
Orchestrating Future Service Chains in the Next
Generation of Clouds

Roman-Valentyn Tkachuk∗ Dragos Ilie∗
∗Blekinge Institute of Technology (BTH)

[roman-valentyn.tkachuk|dragos.ilie|kurt.tutschku@bth.se]

Kurt Tutschku∗

Abstract—Service Chains have developed into an important
concept in service provisioning in today’s and future Clouds.
Cloud systems, e. g. , Amazon Web Services (AWS), permit the
implementation and deployment of new applications, services
and service chains rapidly and flexibly. They employ the idea of
Infrastructure as Code (IaC), which is the process of managing
and provisioning computing infrastructure and its configuration
through machine-processable definition files.

In this paper, we first detail future service chains with
particular focus on Network Function Virtualization (NFV) and
machine learning in AI. Afterwards, we analyze and summarize
the capabilities of today’s IaC tools for orchestrating Cloud
infrastructures and service chains. We compare the functionality
of the major five IaC tools: Puppet, Chef, SaltStack, Ansible,
and Terraform. In addition, we demonstrate how to analyze
the functional capabilities of one of the tools. Finally, we
give an outlook on future research issues on using IaC tools
across multiple operators, data center domains, and different
stockholders that collaborate on service chains.

I. INTRODUCTION

Service Chains have developed into an important concept
in service provisioning in today’s and future Clouds. Cloud
systems, e. g. , Amazon Web Services (AWS) [1], permit the
implementation and deployment of new applications, services
and service chains rapidly and flexibly. They employ the idea
of Infrastructure as Code (IaC) [2], which is the process
of managing and provisioning computing infrastructure and
its configuration through machine-processable definition files.
Network Function Virtualization (NFV) uses the concept of
network service chaining [3], which is the capability of
applying Software-Defined Networking (SDN) mechanisms to
create a virtual service chain of connected network services,
e. g. , a chain containing a firewall, a NAT, and an Intrusion
Detection System (IDS). This Network Service Chain (NSC)
is subsequently provisioned to a specific customer. The idea
of service chains is also increasingly applied in data-driven AI
system engineering. Data-driven AI applies Machine Learning
(ML) frameworks, e. g. , TensorFlow, that turn the engineering
or inference process into one that uses chains of AI services
and AI functions chains. The chains are denoted as AI
pipelines [4], [5], [6]. In security testbeds, service chains can
be used to instantiate test scenarios, consisting of network,
hardware, software, attackers, and vulnerable entities.

The provisioning of the above-described service chains
can be done manually. However, this approach might be a
highly time consuming and error-prone process. Using the

IaC idea, however, may accelerate the provisioning of the
above-outlined service chains. IaC can cut the time to deploy
a new service chain from hours to minutes. In addition, it
may easily provide for automatic scaling of the service chain,
either by allowing rapidly instantiating parallel service chains
or permitting very large chains comprising hundreds or even
thousands of service providing entities.

In Clouds, IaC obtains these features by treating the in-
frastructure as a software system, and by applying software
engineering practices to manage changes to the system in a
repeatable, structured and safe way.

The paper is structured as following: Section II gives a brief
overview on what kind of service chains are addressed in this
paper, their specific needs, the standards and data structure
to model and describe them, and on examples of tools which
might be considered for orchestration and how these tools are
related to tools for IaC. Section III details the test environment
for testing the IaC tools. Section IV provides an in depth
comparison of IaC tool, already with an outlook to future
service chains. Section V describe the experiments to validate
the functional capabilities of a specific tool (Ansible) and
describes our plans for future work.

II. SERVICE CHAINS

Service chains have become a major concept for service
deployment in SDN and NFV environments [7]. NSCs or
Service Function Chains (SFCs) are chains of connected
network services, such as firewall, network address translation,
and intrusion detection systems [8]. These chains form again
a service that can be provisioned. Operators may set up a
catalog of service functions that can be embedded in a chain.
A provisioned network connection can use one or multiple ser-
vices functions with different characteristics. Figure 1 depicts
two concurrent NSCs provisioned to different customers. The
chains are implemented on top of a NFV platform and use
four different network functions. NFV-based service chains
are typically instantiated within a NFV cloud platform of a
single operator. The service function may be implemented
in these clouds through virtual machines (VMs) or by light-
weight containers, which are executed on demand.

