
http://www.diva-portal.org

Postprint

This is the accepted version of a paper presented at ISNCC 2019.

Citation for the original published paper:

Bergenholtz, E., Moss, A., Ilie, D., Casalicchio, E. (2019)
Finding a needle in a haystack - A comparative study of IPv6 scanning methods
In: 6th IEEE Int. Symposium on Networks, Computer and Communication Istanbul,
Turkey

N.B. When citing this work, cite the original published paper.

Permanent link to this version:
http://urn.kb.se/resolve?urn=urn:nbn:se:bth-18901

Finding a needle in a haystack - A comparative
study of IPv6 scanning methods
Erik Bergenholtz

Dep. of Computer Science and Engineering
Blekinge Institute of Technology, Sweden

Email: ebz@bth.se
Andrew Moss

Dep. of Computer Science and Engineering
Blekinge Institute of Technology, Sweden

Email: awm@bth.se

Dragos Ilie
Dep. of Computer Science and Engineering
Blekinge Institute of Technology, Sweden

Email: dil@bth.se
Emiliano Casalicchio

Dep. of Computer Science and Engineering
Blekinge Institute of Technology, Sweden

Sapienza University of Rome, Italy
Email: emiliano.casalicchio@uniroma1.it

Abstract—It has previously been assumed that the size of an
IPv6 network would make it impossible to scan the network for
vulnerable hosts. Recent work has shown this to be false, and
several methods for scanning IPv6 networks have been suggested.
However, most of these are based on external information like
DNS, or pattern inference which requires large amounts of known
IP addresses. In this paper, DeHCP, a novel approach based on
delimiting IP ranges with closely clustered hosts, is presented
and compared to three previously known scanning methods. The
method is shown to work in an experimental setting with results
comparable to that of the previously suggested methods, and is
also shown to have the advantage of not being limited to a specific
protocol or probing method. Finally we show that the scan can
be executed across multiple VLANs.

Index Terms—ipv6, ipv6 scanning, cyber scanning, host dis-
covery, penetration testing

I. INTRODUCTION

Scanning networks for live hosts is an important part of
both penetration testing (e.g. [1], [2]) and malware propagation
(e.g. [3], [4]). It is therefore important to understand the
performance of available scanning methods, both to build
scanning resistant networks and to perform security scans.
In IPv4, finding most active hosts in a given network is
quick, even with naive methods. In IPv6 this task is far
from trivial, because the size of a single IPv6 local network
is 232 times larger than the entire IPv4 address space. As
IPv6 becomes more and more widespread [5], understanding
how to efficiently scan IPv6 networks for live hosts becomes
increasingly more important to security experts.

While heuristics that could potentially make the task of
host discovery in IPv6 easier, such as listening to SNMP
traffic or sending ICMPv6 ECHO REQUEST messages to
IPv6 multicast groups (e.g. [3], [6]), are already proposed in
the literature, there is a lack performance evaluation studies.

In this work we provide a twofold contribution. First, we
propose Delimiting DHCP (DeHCP), a novel approach to
limiting the search space of an IPv6 subnet. DeHCP aims
to limit the search space around computers that are closely
clustered together in the address space, allowing for a more
rigorous sequential scan of that area. We demonstrate that

this will provide a good balance between number of hosts
being found and time taken to perform the scan. Second, the
performance of DeHCP is evaluated and compared with three
previously known methods, Multicast ICMPv6, Malformed
Multicast ICMPv6 and Eavesdropping. These methods were
chosen because they have a potentially very high success rate
in scanning a LAN.

This study is limited to local-to-local scans[7], as the
problem of remote-to-local scans is far more complex because
the scan must be performed through a firewall. The study
covers three active scanning methods and one passive method
for comparison. We are also limiting the scope to non-intrusive
methods, i.e. methods that do not attack, disrupt or degrade
the normal network operation. This matches what a system
administrator defending their network would expect from a
penetration tester scanning their network.

The paper is organized as follows. In Section II previously
known scanning methods are presented. Related work is
discussed in section III. Section IV presents the proposed
scanning method, and the performed experiments are described
and discussed in Section V. Our conclusions are laid out in
Section VI. Future work is suggested in Section VII.

