
On Designing a Cost-Aware Virtual CDN for the
Federated Cloud

Dragos Ilie∗ and Vishnubhotla Venkata Krishna Sai Datta†

Dept. of Communication Systems
Blekinge Institute of Technology, Karlskrona, Sweden

∗dragos.ilie@bth.se, †vvksdatta@gmail.com

Abstract—We have developed a prototype for a cost-aware,
cloud-based content delivery network (CDN) suitable for a
federated cloud scenario. The virtual CDN controller spawns and
releases virtual caching proxies according to variations in user
demand. A cost-based heuristic algorithm is used for selecting
data centers where proxies are spawned. The functionality and
performance of our virtual CDN prototype were evaluated in the
XIFI federated OpenStack cloud. Initial results indicate that the
virtual CDN can offer reliable and prompt service. Multimedia
providers can use this virtual CDN solution to regulate expenses
and have greater freedom in choosing the placement of virtual
proxies as well as more flexibility in configuring the hardware
resources available to the proxy (e. g. , CPU cores, memory and
storage).

Index Terms—cloud; CDN; OpenStack; proxy; virtualization.

I. INTRODUCTION

Content Delivery Networks (CDNs) typically act as a shock
absorbers during the contingency of traffic upsurge. During
such times, immediate attention has to be laid on provisioning
adequate resources. With the advent of cloud computing
technologies, multimedia providers1 (MPs) have scope for es-
tablishing CDN spanning multiple clouds. However, the main
challenge while establishing such a CDN is implementing a
cost efficient and dynamic mechanism which guarantees good
service quality to users.

Although there are organizations offering traditional or
cloud-based CDNs, it is usually expensive to use these type
of services. MPs also face difficulties in estimating the traffic
and user demand, as those CDN providers offer limited
information regarding user behavior and request pattern [1].
We have developed a model which facilitates MPs to establish
a self-managed virtual CDN by leveraging a OpenStack-
based [2] federated cloud. According to this model, MPs can
use services from several cloud providers to establish multiple
points of presence and in this way create a distributed pool of
resources. Virtual proxies, which are virtual machines (VMs)
with associated storage, can be dynamically spawned and
released on the basis of a heuristic algorithm. This heuristic
algorithm estimates the number of proxies required to meet
the user demand with the help of a mathematical model.

This work was partly funded by the European FP7 project "XIFI –
eXperimental Infrastructures for the Future Internet" (Grant number 604590).

1Companies from the entertainment industry or regular users, such as inde-
pendent artists, streaming movies and audio to a set of interested consumers.

Further, the performance of the virtual CDN was assessed
over the federated XIFI cloud. XIFI is a project of the
European Public-Private-Partnership on Future Internet (FI-
PPP) programme [3]. The goal of XIFI is to provide and
run a stable infrastructure for the large scale trials through
federating OpenStack data centers over Europe into a massive
test platform for Future Internet services. OpenStack is a open-
source software platform for cloud orchestration.

The purpose of the paper is to investigate a mechanism
for establishing a OpenStack-based CDN and examine the
latencies and robustness involved in setting up virtual proxies.
Our results indicate that virtual CDNs can offer reliable and
prompt service. With virtual CDNs, MPs can regulate expenses
and have greater level of flexibility for customizing the virtual
proxies deployed at different locations.

II. FRAMEWORK FOR VIRTUAL CDN

In this section we present the components for the virtual
CDN framework as well a number of assumptions and limi-
tations related to it.

We focus on the scenario where a MP uses unicast to deliver
video streams. Although multicast is more efficient, its deploy-
ment and management costs are significantly higher [4]. Due
to the costs associated with running a multicast infrastructure
in parallel with the unicast one, some ISPs refuse to offer
multicast services.

The quality of streaming service depends on the routing
distance between servers and users since latency and jitter tend
to increase with distance. Routing distance can be expressed
either in hop count or round-trip time (RTT). However, ac-
cording to [11], RTT is considered to be the best choice for
measuring the client perceived performance. It should be noted
that the focus of this study is not on determining the quality
of experience for end-users, but rather on investigating how
efficiently can proxies be provisioned in a virtual environment.