Service chains, however, are not limited to SDN and NFV.
Recent machine learning frameworks, such as TensorFlow [9],
[4], also apply sequenced functions denoted as AI pipelines.
Figure 2 shows an AI pipeline for keyword spotting in spoken

Fig. 1. Example of NSC implemented by an NFV platform, cf. [8]

Data Sourcing
(raw, labeled,

archive)

DNN Model Training

Training

Data Preparation
(merging,

processing,
partitioning)

Task Benchmarking

Visualization

Datasets
(Benchmark/train/test)

Raw
Data

Model

Task
Standard
Format
Script

Exploratory Data Analysis

Performance
Report

Accuracy
Report

Bonseyes
AI artefacts
in containers

Target
Benchmarking

Fig. 2. Bonseyes pipeline for keyword recognition, cf. [5]

sentences. The pipeline is used in the H2020 project Bonseyes
as a use-case for demonstrating the efficiency of collaborative
development in data-driven AI systems [10], [5]. The pipeline
shows four AI functions: Data Sourcing, Data Preparation,
Training, and Target Benchmarking. These functions are de-
noted in the AI engineering process of Bonseyes as AI artifacts
and are implemented as Docker containers. An AI pipeline is
a chain of AI artifacts. A similar AI pipeline for AI inference,
denoted as InferLine [6], is depicted in Figure 3. While
the InferLine pipeline focuses on single physical execution
location, e. g. , a single data center, the Bonseyes pipeline
is designed considering a distributed execution environment
of AI artifacts. Bonseyes assumes that the AI pipeline is
executed in a federated IT infrastructure, which is initially
not secure and where hosts are a-priori not trusted. Hence, the
use of federated distributed execution requires specific and
new concepts for data security, Digital Rights Management
and data privacy [11].

Service chains can be modelled as a special class of graphs.

InferLine
Profiler

Load
Generator

Planner

Optimizer

Estimator

Driver.py

Sample
Queries

Latency
SLO

Offline

Online

Live
Queries Preds.

Model
Profiles

Pipeline

ConfigSample
Trace

Physical
Execution
Engine

Latency-Aware Batched Queuing System

GPU

GPUCPU

CPU

C
on

ta
in

er

Bigger
GPU

CPU

CPU

C
on

ta
in

er

Reactive Controller

Fig. 3. Inferline Pipeline, cf. [6]

In NFV these graphs are denoted as Virtual Network Function
- Forwarding Graphs (VNF-FGs). The ETSI Open Source
MANO project [12] provides an information model and data
structures for VNF-FGs [13]. The Tacker project [14] is
an OpenStack service for NFV orchestration with a general
purpose VNF Manager to deploy and operate Virtual Network
Functions (VNFs) and Network Services on an NFV Platform.
Tacker together with IaC tools, such as Ansible (see below),
enabled highly scalable service chain deployment and orches-
tration in OpenStack [15].

III. TEST INFRASTRUCTURE

At Blekinge Institute of Technology (BTH) we are cur-
rently designing and implementing a federated service chain
infrastructure, shown in Fig. 4, that aims to address the
following objectives. First, it should enable convenient and
efficient testing during the implementation of a service chain.
In particular, it should be easy to integrate the infrastructure
in a continuous integration / continuous testing / continuous
delivery (CI/CT/CD) environment for Agile software devel-
opment and DevOps. Secondly, it should aid in diagnosing
issues with existing service chains. For example, an existing
service chain (or a scaled-down version) would be replicated
on our infrastructure. The infrastructure would be instrumented
to enable debugging of API calls between service elements
and to provide various levels of introspection into the actual
elements. The replica can then be configured to enter the state
that triggers the issue to be diagnosed. Finally, we would like
to be able to scale up the test resources by allowing interested
parties to interconnect infrastructure under their control to our
infrastructure.

The first two objectives aforementioned require the pro-
visioning of servers that execute the service chain and the
proper configuration of the chain elements. By provisioning,
we mean the ability to allocate servers to the chain and to
install the required software. Proper configuration implies that
the elements have the necessary information to interconnect
and interoperate such that the intended chain functionality is
implemented. Although both provisioning and configuration
can be done manually, such a process is error prone and time
consuming. In addition, in the case of CI/CT/CD, one often
wants to begin with a system in a pristine condition and there-
fore will frequently provision and reconfigure. Consequently,
it is desirable to automate these operations, which is why we
consider IaC.

The last objective, interconnecting infrastructure from mul-
tiple parties, typically results in a federated architecture, where
parties retain control over their infrastructure and can control
how much resources they share with the federation members.