II. BACKGROUND

In this section, firstly a taxonomy of IPv6 scanning methods
is defined. Then, scanning methods considered in this paper
are presented.

A. Types of scanning

There are multiple types of scanning. A first broad classi-
fication is: link and network layer scanning [8]; and scanning
methods working at upper layers of the network stack, like
DNS (e.g. [1]). In this study we focus on the first group.
In this section, the terms active scanning, passive scanning,
remote-to-local scanning, and local-to-local scanning [7] are
defined for link and network layer scanning. Methods of IPv6
scanning that are not in these two layers are not necessarily
covered by the taxonomy presented here and are out of the
scope of this paper. We observe that active scanning can be

978-1-7281-1244-2/19/$31.00 c© 2019 IEEE

either local-to-local or remote-to-local, while passive scanning
can only be local-to-local.

1) Remote-to-local scanning: In a remote-to-local scan, the
inside of the target network is scanned by a host located on
a different network. Being able to perform this type of scan
would be devastating to a network, as it would mean that the
entire infrastructure is wide open to the outside world.

2) Local-to-local scanning: As the name suggests, local-
to-local scanning is performed on a local network from a host
residing on that same local network. As the host performing
the scan is already inside the network, this type of scan is
not as severe a security risk as a remote-to-local scan. The
methods evaluated in this paper all belong to this category.

3) Active scanning: With active scanning, network devices
or services are discovered by transmitting probe packets on
the network and listening for responses to said probes. In the
context of host discovery, the ping sweep is a good example
of a typical active method. Ping sweep is a method in which
each IP address in an address range is probed with an ICMP
ECHO REQUEST.

4) Passive scanning: Passive network scanning is per-
formed simply by listening to the traffic on the network. The
limitations with passive scans are that only hosts that engage in
network activities on their own can be discovered with passive
methods, and because only traffic that traverses the links on
which the scanning host is listening is visible, passive scanning
methods are limited to the local-to-local scope.

B. Multicast ICMPv6

The Multicast ICMPv6 method is an active local-to-local
scan. It utilizes the built-in IPv6 all nodes multicast group,
with IP address ff02::1 [9]. This is a multicast group that
all nodes on the local network must be subscribed to, as it
is used to perform Neighbour Discovery [10] as well as other
essential IPv6 functions. A single ICMPv6 ECHO REQUEST
is sent to this address, which reaches all hosts on the local
segment. According to RFC4443 [11], these requests should
yield an ICMPv6 ECHO REPLY from each receiving host.

Adding a Hop-by-Hop IPv6 extension header [12] to the
IPv6 header may mitigate ignored ICMPv6 ECHO REQUEST
messages. According to the RFC, if the Type field of this
header is set to 0x80 the packet should be discarded by
the receiving host and an ICMPv6 PARAMETER PROBLEM
message should be sent to the originating host. Disabling this
behaviour should not be possible, as it is an error detection
feature.

Throughout this paper, normal multicast ICMP is referred
to as Multi-Ping while multicast ICMP with the added Hop-
by-Hop header is referred to as Hop-Ping.

C. Eavesdropping

Eavesdropping is a passive scanning method that consists
of listening to the network and recording the IPv6 source
address of all captured packets. To ensure that the methods
based on ICMPv6 do not interfere with our results from using
this method, all ICMPv6 packets of ICMPv6 PARAMETER

PROBLEM or ICMPv6 ECHO REPLY types are ignored in
our eavesdropping experiments.

III. RELATED WORK

We have observed two major branches of solutions to the
IPv6 scanning problem. In the first branch, the solutions are
based on DNS or similar services, all of which are outside the
scope of this paper. The second branch uses common IPv6
address patterns to reduce the search space. We discuss the
latter category below, along with miscellaneous methods that
fit into neither group.