Users from a particular location experience similar RTTs to
a common server. In order to effectively observe user behavior
and handle requests from a location, users can be grouped
into a cluster [5]. We have defined clusters on the basis
of Classless Inter-Domain Routing (CIDR) address blocks.
Each cluster is associated with multiple CIDR blocks and
thus, requests from different topological locations can be
distinguished. Some organizations offer geolocation databases,
which provide information about geographic location of users

Copyright © 2016 IEEE. This is a preprint. Final, published version available at http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=7528255

based on their IP addresses. The databases can be used to
build clusters based on geographical location. We have not
used geolocation for the virtual CDN, but mention it here as
a potential improvement.

The VMs belonging to a virtual CDN are configured as
caching reverse proxies. These are surrogate servers placed
inside or in close proximity to a cluster. Their mission is to
distribute content on the behalf of the origin server where the
MP stores the content. We call such a proxy as virtual caching
proxy. Since we consider a federated cloud, the virtual caching
proxies can run on hosts located at different sites that may be
managed by different organizations.

Collaboration among the surrogate servers of a CDN can
be implemented through push- or pull-based mechanisms [6].
When a push-based mechanism is used, the origin server is
responsible for pushing updated content to surrogate servers.
This reduces latency because the content is readily available
on a surrogate server when a user tries access it. On the
other hand, if the updated content is of low interest to users,
the network capacity used for pushing content to surrogate
servers is practically wasted. When pull-based mechanisms
are used, the user is directed to the closest surrogate server.
The surrogate server retrieves the content for the origin server
if it does not have it already. If a cooperative pull-based
mechanism is used, the surrogate server will attempt to obtain
the content from peer surrogate servers in order to offload
the origin server. Pull-based mechanisms are considered to be
cost effective as they minimize storage and bandwidth costs.
However, the cooperative pull-based mechanism might make
the CDN system complex and unpredictable, especially in case
of cache misses [7]. Instead, we used a non-cooperative pull-
based mechanism for building a centralized virtual CDN.

CDNs deliver content to users by selecting proxy servers
that can provide reasonable performance. The selection doesn’t
always choose the server with shortest response time or one
that is topologically closest to users [8] (e. g. , the selection
may take cost into consideration). For catering reliable ser-
vices, we assigned each user cluster to at least two sites. Thus,
in case of service outage or overload at one site, users can
safely access services from proxies deployed on the secondary
site.

We developed an algorithm that manages caching proxies
based on the demand from user clusters. The demand from a
cluster can be interpreted as the number of unique users ac-
cessing the services of MP. Rise in demand indicates increase
in the number of users accessing the services. The number of
connections handled by a proxy depends on the user demand
and fluctuates over time.

Cloud providers levy charges for real time usage of network,
computation and storage resources. To simplify management,
users are offered hardware templates (referred to as flavors in
OpenStack) that define the number of virtual CPUs (vCPUs),
the size of RAM memory and the amount of storage allocated
in the cloud. Cloud providers offer flavors at specific prices and
bills tenants for network utilization based on bandwidth usage.
These resources have to be managed effectively to minimize
the overall CDN expenditures. In our framework, we take into
account that prices of cloud resources vary among providers

Virtual proxy 2

Origin server

Virtual CDN

Controller

Data center 2 Data center 1

Virtual proxy 1

User cluster 2 User cluster 1

Fig. 1. Virtual CDN framework

and locations.
We use a virtual CDN controller to coordinate proxy de-

ployments. The main objective of this controller is to regulate
the virtual caching proxies of CDN according to the demand
from users. The controller is responsible for spawning virtual
caching proxies when there is rise in demand. It further
facilitates minimizing CDN operational costs by shutting down
the virtual proxies in case of fall in demand.

The controller functions on the basis of a heuristic algo-
rithm that decides the placement of caching proxies based on
demand from each user cluster. The algorithm first estimates
the number of virtual proxies required to meet the demand
and then decides the placement location of these proxies
with the help of a cost function. Further, the virtual CDN
controller maintains a database which stores information about
cloud resources, costs of various resources at each location,
nodes associated with each cluster, measured RTT to proxies
and clusters as well as other useful information. Figure 1
presents on overview of the virtual CDN framework. In our
implementation, the controller manages cloud resources at
various sites with the OpenStack HTTP-based API.

III. THE COST FUNCTION

The design of a CDN should be a compromise between
performance and costs. Cloud providers offer different flavors
at specific prices and charge tenants mainly for outgoing traffic
from virtual servers. We have considered the flavor cost and
network costs in developing the cost function. Other important
parameters that affect the overall expenses of a CDN [10] and
that are used by the cost function are presented below. All
used parameters are listed in Table I.