We have decided to use OpenStack [16], a cloud operating
system, for implementing the test infrastructure. This choice
was motivated by elements in a service chain often being
implemented as VMs or light-weight containers inside a cloud,
by our desire to provide elastic resource allocation, and by
our past experience in operating an OpenStack node [17]. In

Mikrotik (VPN)

OpenStack cloud

Mikrotik (VPN)

OpenStack cloud

Mikrotik (VPN)

OpenStack cloud

W
W
W

Firew
all

IoT

W
indow

s

Linux

W
indow

s

S
Q
L

W
W
W

W
W
W

Firew
all

IoT

W
indow

s

Linux

W
indow

s

S
Q
L

W
W
W

W
W
W

Firew
all

IoT

W
indow

s

Linux

W
indow

s

S
Q
L

W
W
W

W
W
W

Firew
all

IoT

W
indow

s

Linux

W
indow

s

S
Q
L

W
W
W

W
W
W

Firew
all

IoT

W
indow

s

Linux

W
indow

s

S
Q
L

W
W
W

BTH / BSPPartner Partner

Fig. 4. Federated test infrastructure

addition, OpenStack can support a federated architecture [18],
which is consistent with our third objective.

The design of the test infrastructure is currently driven by
two specific use-cases. The first use-case, which is ongoing
work, is about deploying the Bonseyes AI pipeline described
in Section II. The elements of the pipeline will refuse to
interoperate unless mutual trust is established with neighboring
elements in the sequence and with the host they execute on.
The potential presence of malicious entities poses a number of
interesting threats [11] that such a system must handle in order
to enter a trustworthy state [19]. Our intention is to use the
test infrastructure to emulate such malicious entities and verify
that the system can handle the threats. The second use-case
is about scanning IPv6 networks to discover active hosts. The
scanning can be useful, for example, for penetration testing
exercises. However, the tremendous size of IPv6 networks
poses a serious challenge for classic scanning algorithms that
iterate sequentially over the entire address space. We have
developed a set of IPv6 scanning heuristics [20] to overcome
this challenge by trading accuracy for execution time. We are
using the test infrastructure to deploy virtual IPv6 networks
and evaluate the performance of the heuristics. Although IPv6
networks do not represent typical service chains, their use
allowed us to analyze the functionality of a IaC tool as
described in Section V of the paper.

IV. IAC TOOLS COMPARISON

Infrastructure as Code (IaC) is the process of managing
computational resources through machine-readable definition
files, instead of making manual configuration changes or using
interactive configuration tools [2].

We have performed a qualitative comparison of five IaC
tools, as shown in Table I. The aim was to evaluate their
suitability for the testbed described in Section III, according
to a set of desirable features extracted from web sites hosting
the software, online descriptions and comparisons [21], [22],
as well as own practical testing.

The features were divided into four main categories: archi-
tectural concepts, usability, security, and popularity. In Table I
the categories are separated by double horizontal lines.

A. Architectural concepts

The type of a IaC tool denotes its main purpose. An
orchestration tool is used foremost for provisioning nodes for a
specific role (e. g. , web server). Typically, this means installing
a base image (containing operating system and software) on
bare metal. Configuration management tools assume there is
a base image installed already on the server. Their use is
mostly to install and manage software on existing machines.
However, none of the compared tools is a purely configuration
management or orchestration tool and the label just indicates
where their major functionality lies.

Tools with mutable infrastructure allow software to be
installed or updated incrementally on each node, independently
from other nodes. With more and more updates, nodes will
have diverging update histories. This can lead to a phe-
nomenon known as configuration drift [22], where each node
becomes different from other nodes with similar functionality.
Immutable infrastructure implies that the infrastructure is
stateless because the state of the cloud environment is specified
as a whole, and thus will not face any configuration drifts.

In a server-only architecture, IaC software is installed only
on the server, whereas in a client-server architecture there
is also agent software installed on the clients. Typically, the
agent requires that extra ports are opened in the firewalls to
enable communication with the server software. Thus, the
administration effort and the attack surface increases in the
case of client-server architectures.

B. Usability

The availability of the source code can have a strong impact
on community interest, code base knowledge and contributions
to IaC tool development. All IaC tools included in this study
are using open source licenses, which in most cases grant free
use and distribution of software modifications.

The changes propagation method feature indicates how
the changes are delivered to the target machines. In a push
approach, the IaC server keeps track of what installed on
each client and applies changes where necessary. In the
pull approach, clients request updates from the IaC server.
Typically, this is a more scalable approach than push, because
the clients maintain on their own the state of installed software.