Pattern based methods infer address patterns from network
data. One such method recursively determines a bit-pattern
fitting most addresses in the training data, which can be used
to generate new addresses. The method was proposed by
Ullrich et. al. in [13]. Similarly the Entropy/IP system takes
a set of sample IPv6 addresses from a target AS network as
input, and exposes the underlying addressing scheme using
entropy computation and Bayesian Networks. Entropy/IP was
proposed by Foremski et. al. in [14], and can also be used to
predict potentially used addresses. Finding densely populated
IPv6 address prefixes can be done using Multi-Resolution
Aggregate Count Ratios, as shown by Plonka and Berger in
[15]. It has also been shown that random scanning combined
with simple transformations of IPv6 addresses from known
datasets, can quickly identify a large number of active router
interfaces. The method is implemented in the tool Yarrp6, and
is proposed by Beverly et. al. [16].

Extracting routing information, examining neighbour
caches, eavesdropping and multicast ICMPv6 ECHO
REQUEST messages are examples of miscellaneous methods,
and were suggested by Bellovin et. al. [3]. Sending fake router
advertisements and using the Hop-by-Hop IPv6 extension
header to elicit error messages also fall into this category.
Their performance as means for worm propagation was
evaluated by Li et. al. [17]. They concluded that in theory,
fake router advertisements and multicast ICMP enable faster
propagation, while using the Hop-by-Hop extension header
provides better coverage. Methods such as listening to SNMP
traffic and using local name resolution protocols like mDNS
[18] are also possible methods, and are suggested in RFC7707
[6] along with several of the already mentioned methods.

IV. DELIMITING DHCP (DEHCP)

DeHCP1 is a novel local-to-local active scanning method
aiming at reducing the address search space. DeHCP is based
on finding a range of addresses where the host density is likely
higher than that of the rest of the network, therefore yielding a
large amount of discovered hosts for a relatively small amount
of work. To achieve this goal, we use a binary search algorithm
to find the upper and lower bounds of a potential DHCP pool
(DHCPstart and DHCPend). The trade off is that the method
may miss some live hosts, in particular if they are located
outside of a densely populated area. The method treats the

1https://github.com/erikbergenholtz/v6scan

Algorithm 1 Algorithm for finding the lower or upper bound

1: procedure DELIMIT(l, u, w)
2: host← (l + u)/2
3: if l ≥ u then return host

4: if host responds to probe then
5: if Looking for lower limit then
6: return DELIMIT(l, host− 1, w)
7: else
8: return DELIMIT(host+ 1, u, w)
9: else

10: for all tmp in [host− w, host+ w] do
11: if tmp responds to probe then
12: if Looking for lower limit then
13: return DELIMIT(l, tmp− 1, w)
14: else
15: return DELIMIT(tmp+ 1, u, w)
16: if Looking for lower limit then
17: return DELIMIT(host+ 1, u, w)
18: else
19: return DELIMIT(l, host− 1, w)

address space as a range of integers, and so it is protocol
independent. This means that the method can delimit DHCP
pools in both IPv4 and IPv6 networks.

DeHCP is an active method that is not constrained to a
specific probing technique. In this study, two probing methods
were evaluated; a ping (DeHCPicmp), and a port scan using
nmap [19] (DeHCPnmap).

The method essentially performs two scans. First, it scans
a small amount of nodes to find the boundaries of the most
populated range of addresses. Then, that range is scanned se-
quentially to find the active hosts. The algorithm for finding the
boundaries is shown in Algorithm 1. It takes three parameters
l, u and w. l is the lower bound of the area currently scanned
for the DHCP boundary, u is the upper bound of the same area.
These two parameters are bounded by the network address
space. The window size w is used to determine whether or not
non-responding addresses are outside the DHCP pool. This
process is explained in greater detail below.

A starting point, referred to as a seed, must be provided
when first running the algorithm. The seed is supplied as
either the l or u argument of the function, depending on
whether DHCPstart or DHCPend is to be determined. The
seed address should be inside of the DHCP pool, otherwise
one of the detected boundaries have an unconditional error of
|DHCPbound − seed|.

