of the cache shows very significant
improvements for all Write cases considered here.

6.2.3 Read and Write accesses
Figure 5 shows the results for 95% read and 5%
write accesses. The figure shows that the first
version of the cache (#1 cache) improved the mixed
and private cases significantly, for both sequential
and random accesses, and for all block sizes. The
first version of the cache does, however, not
improve the shared case (at least not in any
significant way) for any block size.
Compared to the first version of the cache, the final
version of the cache (#2 cache) provides rather
limited improvement for the mixed and private
cases. It is, however, very clear that the final
version of the cache results in very significant
improvements for the shared case.
Compared to the case with no cache, the final
version of the cache shows very significant
improvements for all the cases with 95% Read and
5% Write.

Figure 5: Throughput in MB/s for 95% Read and 5% Write, sequential access (upper: 0.5 kb, middle: 4 kb, lower:
128 kb, left: sequential, right: random).

7. CONCLUSIONS
The measurements show that the first version of the
cache gives significant performance increases for
the mixed and private cases. However, for the
shared case the performance increase for the first
version cache was very limited. When using the
final version of the cache we get significant
performance improvements for all cases. In some
cases the throughput is improved with as much as a
factor of 50-75 compared to the case with no cache.
Multiprocessor cache systems normally invalidate
all copies of a cache block when a processor writes
to the cache block. This approach could not be
directly applied in this case, since we, for fault
tolerance reasons, need to keep a configurable
number of shadow copies of each cache block.
Since we are not invalidating copies of the cache
block on writes, some cache copies may have an
old value. In order to handle this, we have included
a version number of each cache block (see Figure
2). This version number serves as a “lazy”

invalidation when a cache block is updated, i.e., the
cache system compares the version number with
the owner’s version number in order to decide if
the local copy is valid of not.
The workload is very transparent, i.e., we know the
exact mix of Read/Write, the block size, and if
accesses are private/shared and sequential/random.
This transparency and our two-step evaluation
approach make it possible to quantify how different
design decisions affect the performance of different
workload cases. This gives a more detailed
understanding than just comparing the final version
of the cache with the case with no cache, running
some unknown workload mix. Having this kind of
detailed understanding is valuable for designers of
distributed cache systems in general, and of course
for designers of cache systems for fault-tolerant
distributed storage systems in particular.

8. REFERENCES
[1] S. Shirinbab, L. Lundberg, and D. Erman, “Performance

Evaluation of Distributed Storage Systems for Cloud
Computing”, International Journal of Computer and Their
Applications, Vol. 20, No. 4, pp. 195-207, Dec. 2013.

[2] P. Wang, “IP SAN- from iSCSI to IP-addressable Ethernet
disks”, Mass Storage Systems and Technologies.
Proceedings, 20th IEEE/11th NASA Goddard Conference,
2003.

[3] Roy T. Fielding, Richard N. Taylor, “Principles design of
the modern Web architecture”, ICSE’00 Proceedings of the
22nd international conference on software engineering,
ACM New York, NY, USA, 2000.

[4] F. Curbera, M. Duftler, R. Khalaf, N. Mukhi, W. Nagy, S.
Weerawarana, “Unraveling the Web services web: an
introduction to SOAP, WSDL, and UDDI”, Internet
Computing, IEEE, NY, USA, 2002.

[5] Michael Factor, Kalman Meth, Dalit Naor, Ohad Rodeh,
Julian Satran, ”Object storage: The future building block
for storage systems”, 2nd International IEEE Symposium
on Mass Storage Systems and Technologies,
Sardinia,2005.

[6] Amplidata,“Amplistor: Unbreakable Object Storage for
Petabyte-Scale Unstructured Data” Whitepaper, April,
2011.

[7] Caringo CAStor (2011, September 15). ”Castor the Market
Leading Object Storage Engine” [Online]. Available:
http://www.caringo.com/downloads/datasheets/Caringo-
CAStor-Object-Storage.pdf

[8] Scott A. Brandt, Darrell D. E. Long, Carlos Maltzahn,
Ethan L. Miller, Sage A. Weil, “Ceph: A Scalable, High-
Performance Distributed File System”, Proceeding of the
7th Conference on Operating Systems Design and
Implementation (OSDI’06), November, 2006.

[9] EMC Atmos, “EMC Atmos Cloud Optimize Storage for
Web Services” Whitepaper, April, 2010.

[10] Gluster Inc., “An Introduction to Gluster Architecture”,
Whitepaper, 2011.

[11] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung.
”The Google File System”, 19th ACM Symposium on
Operating Systems Principles, Lake George, NY, October,
2006.