The origin server upload cost α is the cost associated
with origin server’s outgoing traffic while serving content to

user clusters and proxies. MPs pay α dollars2 per GB while
transferring videos to proxies and users. Network charges
associated with incoming requests from users to proxies are
not considered as the video traffic from servers to users
dominates other traffic [10].

Outgoing traffic from virtual proxy i, referred to as virtual
proxy upload cost, is denoted by βi. Cloud providers charge βi
dollars per GB when a virtual proxy streams videos to users.

The opening cost Ωi for virtual proxy i is the cost associated
with a particular flavor associated with the proxy VM. This
is the cost paid by MP for data storage, CPU and memory
resources. Virtual proxy opening cost is expressed in dollars
per month.

Parameters µO,Pi
, µPi,Un

, and µO,Un
represent values for

the RTT between origin server and virtual proxy i, between
virtual proxy i and user n, and between origin server and
user n, respectively. Section V explains how these values were
estimated.

The cost of streaming a video of size S from the origin
server to N users of a cluster is denoted by δO. This cost is
the aggregate of the cost for each user n weighted by µO,Un

,
the RTT between origin server and user n.

δO =

N∑
n=1

(
α ∗ µO,Un ∗ S

)
(1)

The cost of streaming a video of size S from the virtual
proxy i to N users of a cluster is represented by δPi

. Similarly
to δO, this cost is the aggregate of the cost for each individual
user weighted by µP,Un

, the RTT between virtual proxy i and
user n.

δPi =

N∑
n=1

(
β ∗ µPi,Un ∗ S

)
(2)

We use the parameter ρO,Pi to denote the cost of transferring
a video of size S from the origin server to a virtual proxy i
(i. e. , replication cost). As before, this cost is weighted by
µO,Pi

, the RTT between origin server and virtual proxy i.

ρO,Pi
=

(
α ∗ µO,Pi

∗ S
)

(3)

The total cost, εi, of starting the new virtual proxy i
consists of the virtual proxy opening cost, replication cost and
streaming costs.

εi =

(
Ω + ρO,Pi + δPi

)
(4)

IV. HEURISTIC ALGORITHM FOR VIRTUAL CDN

The virtual CDN controller uses a heuristic algorithm to
makes all decisions related to caching proxies. The goal of this
algorithm is to spawn or turn off caching proxies in response
to varying user demand in a cluster. These caching proxies
are instantiated at datacentres which are in close proximity

2We use dollar as currency unit since the cloud providers considered here
list their prices in USD.

TABLE I
PARAMETERS OF COST FUNCTION

Parameter Description
α Cost of uploading from origin server (USD/ GB)
βi Cost of uploading from virtual proxy i (USD/ GB)
Ωi Opening cost for virtual proxy i (USD/month)

µO,Pi
RTT between origin server and virtual proxy i (s)

µPi,Un RTT between virtual proxy i and user n (s)
µPi,U The set consisting of all µPi,Un parameters for proxy i
µO,Un RTT between origin server and user n (s)
µO,U The set consisting of all µO,Un parameters
S Size of video (GB)
N Number of users being served
δO Cost of streaming from origin server (USD)
δPi

Cost of streaming from virtual proxy i (USD)
ρO,P Cost of replicating content to virtual proxy i (USD)
εi Total cost of streaming from virtual proxy i (USD)

to users. We express user demand as percentage of the total
cluster population. Statistics of CDN traffic presented in [12]
show that over the time span of 9 days, the CDN under study
received requests from approximately 1 million unique IP
addresses. Based on these statistics, we defined the maximum
number of users in a cluster to be 1 million. Thus, 1%
increment in demand corresponds to an increase by 10,000
users. A 100% demand from a user cluster corresponds to 1
million users requesting a video.

To explain our heuristic algorithm, we consider a scenario
with a user cluster associated with two sites (i. e. , two data
centers). Algorithm 1 is executed whenever there is a change
in user demand in the cluster. We let P1 denote a virtual
proxy at site one, and similarly we use P2 to denote a virtual
proxy at site 2. Given a increase in the user demand, the
algorithm decides if either P1 or P2 is instantiated to handle
the new demand, or, if it is cheaper (according to the cost
function presented in Section III) to serve the demand from
the origin server. On the other hand, if the demand decreases,
the algorithm determines if it can adapt to the new demand
by turning of one or more virtual proxies. Turning off proxies
can save operational costs.