The algorithm starts by calculating the middle point between
l and u, called host in Algorithm 1. This address is probed
to see if it is live. If it answers, it is assumed to be inside
the DHCP pool, and consequently the search area is adjusted
to move away from the seed address. This is done in the
recursive function calls in lines 6 or 8. If the address did
not respond to the probe, the range [host − w, host + w] is
scanned sequentially for live hosts to determine if the window

overlaps the DHCP pool. This is based on the assumption
that a host outside the DHCP pool is less likely to have live
neighbours than a host inside the DHCP pool. If any of these
hosts respond to their probes, the algorithm adjusts the search
space in the same way as above. In the case that none of these
addresses respond host is assumed to be outside the DHCP
pool. The search space is then adjusted to move closer to the
seed address. At some point, l will become larger than u.
This is the stop condition for the algorithm, and the last value
of host is returned as the determined boundary of the DHCP
pool.

V. EXPERIMENTS AND ANALYSIS

To evaluate and compare the methods considered in this
paper, experiments were performed in an emulated network.
These experiments were preceded by a simulation of the De-
HCP method, and complemented by evaluation in a production
environment.

A. Simulation of DeHCP

Simulation was used as a means to determine which window
size w, in the DeHCP method, gives the most accurate
outcome. In the simulation, the network was modelled as a
binary vector a = {a1, ..., a106}, where ai = 1 represents
a responding host and ai = 0 represents a host not re-
sponding. These values were uniformly randomized according
to the two density parameters explained below. The range
i ∈ [450000, 550000] was defined as the DHCP pool, and
was placed in the middle of the network to reduce bias in the
results. The following parameters controlled the simulation:

1) Outer density (ρout) - Density in percent of responding
hosts outside the DHCP pool, where
ρout ∈ {0.001, 0.01, 0.1, 1}.

2) Inner density (ρin) - Density in percent of responding
hosts inside the DHCP pool, where
ρin ∈ {0.001, 0.01, 0.1, 1, 5, 10, ..., 100|ρin ≥ ρout}

3) Window - The amount of IP addresses scanned above
and below an IP that does not respond to probes w,
where w ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 50, 500, 5000}

4) Seed placement - The placement of the seed address in
relation to the DHCP pool. The evaluated seed addresses
were each quarter into the DHCP pool.

The results of the simulations were analysed, and used as a
basis for choosing the appropriate window size when running
the experiments on the production and emulated network. The
difference between the determined and actual boundary of the
DHCP pool ∆DHCP was recorded in each simulation, and
each set of parameters was simulated 100 times.

The sum |∆DHCPstart|+|∆DHCPend| of absolute differ-
ences was calculated for each simulation. The boxes in Figure
1 shows the the middle 50% of simulation outcomes. From this
we can see that smaller window sizes induce smaller errors,
and that the error is smallest for a window size w = 4. This
value also has a very low median of w̃4 = 14. For this reason,
w = 4 was chosen for the other experiments.

1 2 3 4 5 6 7 8 9 10 50 500

0
1
0
0
0
0

2
0
0
0
0

3
0
0
0
0

4
0
0
0
0

Window

S
u
m

 o
f
a
b
s
o
lu

te
 d

e
lt
a
s

Fig. 1: Error for the tested window sizes over ρout ∈
{0.001%, 0.01%, 0.1%, 1%|ρin ≥ ρout}, and DHCPstart ≤
seed ≤ DHCPend.

B. Emulated network

The scanning methods were first evaluated in an emu-
lated network. The scans were performed over six hours,
during which the DeHCP method was restarted once per
hour since it does not run indefinitely. Both DeHCPicmp and
DeHCPnmap were evaluated. A host is considered online by
the DeHCPnmap scan if any of the probed ports reply with a
TCP/ACK, or if nmap reports a MAC address. This is to avoid
false positives caused by a router responding with TCP/RST
if it knows the scanned host does not exist.

The emulated network was constructed to enable evaluation
of the DeCHP method on a network using DHCPv6 to assign
IPv6 addresses. The network had a simple layout, with 14
physical computers running Ubuntu 16.04 LTS. One of the
computers was the designated router and DHCPv6 server,
while the other 13 machines acted as hosts for 32 virtual
machines each. In total, there were 429 active clients on
the network, which all had their IPv6 addresses assigned via
DHCPv6 by the router, from a DHCPv6 pool of 512 addresses.
This DHCPv6 pool was situated in the address space so that
the DeHCP scan would not find the address of the router, as
this is a guaranteed hit which would bias the results because
the scans were performed from the router.