[12] Shunsuke Mikami, Kazuki Ohta, Osamu Tatebe, ”Using
the Gfarm File System as a POSIX Compatible Storage
Platform for Hadoop MapReduce Applications”, GRID’11
Proceedings of the 2011 IEEE/ACM 12th International
Conference on Grid Computing, IEEE Computer Society
Washington, DC, USA, 2011.

[13] Sarp Oral, Galen Shipman, Feiyi Wang, “Understanding
Lustre FileSystem Internals”, OAK RIDGE, 2009.

[14] OpenStack, LLC, “Welcome to Swift’s documentation!”,
Swift v1.4.8-dev documentation, 2011.

[15] Zainul Abbasi, Garth Gibson, Brian Mueller, Jason Small,
Marc Unangst, Brent Welch, Jim Zelenka, Bin Zhou.
“Scalable Performance of The Panasas Parallel File
System”, FAST’08 proceedings of the 6th USENIX
Conference on File and Storage Technologies, USENIX
Assosiation Berkeley, CA, USA, 2008.

[16] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.
Wallach, M. Burrows, T. Chandra, A. Fikes, R. E. Gruber,
“BigTable: A Distributed Storage System for Structured

Data”, ACM Transactions on Computer Systems (TOCS),
New York, USA, June, 2008.

[17] Andrew Beekhof. Christine Caulfield, Steven C. Dake,
“The Corosync Cluster Engine”, Proceedings of the Linux
Symposium, Ottawa, Ontrio, Canada, July, 2008.

[18] George Parisis, “DHTbd: A Reliable Block-based storage
system for High Performance clusters”, Proceedings of the
IEEE/ACM CCGRID, UK, 2011.

[19] T. Cortes, S. Girona, and J. Labarta. “Avoiding the cache-
coherence problem in a parallel/distributed file system,”
High-Performance Computing and Networking, Lecture
Notes in Computer Science 1225, pp. 860-869, 1997.

[20] P. Triantafillou and C. Neilson, "Achieving Strong
Consistency in a Distributed File System," IEEE
Transactions on Software Engineering, vol. 23, no. 1, pp.
35-55, Jan. 1997.

[21] R.C. Burns, R.M. Rees, D.D.E. Long, "Safe caching in a
distributed file system for network attached storage," 14th
International Parallel and Distributed Processing
Symposium, pp. 155-162, 2000.

[22] N. Agrawal, W.J. Bolosky, J.R. Douceur, and J.R. Lorch,
“A five-year study of file-system metadata,” ACM Trans.
Storage, Vol. 3, No. 3, Article 9, October 2007.

[23] A.W. Leung, S. Pasupathy, G. Goodson, and E.L. Miller,
“Measurement and analysis of large-scale network file
system workloads,” USENIX 2008 Annual Technical
Conference (ATC'08), pp. 213-226, 2008.

[24] T. Karlsson and L. Lundberg, “Performance Evaluation of
Cauchy Reed-Solomon Coding on Multicore Systems”,
2013 IEEE 7th International Symposium on Embedded
Multicore/Manycore System-on-Chip, 26-28 September,
2013, Tokyo, Japan, pp. 165-170.

[25] A. Waleed, S.M. Shamsuddin, and A.S. Ismail, “A survey
of Web caching and prefetching”, Int. J. Advance. Soft
Comput. Appl 3, no. 1 (2011), pp. 18-44.

[26] S. Byna, Y. Chen, X-H. Sun, R. Thakur, and W. Gropp,
“Parallel I/O prefetching using MPI file caching and IO
signatures”, ACM/IEEE conference on Supercomputing
(SC’08), 2008, pp. 1-12.

[27] W-K. Liao, K. Coloma, A. Choudhary, L. Ward, E.
Russell, and S. Tideman, “Collective Caching:
Application-aware Client-side File Caching”, Symposium
on High Performance Distrbuted Computing 2005
(HPDC’05).

[28] S.V. Nagaraj, “Web Caching and Its Applications”,
Springer 2004. ISBN 978-1-4020-8050-0.

[29] X. Wang, T. Malik, A. Burns, S. Papadomanolakis, and A.
Ailamaki, “A workload-driven unit of cache replacement
for mid-tier database caching”, 12th International
Conference on Database Systems for Advanced
Applications, 2007 (DASFAA’07), pp. 374-385.

[30] S-D. Yoon, I-Y. Jung, K-H. Kim, and C-S.
Jeong,”Improving HDFS performance using local caching
system”, 2nd International Conference on Future
Generation Communication Technology 2013 (FGCT’13),
pp. 153-156.

[31] J. Zhang, G. Wu, X. Hu, and X. Wu, “A Distributed cache
for HADOOP Distributed File System in Real-Time Cloud
Services”, ACM/IEEE 13th International Conference on
Grid Computing, 2012 (GRID’12), pp. 12-21.

