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Abstract: The use of data is essential for the capabilities of Data-
driven Artificial intelligence (AI), Deep Learning and Big Data
analysis techniques. This data usage, however, raises intrinsically
the concerns on data privacy. In addition, supporting collaborative
development of AI applications across organisations has become a
major need in AI system design. Digital Rights Management (DRM)
is required to protect intellectual property in such collaboration.
As a consequence of DRM, privacy threats and privacy-enforcing
mechanisms will interact with each other.

This paper describes the privacy and DRM requirements in col-
laborative AI system design using AI pipelines. It describes the
relationships between DRM and privacy and outlines the threats
against these non-functional features. Finally, the paper provides
first security architecture to protect against the threats on DRM
and privacy in collaborative AI design using AI pipelines.

1 INTRODUCTION
Collaborative application development across organisations has
become a major focus in Data-driven Artificial Intelligence (AI)
system design when aiming at sophisticated AI applications[1, 2].
This collaboration process builds on specialisation in AI engineer-
ing and on re-useable AI objects, e.g. data set or Deep Learning
models. These objects have been gathered or developed by third-
parties not designing the final application. The advantages of the
process are potentially significant reductions of development cost
and time and access to components that enable engineering for
higher AI performance. The appealing features are evidenced by
the development of AI pipelines [3], open source machine learning
and data visualisation tools such as Orange [4] and the emerge of
data marketplaces [5, 6].

This collaborative approach, however, comes at a cost. It imposes
at least three fundamental challenges on the design process. First,
the use of data intrinsically raises data privacy concerns. These
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doubts become even deeper regarding the feature of datasets be-
ing shared. Second, Data-driven AI aims at identifying unknown
relationships within the information. However, when using typical
privacy enforcing mechanisms such anonymisation techniques or
restriction in data collection, then it can’t be excluded that inher-
ent relationships within the data sets are not captured or deleted.
As a result, such data sets are becoming of no value. While such
typical privacy concepts are of high value for specific applications,
they might impact the usability of AI objects in general. Hence, a
dilemma for the general concept of collaboration based on reusabil-
ity arises. Third, the reuse of AI objects in collaborative design
requires trust among the developers and users of these objects.
This trust ranges from obeying licences between developers to
permitting governance on AI objects as required by societies and
individuals, e.g. enabling GDPR or GDPR-like concepts on the use
of data and AI objects in Europe. This paper aims to address these
fundamental challenges by giving the insight to the privacy require-
ments in collaborative AI development. It will provide an initial
taxonomy of privacy and Digital Rights Management (DRM) and
the threats against objects in the AI pipeline. The paper summarises
the GDPR act and its potential implications for Bonseyes-like AI
marketplaces and describes potential ways of violating the DRM as-
sociated with the artefacts. It finally outlines a security architecture
to circumvent the threats.

2 COLLABORATIVE AI APPLICATION
DEVELOPMENT

The purpose of data-driven AI is to analyse collected data in a
smart way and come up with useful predictions about future data
or provide new insights into existing data. However, in order to
achieve good results, it is necessary to carefully prepare the data
(e. g. , remove noise) and trim the algorithm parameters. The typical
workflow model for data-driven AI, shown in Fig. 1 consists of five
phases [7]:

i) ingestion,
ii) preparation (preprocessing)
iii) training (analytical processing),
iv) deployment
v) prediction

In the ingestion phase data is made available to the AI system
either in the form of an existing dataset (e. g. , extracted from a data
lake) or from live data (e. g. , collected from IoT devices).

The raw data must be converted to a format better suited for
analysis. For example, data from heterogeneous sources that use
different data type and syntaxes must be merged to a common
format. This enables feature extraction, the retrieval of relevant
attributes from data. Before data can be used for training it must be
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Figure 2: Original Bonseyes pipeline

cleansed from errors resulting from the data collection process [8].
Additionally, scaling and normalisation may be required to enable
uniform handling of features expressed with different scales of
reference. Similarly, data reduction and transformation can be used
to reduce the size of the input data for the training phase. All these
operations are performed in the preparation phase.

The training phase is where the actual analytical processing of
the data takes place. The output from this phase can be either new
insights about the analysed data (e. g. , the correlation between
specific data items) or a model used for predictions.