The programming language feature indicates the scripting
language used to write configuration scripts. This may be im-
portant if the IaC tool is integrated in a larger ecosystem where
a specific programming language is required. However, the
programming language approach can have a larger impact
on the type of changes that can be automatically deployed.
With a declarative language, one expresses the end state of
the infrastructure, without specifying each and every state in
the configuration script. The disadvantage is that it is not
possible to fully control the flow of script execution. Contrary,
imperative languages allow full control of execution flow in

TABLE I
IAC TOOLS COMPARISON

Puppet Chef SaltStack Ansible Terraform

Type Configuration
Management

Configuration
Management

Configuration
Management

Configuration
Management Orchestration

Infrastructure Mutable Mutable Mutable Mutable Immutable
Architecture Client-Server Client-Server Client-Server Server-Only Server-Only
Source Code Open Source Open Source Open Source Open Source Open Source

Changes propagation
method Pull Pull Pull Push Push

Programming
Language Puppet DSL Ruby DSL YAML YAML

HashiCorp
Configuration

Language
Programming

Language Approach Declarative Imperative Declarative and
Imperative

Declarative and
Imperative Declarative

Interoperability Master - Unix, Agents
- Unix/Windows

Server - Unix, Clients
- Unix/Windows

Master - Unix,
minions -

Unix/Windows

Server - Unix,
supports configuration

of Windows

Vast majority of
operating systems

Accountability Activity service API Ruby based Chef Log
Resource class

SaltStack built-in
Logs Ansible built-in Logs Terraform built-in

Logs

Authentication Certificate-based Certificate-based
Publisher ACL and

External Auth
Modules

Cloud built-in API Cloud built-in API

Availability

Multi-master
architecture. If

Primary master fails,
Secondary master

takes its place.

Contains primary
server as well as

backup server.

Multi-master
architecture. If

Primary master fails,
Secondary master

takes its place.

Contains primary
instance which is

substituted by
secondary instance.

Contains single active
node that is

substituted by
secondary node.

Integrity
Periodic client
configuration

validation

Periodic client
configuration

validation
N/A N/A N/A

Confidentiality HTTPS HTTPS SSH SSH Cloud build-in API
Contributions

(GitHub) 432 477 1596 1488 653

Libraries 4435 3052 240 8044 40
StackOverflow

Threads 2639 4187 614 3633 131

Year of First Release 2005 2009 2011 2012 2014

the configuration code. The disadvantage of this approach is
that the code tends to have a higher failure rate and that it
requires a deeper knowledge of the programming language.
Also, this type of code has a low rate of re-usability.

Finally, the interoperability feature indicates the compati-
bility of a tool with different operating systems: Unix/Linux,
Windows, MacOS, OpenBSD.

C. Security
The accountability feature describes the ability of IaC tool

to log (e. g. , through syslog) details about configuration
changes including some form of identity (e. g. , IP address, user
name) for the entity that triggered the changes. It is of course
desirable to allow only specific entities to trigger changes. This
is captured by the authentication feature which indicates the
ability of IaC tools to authenticate user/software that attempts
to use the IaC tool. This is particularly important in a federated
testbed, because federation members may want to implement
policies concerning who can propagate changes to their hosts.

The robustness of the IaC tool against different types of
failures and crashes is captured in the availability feature.

The integrity feature indicates the ability of IaC tool clients
to detect or undo configuration changes coming from outside
the IaC tool (e. g. , the local admin).

Traffic generated by IaC tools may contain confidential
information (e. g. , authentication tokens) and should therefore
be encrypted. This is captured by the confidentiality feature.

D. Popularity

The features in this category attempt to describe the level
of popularity of the IaC tools, for example in terms of code
contributions on GitHub or the number of StackOverflow
discussion threads.

The Library feature indicates how many optional
extensions/plug-ins are available for each tool. However, it
should be noted that in many cases the libraries have overlap-
ping functionality.

Finally, the Year of First Release provides some course
indication about the maturity of the tool in question.

V. EVALUATION AND FUTURE WORK

Based on the comparison from Section IV, we decided
to evaluate Ansible as the IaC tool for the test infrastruc-
ture described in Section III. The reasons for our choice is
that Ansible is well integrated with OpenStack through the
ansible-openstack project. This brings broad cloud orchestra-
tion capabilities to a tool originally designed for configuration
management. Ansible allows the use of both declarative and

TABLE II
RESULTS

Number of nodes
Manual

provisioning
time, min

Ansible
provisioning

time, min
50 Cirros + 1 Ubuntu18.04 ≈ 22 ≈ 11
100 Cirros + 1 Ubuntu18.04 ≈ 32 ≈ 21

imperative programming approaches and YAML for configu-
ration is easy to start with. Finally, its server-only architecture
decreases the amount of software and configuration that need
to be deployed and maintained.