Including the router there were 430 IPv6 addresses assigned.
The scans were performed from the router, and an IPv6 address
in the middle of the DHCPv6 address pool was used to seed the
DeHCP method. Therefore, the emulation effectively emulated
a scenario in which an external attacker gained access to the
edge router, and performed the scan from there.

All virtual machines were configured the in same way. They
ran Ubuntu Server 18.04 LTS, and each virtual machine ran

TABLE I: Results of scanning the emulated /64 network

Method Type Global (F/T)

Eavesdrop Passive 430/430
Multi-Ping Active 430/430
Hop-Ping Active 430/430
DeHCPv6icmp Active 429/430
DeHCPv6nmap Active 429/430

a TCP/SYN scan of the router machine using nmap2 with a
randomized delay of 5 to 90 minutes between scans.

1) Analysis: The results from the experiments performed
in the emulated network can be found in Table I, where the
results are presented on the form #Found/#Total active hosts. In
the table, we can see that all methods found all hosts that they
were expected to find. The DeHCP methods did not find the
router address, which is expected as the network was laid out
so that the guaranteed answer from the scanning host would
not bias the result, as discussed previously.

The Multi-Ping and Hop-Ping methods found all used
addresses on the network within a few seconds, and because
of this it would seem that these methods are clearly better than
the others. However, it should be noted that the network was
almost homogeneous, i.e. all hosts (with the exception of the
physical machines) were configured exactly the same, meaning
that if one of the hosts is configured to answer all machines
are configured to answer. As shown in Section V-C2 neither
of these methods reach close to this level of performance in a
non-homogeneous network.

The DeHCPv6icmp and DeHCPv6nmap methods finished in
approximately 20 and 21 minutes respectively, i.e. one host
was discovered approximately every 3 seconds on average. To
achieve this, both methods issued 1625 probes. This includes
both determining the limits of the DHCP pool and sequentially
scanning the entire determined range.

Another noteworthy point is that in the emulated network
all virtual machines were rigged to port scan the designated
router at least once per 90 minutes. Because the experiment
was ran for six hours, this guaranteed that all hosts transmitted
packets at least four times during the experiment. As all hosts
are on the same network segment the Eavesdropping method
was guaranteed to find all hosts. As seen in section V-C2 this
is not realistic.

C. Production network experiments

Following the experiments in the emulated setting, the
scans were evaluated in two production networks belonging to
Blekinge Institute of Technology; the campus wired network
as well as the campus wireless network. In these experiments,
the scanning methods were ran from a computer on the target
network. The experiments were performed over 24 hours
during business days to cover both periods of high and low
network activity, which impacts the number of live nodes. The
experiment on the production networks were performed in the
same way as the experiment in the emulated setting, with the

2nmap -6 -n -F -sS

TABLE II: Results of scanning the BTH IPv4 networks

Wired Wireless

Method Type Global (F/T) Global (F/T)

DeHCPv4icmp Active 122/1449 33/226
DeHCPv4nmap Active 119/1449 51/226

exception for the longer duration. During the experiments,
for each method we collected discovered IP addresses and
timestamps for the discovery.

1) BTH network topology: The production networks used
for the experiments were the wired and wireless university
networks of Blekinge Institute of Technology. The networks
use both IPv4 and IPv6, where the IPv4 addresses are assigned
via DHCP [20], and the IPv6 addresses are autoconfigured. We
scanned the IPv4 address space of these networks to show that
the DeHCP scan is not dependent on any particular protocol.
We also scanned the IPv6 network, to observe how the method
behaves in a network with autoconfigured addresses. Because
the addresses are uniformly distributed over the entire address
space, and not clustered closely together, we expect that the
method will find a very low number of hosts in this setting. The
seed address for the DeHCP method is set to the IP addresses
of the hosts from which the scan is performed, both in the
case of IPv4 and IPv6.