A model needs to be deployed at a location where it can process
input data. The location can vary between a powerful cloud comput-
ing environment to resource-constrained IoT devices, depending
on the intended application.

The output of the models are predictions that can serve as input
to business processes or decision-making systems. In some cases, a
feedback loop is used, where the predictions are merged back into
the original data lake or preparation phase to refine the existing
model or train new models.

From a business perspective, we are witnessing the emergence
of stakeholders that can provide access to high-quality data or
algorithms. The co-dependency between data and algorithms in the
AI workflow model suggests that collaboration between various
stakeholders is required for developing complex, high-performant
AI applications. To this end, the Bonseyes project is designing an AI
marketplace that will enable such collaboration while maintaining
privacy and enforcing DRM.

Bonseyes uses an Agile methodology for developing the mar-
ketplace. The current implementation of the AI workflow model is
shown in Fig. 2 and is referred to as an AI pipeline. The light-blue
rectangles in the figure are Docker containers. Inside the Docker
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Figure 3: Improved Bonseyes pipeline

container resides an AI artefact. The artefact can be pure data, an
interface to a data source or an algorithm used in the AI workflow.

The developers retrieve the required AI artefacts from a Docker
repository and assemble the pipeline on their local system. The red
arrows represent data transfers to and from storage (currently a
regular filesystem). The transfers are needed to bring data in the
pipeline and to save the output from intermediate stages and the
final result. The data may include confidential information, hence
the red color.

Fig. 3 shows the next implementation of the AI pipeline, where
the AI artefact is wrapped inside a Bonseyes Layer (BL). The pur-
pose of the BL is to enable secure direct artefact communication
without the need to store intermediate data. It also provides DRM
mechanisms to control access to artefacts and enforce license man-
agement policies. The need for DRM mechanisms is driven both by
business motives as well as legal requirements.

The new implementation of the AI pipeline supports also a dis-
tributed model, as shown in Fig. 4, which allows various compo-
nents of the pipeline to be executed on different hosts. This model
requires that the BL is extended to the hosts in order to facilitate
workflow distribution and is themodel considered for the remainder
of the paper.

3 DRM AND PRIVACY REQUIREMENTS
This section aims to highlight the privacy requirements stemming
from personal data regulations and describes the high level relation-
ship between privacy and DRM. The impact of the regulation on
the AI pipeline and the challenges for collaborative AI development
is presented in Section 3.4.

3.1 GDPR privacy requirements
General Data Protection Regulation (GDPR) is the uniform approach
towards all EU countries to provide the protection of a natural
person while processing that individual’s personal data. It will
come in force in May 2018 as a replacement of European data
protection Directive (EU Directive 95/46/EC) to give the EU citizens
better control over their personal information. GDPR expands the
notion of personal data to photos and audios, financial transactions,
posts on social medias, device identifiers, location data, users login
credentials, and browsing history, as well as genetic information.
The new regulation applies in a wide territorial scope and it includes
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Figure 4: Distributed Bonseyes pipeline

all countries (EU or non-EU) that process the personal data of EU
residents.

GDPR relies on six main principles for processing personal data
namely a) lawfulness, fairness, and transparency; b) purpose limi-
tation; c) data minimisation; d) accuracy; e) storage limitation; f)
confidentiality and integrity [9].

GDPR limits the collection and storing of identification infor-
mation of data subjects up to the minimum necessary required in
order to safeguard data subjects’ rights and freedom.

The new regulation expands the rights of data subjects and lists
detailed obligations and responsibilities for two key entities: con-
trollers and processors. The controller, who "determines the pur-
poses and means of the processing of personal data", is responsible
for implementing technical and organisational measurement to
ensure the processing of data is performed as described in the reg-
ulation. The organisational measurement includes assigning a data
protection officer, doing data protection impact assessment and
risk mitigation plan. The technical measurement includes activities
such as implementing accountability, pseudonymisation and data
minimisation. A controller can delegate the processing of personal
data to a processor, who "processes personal data on controller’s
behalf". It is therefore the responsibility of the controller to se-
lect processors who guarantee the implementation of appropriate
technical and organisational measures that meet the regulation
requirements and ensure the protection of data subjects [9].