The purpose of our evaluation was to obtain a first impres-
sion on how it is to use Ansible in practice and to observe
any limitations that the qualitative study from the previous
section failed to capture. We have done this by implementing
the second use-case described in Section III (i. e. , the IPv6
network scanning) on our test infrastructure. The infrastructure
is OpenStack-based and consists of one controller node and
two compute nodes. All nodes are equipped with Intel(R)
Xeon(R) E3-1220 4 Cores and 20 GB RAM.

The use-case is implemented by starting a set of CirrOS
Linux VMs and one instance of Ubuntu18.04 VM (Linux
Kernel version 4.15). The CirrOS VMs are allocated IPv6
addresses. The IPv6 scanning algorithms are installed on
the Ubuntu18.04 VM. Then, the IPv6 scanning is started
and the goal is to discover the IPv6 addresses allocated to
the CirrOS VMs. The entire flow will be first implemented
manually, and then automatically using an Ansible playbook.
This experiment is done first with 50 CirrOS VMs and then
repeated with 100 CirrOS VMs.

The results of experiment are shown in Table II. They
indicate that with the usage of Ansible it took approximately
1.5–2 times less time to deploy the instances, run the IPv6
scanning algorithms and get the output.

In general, we were satisfied with the Ansible approach to
implement IaC. However, due to its server-only architecture
we have concerns regarding its scalability when the number of
clients increases. These concerns will be addressed as part of
our feature work. In addition, we are currently implementing
the AI pipeline use-case (i. e. , the AI pipeline) as a second
evaluation for Ansible and our test infrastructure.

ACKNOWLEDGEMENTS

The authors would like to acknowledge the funding projects
that are supporting the work presented in this paper: a)
The work was partly sponsored by the Swedish Agency for
Economic and Regional Growth (Tillväxtverket) under the um-
brella of European Structural and Investment Funds (ESI) cov-
ered by grant agreement No 20201213 (Test Arena Blekinge).
The project is run in collaboration with Blue Science Park in
Karlskrona, Sweden. b) In addition, this work has received
partial funding from the European Unions Horizon 2020
research and innovation program under grant agreement No
732204 (Bonseyes). This work is supported by the Swiss State
Secretariat for Education Research and Innovation (SERI)

under contract number 16.0159. The opinions expressed and
arguments employed herein do not necessarily reflect the
official views of these funding bodies.

The authors would also like to thank Mårten Holmberg
from Blue Science Park for his support in defining the test
infrastructure.

REFERENCES

[1] Amazon Web Services Inc. [Online]. Available: https://aws.amazon.com
[2] K. Morris, Infrastructure As Code: Managing Servers in the Cloud,

1st ed. O’Reilly Media, Inc., 2016.
[3] ETSI, “Network functions virtualisation (NFV) release 2; management

and orchestration; network service templates specification,” in ETSI
GS NFV-IFA 014 V2.5.1 (2018-08), Group Specification, Available at
www.etsi.org, 2018.

[4] D. Baylor, E. Breck, H.-T. Cheng, N. Fiedel, C. Y. Foo, Z. Haque,
S. Haykal, M. Ispir, V. Jain, L. Koc et al., “TFX: A tensorflow-based
production-scale machine learning platform,” in Proceedings of the 23rd
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining. ACM, 2017, pp. 1387–1395.

[5] M. de Prado, J. Su, R. Dahyot, R. Saeed, L. Keller, and N. Vallez, “AI
Pipeline – Bringing AI to You,” Submitted; available on request from:
https://www.bonseyes.com/, 2018.

[6] D. Crankshaw, G.-E. Sela, C. Zumarn, X. Mo, J. Gonzalez, I. Stoica,
and A. Tumanov, “InferLine: ML inference pipeline composition frame-
work,” arXiv preprint arXiv:1812.01776, 2018.

[7] M. Chiosi, D. Clarke, P. Willis, A. Reid, J. Feger, M. Bugenhagen,
W. Khan, M. Fargano, C. Cui, H. Deng et al., “Network Functions
Virtualisation: An Introduction, Benefits, Enablers, Challenges and Call
for Action,” in SDN and OpenFlow World Congress, vol. 48. sn, 2012.