The wired BTH network is divided into multiple smaller
VLANs that have their own DHCP pools, each with 45 hosts
on average. The IPv6 network is a full /48 segment, while the
IPv4 network segment for the whole BTH network is a /19,
and is populated by approximately 2200 hosts. The wireless
IPv4 network is a /22 segment, and has a full /64 IPv6
subnet dedicated to it. In the wired network, the DeHCP scans
on the IPv6 wired network searched the entire /48 address
space for a DHCP pool, while the whole /19 address space
was searched in the IPv4 network. This means that multiple
VLANs, and therefore DHCP pools, were covered by the scan.
In this situation DeHCP is expected to find the convex hull
of all DHCP pools. The IPv4 subnet of the wireless network
is not covered by the /19, and so this is scanned on its own
together with its /64 IPv6 subnet. To estimate the state of the
network a script that dumps the ARP table and IPv6 neighbour
cache on request was installed on a central router. It should
be noted that these values contain stale entries as well, which
may inflate the total number of hosts on the network. In Tables
II and III the number of unique IP addresses fetched from the
router is denoted by T (Total), while the number of unique IP
addresses found by the evaluated methods is the F (Found)
value.

2) Analysis: The results of scanning the IPv4 networks can
be found in Table II. We see that the scan found addresses from
several different VLANs, as each VLAN is only populated by
45 computers on average. The results also show very clearly
that the method works in an IPv4 setting, and so is independent
of the protocol used on the network.

The results of scanning the IPv6 networks are shown
in Table III. In this setting the addresses were distributed

uniformly in the entire address space due to autoconfiguration,
which lead to an extremely low host denisty (ρ ∝ 1×10−16%).
Because the DeHCP scanning method attempts to find densely
clustered IP addresses in the search space, as expected it found
a very low number of hosts in these experiments, regardless
of probing method.

Speaking in the favour of the method is the scanning time;
upon examining the logs, we found that the entire delimiting
scan took at most 1617 seconds. The range [host−w, host+w]
was scanned in each step of the binary search, as the scan did
not find any hosts other than the scanning host. This means
that in this case, when the delimiting scan was at its slowest,
this process finished in just under 30 minutes for a network
segment containing 280 addresses, and used no more than 1548
probes in the process.

We can also observe from Table III that the Eavesdropping
method found the largest amount of live IPv6 addresses of
the evaluated scanning methods, while still only finding a
small number of addresses in the wired network. The rea-
son for the low number of discovered hosts, even with the
Eavesdropping method, is that the experiment was conducted
from a computer placed in the network of a single computer
lab. As the experiment was not carried out while the lab was
in use, the Eavesdropping method is only expected to find
automatically generated traffic, such as router solicitations and
advertisements.

The Multi-Ping almost reached the performance of the
Eavesdropping method, but found mostly one kind of IP
address per experiment. This is the expected outcome because
of [21], as the ICMPv6 messages originated from the global
IPv6 address. Note that the method finds some link-local IPv6
addresses when using a global address as the packet source.
This is likely because the recipient of the ICMPv6 ECHO
REQUEST did not have a global IPv6 address assigned, but
had IPv6 enabled.

The Hop-Ping method performed very poorly. In fact, the
only IP addresses that were found were those of the hosts
performing the scan. Upon further investigation we found that
the ICMPv6 ECHO REQUEST messages did not reach the
other hosts on the network, but were dropped in transit.

VI. CONCLUSIONS

The DeHCP simulation shows very promising results. With
an outer density that is below 1% the error in finding the
DHCP boundaries is small, with a median of 14 for a window
size of w = 4. In reality, even a 0.001% network density (i.e.
the smallest density used in the simulation) outside a DHCP
pool is highly unrealistic, as 0.001% an entire /64 IPv6 subnet
is 1.8 × 1014 hosts. Because of this, the DeHCP method is
likely to perform well in a real life network using DHCPv6,
as the network density will never be anywhere close to 0.001%
in such a setting. This is confirmed by the very positive results
in the emulated network.