The algorithm requires the cost function mentioned above
as well as the current user demand d. The user demand is used
in step 1 to derive the current number of users in the cluster.
Step 2–6 determine the maximum number of users that can be
served with the current number of proxies. The procedure for
estimating this number is not shown in Algorithm 1, but the
fundamental details are explained below. Step 7 calculates the
change in the number of users. The case of an increase in the
number of users is handled in step 8–25, while the reminder
of the algorithm handles the case of a decrease in the number
of users.

The virtual caching proxies are VMs running NGINX, a
well-known web server and reverse proxy [13]. NGINX can
run multiple worker processes, each capable of processing a
large number of connections. In general, it is recommended to
keep the number of worker processes equal to the number of
CPU cores [13] and therefore the virtual proxies are configured
to behave this way. Since virtual proxies are VMs, we are in
fact configuring the number of vCPUs instead of real CPU
cores. In addition, we have configured NGINX to allow each

Algorithm 1 Proxy spawning and removal
Require: Cost function (CF), user demand d

1: U ← number of current users derived from d
2: if proxies exist then
3: M ← maximum users handled by existing proxies
4: else
5: M ← 0 . no users can be handled without proxies
6: end if
7: N ← (U −M) . number of arriving or departing users
8: if N > 0 then
9: Estimate number of new proxies based on N

10: for each new proxy do
11: if resources exist then
12: Compute δO
13: for each site j do
14: εj ← CF(S, α, βj ,Ωj , µO,U , µPj ,U , µO,Pj

)
15: end for
16: if min εj ≤ δO then
17: Spawn new proxy at site with min εj
18: Update database and redirect users
19: else
20: Stream from origin server
21: end if
22: else if no resources then
23: Stream from origin server
24: end if
25: end for
26: else if N < 0 then
27: I ← Proxies required to handle current demand
28: J ← Current number of proxies
29: if I < J then
30: Shutdown θ ∗ (J − I) proxies and update database
31: end if
32: end if

worker process to maintain up to 1024 worker connections.
With these settings, a virtual proxy with 2 vCPUs streaming
HD video with an average bitrate of 5 Mbps will effectively
saturate a 10 Gbps link, as long as the vCPUs and storage can
keep up. This is an extreme example, but serves to illustrate
that 1024 worker connections is a reasonable upper bound for
most environments.

Because we consider the case of unicast video streams,
our algorithm assumes that each user from the cluster opens
one connection to the virtual proxy. When N new users are
added to a cluster, we divide their number by 1024 (i. e. , the
maximum number of worker connections) and round up to the
closest integer. The integer is the number of worker process
required to handle the new demand, which is equivalent to
the number of vCPUs required. The algorithm looks for a
VM flavor large enough to satisfy the requirement. If no such
flavor is found, then multiple proxies must be used.

A new proxy is spawned when the cost of streaming from
the origin server, δO, exceeds the total cost ε of streaming
from the proxy (step 17). The proxy is spawned at the site with
the minimum ε cost. After the proxy is created, the database
managed by virtual CDN is updated with configuration details,

location, IP address and maximum number of users served by
that caching proxy. The controller node configures the origin
server to redirect all the requests from user cluster to newly
created proxies. This is accomplished by associating the new
proxy’s IP address with the CIDR address blocks belonging
to the cluster.

Whenever there is a decrease in the percentage of demand,
some proxies are shut down based on a hysteresis mechanism.
Hysteresis switching prevents instant shutdown of virtual
proxies and is useful to handle a sharp fall in demand. This
shutdown is regulated by the hysteresis gain factor, θ which
ranges from 0 to 1 (step 30). When θ is very small, the
hysteresis equation is very conservative while shutting down
proxies and when θ is large, the proxies are shutdown instantly.

MPs can choose appropriate factor θ by estimating demand
variations over historic data [14]. Shutdown signals can be
issued to multiple proxies using OpenStack API commands.
The caching proxies are configured to serve all the existing
active connections before shutting down. This is achieved by
issuing graceful shutdown signal to NGINX as soon as the
virtual caching proxy receives a shutdown signal.