3.2 GDPR & DRM
Digital rights management enable content owners to control the
distribution and usage of their content. DRM systems conduct poli-
cies to manage the access to the digital contents. In general, DRM
schemes for content protection are built on the assumption that the
content owner has exclusive rights under the copyright law for the
usage and distribution of the owned content. Consumer access to
the content is regulated by a, typically non-transferable, license that
is enforced through the DRM mechanism. GDPR does not attempt
to challenge copyright law, but there are scenarios when the two
can come into conflict. For example, if the protected content con-
tains personal data collected from data subjects, then that content
is subject to requirements implied by the GDPR. Another example
consists of DRM mechanisms that use personal data to track the
activity of individual users. The tracking data becomes also subject
to the requirements of GDPR.

Typical DRM schemes can only allow or deny access to the en-
tire content and not to portions of it. Furthermore, these schemes
do not support fine-grain access control over user activities after
the access is granted. Therefore, typical DRM schemes do not ad-
dress the GDPR requirements (e. g. , recording processing activities).

However, if DRM technologies are complemented with auditing
and accounting capabilities, they can potentially help the GDPR
controller to implement a technical measurement.

3.3 Privacy & DRM
Privacy is a fundamental human right [9] that can be defined in
different ways. S. Warren and L. Brandeis proposed privacy as a
"right to be left alone" [10]. At the same time, philosophers define
the privacy as a right to limit access to individuals’ information
about lives, thoughts, and bodies [11]. These definitions show the
broad concepts of privacy that apply to processing individuals’
information and observing human behaviours and relations. The
philosophical aspects of privacy is handled through information
privacy law and data protection policies that regulate the process,
storage, usage, and exchange of personal data. Some technologies,
like DRM, seem to be aligned with privacy rights due to their basic
natures. The main features of DRM, such as access control to pro-
tected content, restriction of unauthorised usage, and verification of
the authenticity of identification data, are useful for implementing
the legal requirements for privacy in a technical solution.

In [12], the authors proposed adaptations to DRM systems to
address Privacy Rights Management (PRM). They define PRM as
management of personal information according to the requirements
of the EU Directive 95/46/EC [13]. To do that, the authors mapped
the DRM entities to entities defined by the Directive. For instance,
they mapped content owner to data subject, content distributor to
controller, and user to processor. Unfortunately, their conclusion
is that their method is not scalable in terms of issuing processing
reports when the number of data subjects is very large. This re-
mains a challenge in building DRM systems that support PRM-like
features.

3.4 GDPR impact on AI pipelines
From a business point of view, the AI marketplace enables artefact
consumers to obtain licensed access to AI artefacts owned by artefact
providers. An entity can play both roles: it can be a provider for
artefacts it owns, and it can consume artefacts from others. An
artefact is coupled together with a license that specifies the terms of
use for the artefact. Since the license is viewed as a legal document
it must be anchored into existing laws and regulations (e. g. , GDPR)
in order to be effective. A license can be encoded into a digital
license to enable computer-based license management systems to
monitor, detect and prevent license violations.

As described in Section 2, AI pipelines are setup in order to
achieve specific goals such as to make predictions or obtain new
insights from existing data. Since the purpose of the pipeline is



determined by the entity setting up, it is reasonable to conclude
that the entity is acting as a controller in the GDPR sense and
thus is responsible for complying with the GDPR. When viewed
in the context of an AI marketplace, individual AI artefacts in the
pipeline act as generic building blocks and should not be aware of
the pipeline’s higher purpose. It is thus reasonable to assume that
artefact providers act as GDPR processors. However, some providers
may implement the functionality of an artefact by chaining together
several other artefacts, where each element of the chain consume
the output of the previous element and provides input to the next.
The determination of whether the provider of a chained artefact
acts as controller or processor does not seem so clear cut in these
cases.

The distinction between controllers and processors becomes
even blurrier when the AI artefact contains a data source or pure
data. The artefact provider could have collected and processed pri-
vate data from its data subjects for specific purposes, thus being
itself a controller according to GDPR. The provider may view the
pipeline owner as a processor or they may establish a joint con-
troller relationship [9].