It should also be noted that, while discussions about the
DeHCP method in this paper has largely revolved around the
network utilizing DHCPv6, the main requirement for it to

TABLE III: Results of scanning the BTH /48 network with global source addresses

BTH wired network BTH wireless network

Method Type Link-local (F/T) Global (F/T) Link-local (F/T) Global (F/T)

Eavesdrop Passive 29/1290 37/4483 247/249 235/486
Multi-Ping Active 5/1290 40/4483 2/249 83/486
Hop-Ping Active 0/1290 1/4483 0/249 1/486
DeHCPv6icmp Active 0/1290 1/4483 0/249 1/486
DeHCPv6nmap Active 0/1290 0/4483 0/249 1/486

function is that an address range of higher host density exists
on the network. This means that the method could potentially
discover ranges of servers with static IP addresses that are
closely clustered together in the address space.

Finally, the Eavesdropping and Multi-Ping methods both
performed as expected, and while the Hop-Ping method did
not perform well in the real setting it was shown in the
emulated network that the method works.

VII. FUTURE WORK

This work considers only a specific method of exploiting
density in the address space to reduce scanning costs while
still discovering a large amount of active hosts. Our future
work will use density estimation methods and consider a more
general network topology, where hosts are not necessarily
clustered together in the address space.

ACKNOWLEDGEMENTS

We would like to thank Björn Mattsson for allowing us
to run our experiments on the BTH production network, for
providing a script that showed the state of the network, and for
helping when parts of the network needed to be reconfigured.

This project has received funding from Swedish Agency
for Economic and Regional Growth (Tillväxtverket) under
the umbrella of European Structural and Investment Funds
(ESI) covered by grant agreement No 20201213 (Test Arena
Blekinge). The project is run in collaboration with Blue
Science Park in Karlskrona, Sweden.

REFERENCES

[1] C. Ottow, F. E. van Vliet, P. de Boer, and A. Pras, “The impact
of ipv6 on penetration testing,” in Information and Communication
Technologies - 18th EUNICE/ IFIP WG 6.2, 6.6 International
Conference, EUNICE 2012, Budapest, Hungary, August 29-31, 2012.
Proceedings, ser. Lecture Notes in Computer Science, R. Szabó and
A. Vidács, Eds., vol. 7479. Springer, 2012, pp. 88–99. [Online].
Available: https://doi.org/10.1007/978-3-642-32808-4 9

[2] H. Rafiee, C. Mueller, L. Niemeier, J. Streek, C. Sterz, and C. Meinel,
“A flexible framework for detecting ipv6 vulnerabilities,” in The 6th
International Conference on Security of Information and Networks,
SIN ’13, Aksaray, Turkey, November 26-28, 2013, A. Elçi, M. S. Gaur,
M. A. Orgun, and O. B. Makarevich, Eds. ACM, 2013, pp. 196–202.
[Online]. Available: http://doi.acm.org/10.1145/2523514.2527001

[3] S. M. Bellovin, B. Cheswick, and A. Keromytis, “Worm propagation
strategies in an ipv6 internet,” LOGIN: The USENIX Magazine, vol. 31,
no. 1, pp. 70–76, 2006.

[4] C. C. Zou, D. Towsley, and W. Gong, “On the performance
of internet worm scanning strategies,” Performance Evaluation,
vol. 63, no. 7, pp. 700 – 723, 2006. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0166531605001112

[5] “Google ipv6,” https://www.google.com/intl/en/ipv6/statistics.html, ac-
cessed: 2018-06-12.

[6] F. Gont and T. Chown, “Network reconnaissance in ipv6 networks,”
RFC Editor, RFC 7707, March 2016.

[7] E. Bou-Harb, M. Debbabi, and C. Assi, “Cyber scanning:
A comprehensive survey,” IEEE Communications Surveys and
Tutorials, vol. 16, no. 3, pp. 1496–1519, 2014. [Online]. Available:
https://doi.org/10.1109/SURV.2013.102913.00020

[8] “Information technology – open systems interconnection – basic refer-
ence model: The basic model,” International Organization for Standard-
ization, Standard, June 1996.