[8] SDX Central, “What is network service chaining? definition,”
2018. [Online]. Available: https://www.sdxcentral.com/networking/
virtualization/definitions/what-is-network-service-chaining

[9] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: A system for
large-scale machine learning,” in Proceedings of USENIX OSDI, 2016,
pp. 265–283.

[10] Bonseyes Project, “Bonseyes – Artifical Intelligence Market Place,”
2018. [Online]. Available: https://www.bonseyes.com

[11] V. A. Mehri, D. Ilie, and K. Tutschku, “Privacy and DRM requirements
for collaborative development of AI applications,” in Proceedings of
ARES, Hamburg, Germany, Aug. 2018.

[12] ETSI OSM, “Open source MANO,” 2019. [Online]. Available:
https://osm.etsi.org/

[13] ——, “Open source MANO information model,” 2019. [Online]. Avail-
able: https://osm.etsi.org/wikipub/index.php/OSM Information Model

[14] OpenStack, “Welcome to tacker documentation,” 2019. [Online].
Available: https://docs.openstack.org/tacker/latest

[15] ——, “Tacker role for openstack-ansible,” 2017. [Online]. Available:
https://docs.openstack.org/openstack-ansible-os tacker/latest

[16] OpenStack, “What is openstack?” 2019. [Online]. Available: https:
//www.openstack.org/software/

[17] P. Arlos, A. Carlson, D. Ilie, and K. Tutschku, “Introduction to XIFI,”
in Third National Workshop in Data Science (SweDS), 2015. [Online].
Available: https://denver.bth.se/projects/bigdata.nsf/attachments/SweDS-
15-Program pdf/$file/SweDS-15-Program.pdf

[18] OpenStack, “Federated keystone,” 2019. [Online]. Available: https:
//docs.openstack.org/security-guide/identity/federated-keystone.html

[19] V. A. Mehri, D. Ilie, and K. Tutschku, “Designing a secure IoT system
architecture from a virtual premise for a collaborative AI lab,” in
Proceedings of DISS, San Diego, USA, Feb. 2019.

[20] E. Bergenholtz, D. Ilie, A. Moss, and E. Casalicchio, “Finding a needle
in a haystack – a comparative study of IPv6 scanning methods,” in
Proceedings of IEEE ISNCC, Istanbul, Turkey, Jun. 2019, accepted for
publication.

[21] A. Raza, “Puppet vs. chef vs. ansible vs. saltstack.” intigua.com,
September 2016. [Online]. Available: https://www.intigua.com/blog/
puppet-vs.-chef-vs.-ansible-vs.-saltstack

[22] Y. Brikman, “Why we use terraform and not chef, puppet, ansible,
saltstack, or cloudformation.” blog.gruntwork.io, September 2016. [On-
line]. Available: https://blog.gruntwork.io/why-we-use-terraform-and-
not-chef-puppet-ansible-saltstack-or-cloudformation-7989dad2865c

https://aws.amazon.com
https://www.sdxcentral.com/networking/virtualization/definitions/what-is-network-service-chaining
https://www.sdxcentral.com/networking/virtualization/definitions/what-is-network-service-chaining
https://www.bonseyes.com
https://osm.etsi.org/
https://osm.etsi.org/wikipub/index.php/OSM_Information_Model
https://docs.openstack.org/tacker/latest
https://docs.openstack.org/openstack-ansible-os_tacker/latest
https://www.openstack.org/software/
https://www.openstack.org/software/
https://denver.bth.se/projects/bigdata.nsf/attachments/SweDS-15-Program_pdf/$file/SweDS-15-Program.pdf
https://denver.bth.se/projects/bigdata.nsf/attachments/SweDS-15-Program_pdf/$file/SweDS-15-Program.pdf
https://docs.openstack.org/security-guide/identity/federated-keystone.html
https://docs.openstack.org/security-guide/identity/federated-keystone.html
https://www.intigua.com/blog/puppet-vs.-chef-vs.-ansible-vs.-saltstack
https://www.intigua.com/blog/puppet-vs.-chef-vs.-ansible-vs.-saltstack
https://blog.gruntwork.io/why-we-use-terraform-and-not-chef-puppet-ansible-saltstack-or-cloudformation-7989dad2865c
https://blog.gruntwork.io/why-we-use-terraform-and-not-chef-puppet-ansible-saltstack-or-cloudformation-7989dad2865c

	Introduction
	Service Chains
	Test infrastructure
	IaC Tools Comparison
	Architectural concepts
	Usability
	Security
	Popularity

	Evaluation and future work
	References