This discussion highlights some of the immediate difficulties in
attributing legal responsibilities to providers and consumers. It is
not quite clear at the moment how an AI marketplace could auto-
matically assign correctly (in a legal sense) the controller/processor
roles to various entities participating in a pipeline. We believe that a
tractable initial approach is to determine a baseline of requirements
(legal and technical) for processors. All consumers and providers
in the marketplace would be required to fulfill these constrains.
This would enable controllers to delegate data processing to any
processor.

4 DRM AND PRIVACY REQUIREMENTS FOR
AI DEVELOPMENT

In general, DRM generates the license for each authorised entity
in an AI pipeline. This section identifies general artefact usage
constraints that can be embedded in a license:
i) Validity is defined by the allowed access duration to the arte-

fact and is referred to as the license validity period. Additionally,
the validity may also be constrained by the number of times the
artefact can be executed, a so-called n-times use price model.
Also, a license should be revokable if users breach the license
agreement or to allow users to interrupt an automatic subscrip-
tion renewal.

ii) Beneficiary constraint specifies the identity of the license user.
An end-user license has a single user as beneficiary, whereas
a group license allows an organisation to allocate and revoke
licenses to its members according to own policies.

iii) Purpose constraint defines the license scope (e. g. , commercial,
educational, or personal). This can even be tied to specific types
of licenses (e. g. , GPL) that govern how derivative work (e. g. ,
AI applications) may itself be licensed. In addition, legislation,
such as the GDPR, may stipulate how data must be collected,
stored, shared and processed. The usage purpose constraint
must be able to incorporate this type of law-derived policies.

iv) Location constraints define where the artefact can be utilised.
This constraint can be either topological or geographic. The

topological location defines the networked hosts that are al-
lowed to use the artefact. For the Bonseyes project, the sim-
plest topological constraint restrict artefact usage to the set
of Bonseyes authorised hosts. However, artefacts can also be
constrained to virtual premises, which are smaller subsets of
Bonseyes authorised hosts[14]. The geographical location de-
fines where in the world the artefact can be used or is prohib-
ited from being used. This allows hosts and artefact to comply
with local laws and regulations, such as EU Data Protection
Directive and its successor, GDPR.

v) Peering constraint regulates which entities the artefact is al-
lowed to interact with. The peers can be the successor or prede-
cessor artefact in a pipeline or entities that monitor and control
the operation of the artefact.

A license management system must protect the interests of both
artefact consumers and providers, according to license constraints.
This means that consumers are not prevented from using the arte-
fact while the license is valid, but also that they cannot continue to
use it if the license expires, is revoked for a legitimate reason, or if
the artefact is used for a purpose or at a location prohibited by the
license. Similarly, the providers must be prevented from blocking
access to an artefact for consumers with a valid license, while at
the same time retain the possibility to revoke a license when its
terms are breached. The collaborative nature of the AI marketplace
raises some interesting challenges in satisfying these requirements
simultaneously.

To ease the threat analysis, we will consider two classes of misbe-
having users: regular users and malicious users. Regular users can
be consumers that try using the artefact in conflict to the license
constraints, or providers that attempt to prevent consumers from
using an artefact although a valid license exists. Common for this
case is that the users are either unaware that they are breaching
the license agreement, or that they are aware, but do not employ
any advanced means (e. g. , reverse engineering or code injection)
to achieve their goals. Therefore, we consider these potential at-
tacks as simple threats. On the other hand, the malicious users are
assumed to be skilled attackers that may insert exploits into the AI
pipeline or instrument the artefact’s hosts in order to bypass the
license and obtain unfettered access to the artefact of interest. We
consider these to be advanced threats. Provider attempts to fraudu-
lently prevent consumer with valid licenses from using an artefact
belong also to the advanced threats category.

4.1 Simple threats
We begin by considering two obvious threats:
T-1: A user can modify license contents to bypass usage constraints
T-2: The AI marketplace repudiates the issuance of a license

It is assumed that the license contents are stored inside the
BL that encapsulates the AI artefact. An additional assumption
is that the license contents as well as the AI artefact are digitally
signed by the marketplace. The signature enables the BL to detected
fraudulent changes to the license contents and asserts the origin
of the data thus preventing the marketplace from repudiating an
issued license. We assume the signature algorithm itself (e. g. , RCA-
PSS, DSA or ECDSA) when used with a reasonable key length is
infeasible to break. This counteracts threat T-1 and T-2.