V. TESTBED

We setup a testbed to examine the effectiveness and measure
the performance of virtual CDNs while delivering multimedia
content. XIFI sites located in Budapest, Spain3, Stockholm
and Volos are considered for the testbed. The origin server is
located in Budapest and remaining three locations are remote
sites where virtual caching proxies are spawned. The sites
support spawning small, medium and large flavor VMs and
allocate adequate network capacity for transferring a video file.
The small flavor consists of 1 vCPU, 2 GB RAM and 20 GB
storage and the medium and large flavor offer two times and
four times, respectively, more resources. One user cluster is
assumed at every location.

The origin server in Budapest is a VM running NGINX on
top of Ubuntu Linux 14.04 LTS. NGINX is used for HTTP-
based video streaming. The VM is reachable via a public IP
address assigned to it. A single video file is stored on this VM.
The file is 200 MB in size and contains a super HD video of
5 minutes duration. The contents were selected based on the
types of typical YouTube videos described in [15]. VM images
with a pre-installed NGINX web server configured in reverse
proxy mode are stored in the OpenStack environment. These
images are used to spawn virtual proxy VMs.

The price listings from three European cloud providers
(CenturyLink, Host Europe and UpCloud) are used to emulate
flavor costs for the testbed. Unlike other providers, they pro-
vide detailed pricing for vCPUs, RAM and storage resources.
Similarly, egress network charges listed by Amazon, Google,
Microsoft and Rackspace are used to emulate upload costs.

We used the httping tool [16] to estimate the RTTs be-
tween the origin server and caching proxies. ICMP can be
problematic while measuring end-to-end delay as it can be

3The locations listed here were derived from the name of the corresponding
site as provided by the OpenStack API. We do not know in which city the
Spain site is located.

blocked on the path or rate limited. Moreover, RTTs at layer
3 do not reflect service response times, which are critical
for multimedia communication [17]. An average value is
calculated over 1000 RTTs between the origin server and
a test proxy at each site and these values are assigned to
the corresponding µO,Pi

parameters. The µPi,U parameters
are assigned values based on statistics for CDN user latency,
expressed as HTTP-based RTT, from the CDN performance
report by CloudHarmony [18].

Default privileges assigned to our XIFI Cloud account
prevent us from using more than 6 vCPUs and 3 VMs at one
site. Consequently, we were not able to test the scalability of
the system with large clusters of users. Our focus has been
instead on the feasibility of the virtual CDN system and on
quantifying various operational metrics that can be observed
in small scale experiments.

The virtual CDN can be viewed as an example of network
function virtualization (NFV). We have therefore selected four
NFV performance metrics proposed by the ETSI Industry
Specification Group[19] for measuring the service quality of a
CDN running on virtualized infrastructure. Analysis of these
metrics helps in estimating reliability and promptness of the
virtual CDN service. The selected metrics are:

VM dead on arrival (DOA) ratio
Tracks the liveliness of the VM. The DOA ratio indi-
cates the ratio of number of faulty VMs provisioned to
the total number of successfully spawned VMs.

VM provisioning latency
Represents the time required for spawning a caching
proxy in the virtual CDN. It is defined as the elapsed
time between issuing a VM provisioning request and
the successful spawning of the VM. This metric directly
impacts the time required to scale a CDN system.

CDN operational latency
Estimates how long time it takes for a caching proxy
to be ready with cached video after the virtual CDN
controller decides to spawn a proxy. It is the sum of
VM provisioning latency and synchronization time with
origin server (i. e. , time used by a virtual proxy for
caching the video data from the origin server).

VM faulty shutdown ratio
Defined as the ratio of number of faulty VM shutdowns
to the total number of successfully shutdown VMs.

The demand from each user cluster is simulated with the
help of a program running inside the virtual CDN controller.
The controller executes the heuristic algorithm based on the
simulated demand. At some point, the demand prompts the
controller to start a small flavor caching proxy. The controller
issues API calls to spawn the VM and then collects VM DOA
ratio, VM provisioning latency and CDN operational latency
data for the newly spawned caching proxy. Later, the demand
is gradually decreased until the controller issues shutdown
signal. VM faulty shutdown ratio is measured at this point.
In a similar vein, the performance is observed for medium
and large flavor caching proxies.