[9] “Ipv6 multicast address space registry,” accessed: 2018-06-14.
[Online]. Available: https://www.iana.org/assignments/ipv6-multicast-
addresses/ipv6-multicast-addresses.xhtml

[10] T. Narten, E. Nordmark, W. Simpson, and H. Soliman, “Neighbor
Discovery for IP version 6 (IPv6),” RFC Editor, RFC 4861,
September 2007, http://www.rfc-editor.org/rfc/rfc4861.txt. [Online].
Available: http://www.rfc-editor.org/rfc/rfc4861.txt

[11] A. Conta, S. Deering, and M. Gupta, “Internet Control
Message Protocol (ICMPv6) for the Internet Protocol Version
6 (IPv6) Specification,” RFC Editor, RFC 4443, March
2006, http://www.rfc-editor.org/rfc/rfc4443.txt. [Online]. Available:
http://www.rfc-editor.org/rfc/rfc4443.txt

[12] S. Deering and R. Hinden, “Internet Protocol, Version 6 (IPv6) Specifi-
cation,” RFC Editor, STD 86, July 2017.

[13] J. Ullrich, P. Kieseberg, K. Krombholz, and E. R. Weippl, “On
reconnaissance with ipv6: A pattern-based scanning approach,”
in 10th International Conference on Availability, Reliability and
Security, ARES 2015, Toulouse, France, August 24-27, 2015.
IEEE Computer Society, 2015, pp. 186–192. [Online]. Available:
https://doi.org/10.1109/ARES.2015.48

[14] P. Foremski, D. Plonka, and A. W. Berger, “Entropy/ip: Uncovering
structure in ipv6 addresses,” in Proceedings of the 2016 ACM on
Internet Measurement Conference, IMC 2016, Santa Monica, CA,
USA, November 14-16, 2016, P. Gill, J. S. Heidemann, J. W. Byers,
and R. Govindan, Eds. ACM, 2016, pp. 167–181. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2987445

[15] D. Plonka and A. W. Berger, “Temporal and spatial classification
of active ipv6 addresses,” in Proceedings of the 2015 ACM
Internet Measurement Conference, IMC 2015, Tokyo, Japan,
October 28-30, 2015, K. Cho, K. Fukuda, V. S. Pai, and
N. Spring, Eds. ACM, 2015, pp. 509–522. [Online]. Available:
http://doi.acm.org/10.1145/2815675.2815678

[16] R. Beverly, R. Durairajan, D. Plonka, and J. P. Rohrer, “In the ip of the
beholder: Strategies for active ipv6 topology discovery,” 2018.

[17] J. Li, F. Su, Z. Lin, and Y. Ma, “The research and analysis of worm
scanning strategies in ipv6 network,” in 13th Asia-Pacific Network
Operations and Management Symposium, APNOMS 2011, Taipei,
Taiwan, September 21-23, 2011. IEEE, 2011, pp. 1–4. [Online].
Available: https://doi.org/10.1109/APNOMS.2011.6076995

[18] S. Cheshire and M. Krochmal, “Multicast DNS,” RFC Editor, RFC
6762, February 2013, http://www.rfc-editor.org/rfc/rfc6762.txt. [Online].
Available: http://www.rfc-editor.org/rfc/rfc6762.txt

[19] G. Lyon, “Nmap security scanner,” https://nmap.org/, accessed: 2018-
05-24.

[20] R. Droms, “Dynamic Host Configuration Protocol,” RFC Editor, RFC
2131, March 1997, http://www.rfc-editor.org/rfc/rfc2131.txt. [Online].
Available: http://www.rfc-editor.org/rfc/rfc2131.txt

[21] D. Thaler, R. Draves, A. Matsumoto, and T. Chown, “Default
Address Selection for Internet Protocol Version 6 (IPv6),” RFC Editor,
RFC 6724, September 2012, http://www.rfc-editor.org/rfc/rfc6724.txt.
[Online]. Available: http://www.rfc-editor.org/rfc/rfc6724.txt