A license validity period begins on a specific start date and stops
at an expiration date. The expiration date can be left undefined by
the licensor if perpetual validity is desired. Additionally, if an n-
times use pricingmodel is used, the validity can be further restricted
by the number of times the artefact is executed. A license can be
revoked before the expiration date for reasonsmentioned previously
in this paper. To determine if a license is valid, the BL is dependent
on having access to a time source, such as a Network Time Protocol
(NTP) server, and to a license revocation database. We consider
threats against the integrity or availability of the time source and the
license revocation database. More specifically, we require security
mechanisms are put in place to protect against:
T-3: Blocking communication with the time source
T-4: Blocking communication with the license revocation server
T-5: Spoofing a time source
T-6: Rolling back the time on the artefact host to use the artefact

past expiration date
Threat T-3 and T-4 are essentially DoS attacks on network ser-

vices required by the license management system. To counteract
them, the BL should refuse to execute the artefact unless communi-
cation with the servers is possible. The downside of this approach
is that AI pipelines become unavailable during periods of none-
malicious network outage (e. g. , on mobile units performing hand-
offs). This situation can be improved by introducing grace time,
which is an acceptable duration for communication outage. Threat
T-5 can be handled by using NTP Autokey [15] or a time server au-
thentication mechanism similar to it. To defend against threat T-6,
we assume that after an initial connection to the time source, the
artefact is able to detect deviations from monotonically increasing
time.

The license beneficiary uniquely identifies the licensed consumer.
This information is determined at the time the license is acquired.
Its presence in the license enables accounting and usage tracking.
Since the license and AI artefact are protected by a digital signature,
it is assumed that no simple threats exists against the integrity of
this information. However, it is important to protect against the
execution of an artefact by an unlicensed user (e. g. , in the case a
pirate copy is made).
T-7: Artefact execution by unlicensed user

To counteract T-7, it is necessary to require users to authenticate
themselves to the BL with a digital user certificate signed by a
Bonseyes certification authority (CA). First, the BL would have
to establish a chain of trust to the root CA and then verify the
validity of the certificate by consulting certificate revocation lists
(CRLs) or through invoking an Online Certificate Status Protocol
(OCSP) responder. If the certificate is valid, the BL can verify if the
license beneficiary matches the distinguished name (DN) in the
user certificate. Finally, the BL would present a challenge to the
user agent to ascertain the user in possession of the private key
associated with the certificate. It is important to realise that this
defence will not work against attackers that are able to obtain the
licensed artefact, the signed certificate and the private key.

License purpose is metadata encoding the permitted use scope
for the artefact. Hosts in a virtual premise have similar metadata
configured for their BL. The artefact BL and the host BL each expose
their use scope. Thus, the artefact can decide if a specific host meets

its purpose constraint and the host can decide if it can allow artefact
execution. For example, an educational virtual premise may refuse
to execute commercial artefacts, or an artefact can avoid running on
hosts that does provide adequate privacy protection (e. g. , according
to GDPR). This constraint faces the following threats:
T-8: Host breach against license purpose
T-9: Artefact breach against license purpose

In the case of T-8, the host is configured to present a false use
scope that entices the artefact to execute its payload. This threat can
be addressed by requiring that before an organisation can deploy
a Bonsyes host it must obtain a digitally signed license for that
host from the Bonseyes CA. The license carries the approved use
scope and is tied to the host’s hardware through a hardware ID [16].
The BL in the host can recompute the hardware ID and verify that
it matches the one covered by the license, before presenting the
host license to the artefact BL. Threat T-9 considers the situation
where the artefact is attempting to illegitimately obtain execution
privilege on the host. In this case, the host BL must verify the
artefact license to ensure its use case is allowed.

We foresee the following topological location threats:
T-10: Artefact execution outside a virtual premise (i. e. , host lacking

a valid BL)
T-11: Artefact execution on wrong virtual premise

These threats are similar to the T-8, but they are more generic
in scope. Virtual premises are host pools for AI pipelines with
different constraints. The license purpose is an example of such a
constraint. Performance can be another constraint. For example,
one may define a development premise as a pool of workstations
used by data scientists for research and development work. At the
same time, a production premise can consist of powerful servers
used for high-performance AI pipelines. Threat T-10 describes the
trivial case where a host lacks the BL or contains an invalid BL,
thus being outside any virtual premise. If the host BL is missing,
the artefact BL cannot establish a connection to it and must abort
execution immediately. An invalid BL is either old deprecated code
(detectable through a revoked license) or contains an invalid license
(e. g. , expired or missing a valid trust chain). Also in this case the
artefact BL must abort execution.