Spain
Volos

Stockholm

0

5

10

15

20

25

Small Medium Large

11.42 11.18 11.78

17.26 18.18 17.9

21.36 22.26 21.7

Ti
m

e
(s

ec
o

n
d

s)

Average VM Provisioning Latency

Spain Volos Stockholm

Fig. 2. VM provisioning latency

VI. RESULTS AND PERFORMANCE ANALYSIS

We performed 50 iterations of the experiment for each type
of flavor and computed 95% confidence intervals for each
metric. In all cases, the relative half-length of the confidence
interaval was below 5%. However, we would like to point out
that 50 iterations do not provide statistical guarantees for the
level of reliability (e. g. , as in ”five nines” availability) that
can be expected from the CDN. Testing for high availability
requires a very large number of iterations, magnitudes larger
than 50 iterations.

A. VM DOA Ratio

During all the experiments, no flaws were observed while
spawning caching proxies, which resulted in a zero VM DOA
ratio. Zero values at all locations indicate that content delivery
service at the three clusters was not affected by faulty or
inoperable caching proxies. In production systems, VM DOA
ratios similar to those obtained here helps MPs in rendering
more reliable services to users. Furthermore, zero DOA ratio at
each location implies that the virtual CDN system has potential
for scaling efficiently without any glitches when there is a
sudden surge in user demand from any cluster.

B. VM Provisioning Latency

On average, low VM provisioning latencies were observed
at the site in Spain and high latencies were observed at the
Stockholm site. It can be observed from Figure 24 that provi-
sioning latencies are directly related to the location from where
the caching proxies were spawned. Compared to Stockholm,
the VM provisioning latencies at the site in Volos were 17–
19% lower and VM provisioning latencies in Spain were
smaller by 45–49%. It was also observed that VM provisioning
latency of small, medium and large flavors at a particular site
were almost equivalent, with at most 1 s variations. The results
indicate that during the event of sudden surge in demand from
a user cluster, a large flavor proxy can be spawned as quickly
as a small flavor one.

4On the x-axis in the figure, the keywords Small, Medium and Large denote
VM flavors, which define resources allocated to the VM.

Volos
Stockholm

Spain

Small Medium Large

28.52 28.69 28.12

35.68 36.04 35.21

202.69 197.73 199.51

Ti
m

e
(s

ec
o

n
d

s)

Average CDN Operational Latency

Volos Stockholm Spain

Fig. 3. CDN operational latency

TABLE II
AVERAGE RTT BETWEEN ORIGIN SERVER AND VIRTUAL PROXY

Spain RTT (ms) Stockholm RTT (ms) Volos RTT (ms)

Min Avg Max Min Avg Max Min Avg Max
228.7 314.3 1320.6 204.5 214.0 282.4 159.0 162.1 187.4

TABLE III
AVERAGE BITRATE BETWEEN ORIGIN SERVER AND VIRTUAL PROXY

Spain Stockholm Volos
1.26 Mbps 16.97 Mbps 21.26 Mbps

C. CDN Operational Latency

Although VM provisioning latency at the Spain site was
low, as described in the previous section, its CDN operational
latency was very high as it can be observed from Figure 3.
High values can be attributed to time required for caching
video from origin server. In spite of sufficient bandwidth ca-
pabilities and enough computational resources, communication
across geographic regions typically suffers from wide-area
latencies as pointed out in [20]. We observe in Table II that
RTTs between Budapest and Spain varied from 228.7 ms to
1320.6 ms, which indicates that high network latency is indeed
present. The latency effect on transfer rates between the origin
server and a proxy in Spain can be observed in Table III, which
shows a meagre average bitrate of 1.26 Mbps.

Low VM provisioning latency, fair bandwidth and low net-
work latency were the main reasons for low CDN operational
latency at Volos. In production systems, low CDN operational
latencies are advantageous to MPs. This is particularly true
during flash crowds when virtual proxies must be brought
online rapidly to serve users and prevent their requests from
swamping the origin server.

D. Faulty Shutdown Ratio

No flaws were observed while shutting down caching prox-
ies and thus VM faulty shutdown ratio was zero. This implies
that the virtual CDN has potential for shrinking its resource
usage without any glitches when user demand declines.

VII. CONCLUSIONS

This paper presents a model for dynamically scaling and
releasing virtual proxies on a federated cloud environment.The
main purpose of the algorithm is to trigger the instantiation and
release of caching proxies according to variations in demand.
A video streaming systems can use the algorithm to spawn
caching proxies at data centres located in close proximity
to users, thus potentially lowering latency and jitter related
to streaming. An implementation of this model was operated
in the XIFI cloud and various latencies were examined. Our
preliminary results indicate that spawning virtual proxies is
an elegant solution to address user demand by dynamic
provisioning of caching proxies. This solution is also time
efficient. For example, at the site in Volos we measured a
CDN operational latency of 28.12 s when large flavor caching
proxies are spawn. We think that our solution can be of interest
to MPs as well as end-users looking to operate their own cost-
aware CDN in order to lower operational costs.