Threat T-11 considers the situation where an artefact is restricted
to a specific virtual premise and by mistake or intentionally is exe-
cuted on a different premise. A scenario illustrating this threat is
that of an artefact under development (e. g. , using an untested algo-
rithm or containing low-quality data) being mistakenly deployed
on a production premise, thus degrading the quality of the results.
To counteract this threat we propose that host and artefact licenses
contain a set of virtual premise identifiers that must match in order
to allow artefact execution.
T-12: Artefact execution outside allowable geographic region.

Threat T-12 is a special version of T-11. In this case, we consider
mobile virtual premises, a host or a set of hosts that can move or
be transported geographically. The issue we try to capture is that
when geographic boundaries are being crossed (like country or
state borders) different jurisdiction may apply to computation and
data. For example, some countries may have laws that severely
curtail data privacy and where certain types of computation (e. g. ,



cryptography) can be considered a criminal offence. Theoretically,
this threat can be dealt with in a similar manner as with T-10
and T-11, by encoding allowed geographic regions in the license.
Unfortunately, enforcing this type of constraint is quite difficult.
The reasons are firstly, that there is no single method that can
do accurate Internet geolocation without assistance from GPS or
cellular networks and, secondly, evasion methods through proxies
and anonymization networks are quite successfull [17]. Therefore,
more research is required to determine efficient countermeasures
for this threat.
T-13: Unauthorized peering.

In an AI pipeline there are multiple artefacts chained together.
Threat T-13 is about scenarios where an artefact in a chain must de-
termine if the predecessor and the successor artefact are authentic
and part of the same virtual premise. It applies also to the commu-
nication between control entities and artefacts. This threat can be
addressed by having peering entities exchange licenses with each
other. The neighbour licenses are verified and each peer is required
to demonstrate that it has possession of the corresponding private
key.

4.2 Advanced threats
In this section we consider threats from skilled malicious users.
The assumption is that this type of users are able to modify the
code for both the artefact BL as well as the host BL. Also, they are
legitimate AI marketplace users and can, for example, obtain valid
host licenses. Thus, these attackers have the capability to circum-
vent any authorization and authentication mechanisms running
on systems that are under their control. Consequently, the defence
mechanism for T-1 to T-13 are defeated on all virtual premises
under the control of the attacker. More specifically, it means that
license management mechanisms can be bypassed and AI artefacts
obtained from the marketplace cannot impose any limitation on
how they are used. The attacker can also extract the actual algo-
rithms or data encapsulated by the artefact and make it available
outside the marketplace. Even if artefacts employ encryption as
a copy-protection scheme, they cannot be protected against this
type of attacks. The crux of the problem is that for an artefact to
be useful, it needs to be decrypted at some point. The attackers
can instrument the hosts under their control using a tool such as
Intel PIN1 and locate the decrypted artefact payload. This type of
approach was successfully used to defeat movie DRM [18].

Although the outlook for defending against advanced threats
looks quite gloom, there are two complementary approaches that
can raise the difficulty of mounting a successful attack. The first
approach aims at providing a trusted computing environment for
license management mechanisms to execute, in particular one in
which the integrity of host and artefact BL are protected. The ideas
about trusted computing have been vastly explored in the past and
have lead to the design of the Trusted Platform Module (TPM),
which is an international standard for a secure crypto-processor.
A discussion about TPM is outside the scope of this paper and the
interested reader is referred to [19] and [20]. The TPM is a passive
chip located on the computer mainboard and can perform measure-
ments (i. e. , compute cryptographic hash values) on software and
1https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool

its dependencies, before the software is executed. In addition, it
enables a task called remote attestation where the measurements
of a host are communicated over a secure cryptographic channel
to a remote attestation server. The attestation server can compare
the measurements with a set of pristine values collected in advance
and, if they match, authorize the host to engage in activities with
the rest of the system.

The TPM has been plagued from the start by a number of de-
ficiencies and major manufacturers such as Intel and AMD have
worked over the years to address them. Intel has recently released
the Software Guard Extensions (SGX) for their CPUs, bringing
support for secure enclaves. Applications and data running inside
enclaves are protected from other software running on the same
platform. Most recently, this mechanism has been used to protect
Docker containers[21]. The downside of TPM- or SGX-based solu-
tions is that the actual hardware module (or processor extension in
case of SGX) is not available on all platforms. It should be noted
that although SGX, if correctly used, can provide considerable pro-
tection against tampering with the computing environment, there
are already attacks against it that are considered practical [22].

Our second proposed approach for providing a trusted envi-
ronment is to remove the hosts from the control of a potentially
malicious users. In particular, we envision a scheme, similar to [23],
where the actual implementation of the AI pipeline is done by a
third party, such as a cloud provider. The assumption is that the
cloud provider’s main business interest is in selling computation
and storage and thus the provider has no incentive to engage in
malicious activities agains the AI marketplace and its users. Arte-
fact consumers interface with the artefact through well-defined
interfaces, without having direct access to the artefacts or the hosts
executing artefacts. Although, this approach can provide a high
level of security against malicious users, it requires a major read-
justment to current AI development practices and is thus regarded
as a major inconvenience by the developers.

5 AI MARKETPLACE SECURITY
ARCHITECTURE

We propose three architecture models based on the requirements
described in the sections 3 and 4 . The single and multi-host ar-
chitectures are suitable to address the simple threats and the 3rd
party cloud architecture aims at mitigating the advanced threats.
The main entities in our protection schemes are as follows:
i) MarketPlace (MP): it is the interaction point between all par-

ties. The MP enables collaboration between the main entities
listed below.

ii) Artefact Provider (AP): makes the AI artefacts available by
registering them in the MP. AP is the owner of the artefact
having rights to describe the artefacts’ access policy, license
type, and privacy restrictions.

iii) Security Manager (SM): is the heart of the license manage-
ment system. It generates the access policy per artefact dy-
namically based on the AP description. SM has the multiple
functionalities such as the DRM enforcement system, remote
attestation, AAA, and certificate management. It is responsible
for initialising the artefact per request. It manages the system
log, license, privacy policies and the execution of each artefact.

https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool


iv) Data Scientist (DS): is the entity that needs the AI artefact
for testing or developing new applications. It is regarded as the
artefact consumer.

v) Computation Center (CC): is the datacenter which provides
the infrastructure for executing the AI artefact. It can be lo-
cated on the DS premise or with a 3rd party cloud provider
and is required to establish trust to SM e. g. , through trusted
computing. Therefore, the CC hosts should be equipped with
Trusted Platform Modules (TPMs) or equivalent.

vi) Virtual Premise (VP): spans the computational capabilities of
the hosts involved and provides the trusted execution environ-
ment to protect the AI artefact. It prohibits the communication
between the artefact and outside world. The MP and SM are
part of every VP.

We assume the SM is under the control of the MP and helps the
secure collaboration between parties. The payment transaction is
beyond the scope of this paper. The BL contains the privacy rights
and access policies and it is customised by the SM for each artefact
instance and host.

5.1 Artefact retrieval and license enforcement
All entities must be authenticated to the MP before requesting ac-
cess to the AI artefact. After successful payment procedure, the
SM generates the license for the user based on the service term
agreements between the DS, AP, and the MP. The SM provides cus-
tomised privacy rights and inserts their description inside the BL.
The DS could download his own copy of the artefact to execute it
in his own premise if the requirements are met. The BL establishes
a secure connection to the SM to check the validity of the license in
order to permit artefact execution inside the DS premise. Blocking
the communication channel to the SM is considered a policy viola-
tion and the BL will halt in that case the execution of the artefact.
If the communication channel is unblocked and the artefact and
the DS have valid licenses, the artefact will begin execution and a
log entry will be submitted to the SM. If a policy violation occurs
during runtime, the BL will log to the SM and exit artefact from
execution mode.

The DS does not have direct access to the artefact, but instead
must communicate with artefact through predefined interfaces
denoted by blue arrows in Fig. 5- 7. The interfaces are typically
managed through an integrated development environment (IDE)
such as Eclipse, denoted by DS Workbench (staging area) in the
figures.