REFERENCES

[1] F. Dudouet, P. Harsh, S. Ruiz, A. Gomes, and T. M. Bohnert, “A case for
CDN-as-a-service in the cloud: A Mobile Cloud Networking argument,”
in Proc. of ICACCI, Delphi, India, Sep. 2014.

[2] OpenStack [Online]. Available: http://www.openstack.org.
[3] XIFI [Online]. Available: https://www.fi-xifi.eu/home.html.
[4] L. Al-Jobouri, M. Fleury, and M. Ghanbari, “Broadband wireless video

streaming: achieving unicast and multicast IPTV in a practical manner,”
Multimed. Tools Appl., pp. 1–28, Apr. 2015.

[5] A. J. Cahill, “An efficient CDN placement algorithm for high-quality
TV content,” in Proc. from Internet and Multimedia Systems and
Applications - EuroIMSA, Grindelwald, New York, NY, USA, Oct.
2005.

[6] A. K. Pathan and R. Buya, “Chapter 2: A Taxonomy and Survey of
Content Delivery Network,“ Content Delivery Network, Springer-Verlag,
ISBN: 978-3-540-77886-8, 2008.

[7] T. M. T. Anh, H. P. Huu, T. Nguyen, and C. S. Kim, “Enhance
Performance of Content Delivery Network Using Provider Oriented
Hierarchical Corporative Proposal,” Int. J. Control Autom., vol. 7, no.
6, pp. 317–330, Mar. 2014.

[8] B. Frank, I. Poese, Y. Lin, G. Smaragdakis, A. Feldmann, B. Maggs, J.
Rake, S. Uhlig, and R. Weber, “Pushing CDN-ISP Collaboration to the
Limit,” SIGCOMM Comput Commun Rev, vol. 43, no. 3, pp. 34–44,
Jul. 2013.

[9] ETSI GS NFV 001 v1.1.1 (2013-10): “Network Function Virtualisation
(NFV): Use Cases.” www.etsi.org, Oct. 2013

[10] F. Chen, K. Guo, J. Lin, and T. La Porta, “Intra-cloud lightning: Building
CDNs in the cloud,” in Proc. of IEEE INFOCOM, Orlando, FL, USA,
Mar. 2012.

[11] K. Obraczka and F. Silva, “Network latency metrics for server proxim-
ity,” in Proc. of IEEE GLOBECOM, vol. 1, San Francisco, CA, USA,
Nov. 2000.

[12] M. J. Freedman,“Experiences with CoralCDN: A Five-Year Operational
View,” in In Proc. of USENIX NSDI, San Jose, CA, USA, Apr. 2010.

[13] “nginx documentation.” [Online]. Available: http://nginx.org/en/docs/.
[14] G. Chen, W. He, J. Liu, S. Nath, L. Rigas, L. Xiao, and F. Zhao, “Energy-

aware Server Provisioning and Load Dispatching for Connection-
intensive Internet Services,” in Proc. of USENIX NSDI, San Francisco,
CA, USA, Apr. 2008.

[15] H. Chang, H. Liu, Y.-W. Leung, and X. Chu, “Minimum latency
server selection for heterogeneous cloud services, ” in Proc. of IEEE
GLOBECOM, Austin, TX, USA, Dec. 2014.

[16] “httping manual.” [Online]. Available: http://linux.die.net/man/1/httping.
[17] V. Aivazov and R. Samkharadze,“End-To-End Packet Delay In The

Network,” Automated Control Systems, no. 2(13), pp. 128–134, 2012.
[18] “CDN Performance Report,” Cloud Reports–CloudHarmony, Sep. 2014.
[19] ETSI GS NFV-INF 010 V1.1.1 (2014-12): “Network Functions Virtual-

isation (NFV): Service Quality Metrics.” www.etsi.org, Dec. 2014.
[20] A. Chandra, J. Weissman, and B. Heintz, “Decentralized Edge Clouds,”

IEEE Internet Comput., vol. 17, no. 5, pp. 70–73, Sep. 2013.