The general activities to obtain an artefact from the MP are the
same for different architectures and the exact artefact retrieval
protocol is under development.

5.2 Single Host Architecture
This model is adapted to current AI development practices, where
the DS has access to the entire pipeline in his own workstation. It
providesminimum security compared to the other two architectures
and it is targeted towards a convenient work mode for developers.
In addition, it provides convenient artefact mobility. The artefact
could move either together with the host (e. g. , laptop) where it
is installed, or the artefact itself can be transferred to other BL-
enabled host (e. g. , being carried on a USB memory stick). This

architecture prefers simplicity over security and thus does not offer
any protection against advanced threats.

The architecture depicted in Fig. 5 shows the pipeline in a single
authorised host. The yellow arrows represent the communication
through BL interfaces between peering artefacts, whereas the blue
arrows denote the communication between the interfaces in the DS
workbench and the actual artefacts. The green arrow represents
the communication channel between BL entities and the SM that
was described in Section 5.1. The DS follows the general approach
in Section 5.1 to obtain the artefacts from the MP, assemble and
execute the pipeline in the hosting workstation. The DS can move
artefacts to a different topological and/or geographical location if
this is not prohibited by the artefact policies.
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Figure 5: Isolated pipeline host

5.3 Multi-Host Architecture
Themulti-host architecture depicted in Fig. 6 addresses the situation
when the computing requirements of the pipeline exceed those
available on a single host. In this model, the DS can extend its
pipeline to multiple hosts. The containers shown in grey colour
represent artefacts belonging to a different pipeline. The green
arrow is a communication channel to the SM. Each host belonging
to a pipeline must establish its own secure channel to the SM. A SM
must issue licenses for multiple authorised hosts under the control
of the DS. This architecture is designed to improve the performance
of the single host architecture by facilitating the implementation
of the pipeline across several hosts.

The general approach described in Section 5.1 is used to receive
the artefact. However, the hosts are under the control of the DS and
thus, when the DS is malicious, this architecture is still vulnerable
to the advanced threats described in Section 4.2.
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5.4 3rd Party Cloud Architecture
Fig. 7 shows the 3rd party cloud architecture aiming to address
the advanced threats. Following the approach from Section 5.1,
the DS authenticates to the MP and requests for the AI artefact to
be executed in a 3rd party CC. The 3rd party CC must be trusted
by the MP and be authenticated against the SM. In addition, the
provider must install in advance the BL on hosts available for BL
pipelines. The CCmust be out of the control of the DS andmoreover
have no interest in the artefacts. More general, we assume there
is no collusion between the CC and the DS. The procedure from
Section 5.1 will follow and the provisioned artefacts will instantiate
for execution in the 3rd party CC. The BL in the artefact must be
able to communicate with the SM through secure channel to enable
license management. The BL permits the artefact execution if the
communication channel is alive and the license requirements are
matched.
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Figure 7: AI pipeline execution at a CC hosted by the 3rd
party cloud provider

The green arrows in Fig. 7 represent the communication channel
between the SM and all other participating entities. To prevent
compromised artefacts belonging to malicious DSs from exfiltrating
entire datasets, the total volume of data retrieved as output of the
pipeline is restricted . The limitation is both in terms of request
rates for pipeline execution as well as on the size of the output
for individual requests. We believe this architecture is more secure
against the advanced threats because artefact consumers are forced
to use dedicated interfaces instead of having direct access to raw
artefacts or the executing hosts. This measure raises the difficulty
to circumvent DRM mechanisms by compromising pipelines with
instrumented artefacts and hosts.

6 CONCLUSION
The paper describes the privacy requirements for enabling col-
laborative concepts in AI application development. It investigates
the ordinary DRM constraints to address privacy requirements by
regulations and proposes a DRM scheme to achieve fine-grain ac-
cess to the artefacts. This work describes the possible threats in
collaborative AI and suggests three architecture models to meet

the requirements. The paper aims at a practical solution for the
privacy challenge in AI application development and at facilitating
collaboration between different stakeholders.
In the future work, we will implement the proposed architecture
models and investigate the vulnerability of the models based on
the identified threats.
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