
Building a Framework for Automated Security
Testbeds in Cloud Infrastructures

Roman-Valentyn Tkachuk
Blekinge Institute of Technology
roman-valentyn.tkachuk@bth.se

Dragos Ilie
Blekinge Institute of Technology

dragos.ilie@bth.se

Kurt Tutschku
Blekinge Institute of Technology

kurt.tutschku@bth.se

Abstract—When exposed to the network, applications and
devices are exposed to constant security risks. This puts pressure
on hardware and software vendors to test even more than before
how secure applications and devices are before being released to
customers.

We have worked towards defining and developing a frame-
work for automated security testbeds. Testbeds comprise both
the ability to build on-demand virtual isolated networks that
emulate corporate networks, as well as the ability to automate
security breach scenarios, which accelerates the testing process.
In order to accomplish both features of the testbed, we have
based the framework on well-established cloud and orchestration
technologies e. g. , OpenStack and Ansible. Although many of
these technologies are powerful, they are also complex, leading to
a steep learning curve for new users. Thus, one of the main goals
of the developed framework is to hide the underlying complexities
through a template approach and a simplified user interface that
shortens the initial training time.

In this paper, we present the full stack of technologies that were
used for constructing the testbed framework. The framework
allows us to create entire virtual networks and to manipulate
network devices started in it, via comprehensive yet simple
interfaces. Also, we describe a specific testbed solution, developed
as a part of the Test Arena Blekinge project.

Keywords-Security Testbed; Cloud Infrastructures; Infrastruc-
ture as a Service; Infrastructure as Code;

I. INTRODUCTION

As we witness an increase in the frequency of security
incidents, ordinary defensive mechanisms, e. g. , firewalls or
IDSs/IPSs, must be complemented by offensive actions, e. g. ,
penetration testing or vulnerability analysis. The reason is
that many modern applications rely on multiple distributed
components (e. g. , cloud services) interconnected over the
Internet and located in different administrative domains. This
makes perimeter-based defenses less effective as attackers try
to exploit vulnerabilities in the application logic to laterally
move towards where the assets are located. The aforemen-
tioned offensive testing actions help to proactively find and
patch vulnerabilities that enable this type of intrusions. How-
ever, when executed towards a production environment, these
actions may disrupt or degrade the operation of the application.
It would be useful if one can replicate the application within a
testbed where it can be subjected to offensive actions without
disturbing the production system.

A testbed is a controlled environment in which one can
execute a set of available actions in a secure and isolated

manner without prejudicing the process being controlled [1],
while being able to observe and log the outcome of the actions.

There has been a considerable amount of work done in
the area of security testbeds, but due to space reasons we
provide only two examples. In [2], a testbed framework for IoT
devices has been outlined and a unified structure of the test has
been proposed. However, virtual infrastructure creation was
not considered as far as this testbed is designed to test physical
IoT devices. In [3], authors describe a technical solution of
cloud-based testbed but do not describe a generic framework
nor security test methods, which would help in building new
testbeds for security testing.

Infrastructure as a Service (IaaS) solutions, e. g. , Open-
Stack [4], permit the setup and deployment of scalable en-
vironments for rapid and flexible service testing. Also, IaaS
has broad capabilities for provisioning network devices, which
allows us to emulate corporate networks given sufficient
resources in the cloud. The configuration and deployment of
cloud-based systems can be done manually, using friendly
graphical user interfaces (GUI). However, this approach can
become a highly time consuming and error-prone process
when provisioning must be done repeatedly, as in scenarios
where the application is developed using a continuous integra-
tion, testing and deployment (CI/CT/CD) approach. In order
to make provisioning process more efficient, IaaS Systems
employ the idea of Infrastructure as Code (IaC) [5], which
is the process of provisioning of computing infrastructure and
its configuration through machine-readable definition files. The
advantages of IaC code have been addressed in [6], along with
scalability demonstration of one of the tools covered by the
study.

While IaC makes the process of network devices provision-
ing more efficient, one still needs the special knowledge to
write provisioning scripts, maintain the provisioned infrastruc-
ture and operate the cloud. In order to decrease the initial
training period to use the testbed, a comprehensive interface
has to be built. This interface is a part of the framework which
allows us to connect to the IaaS cloud and use it as a platform
for security tests while having no need to know how the cloud
operates internally. Security test’s process flow is shown in Fig.
1. While there is only a GUI exposed to the User, the task of
the framework is to translate settings from GUI to machine-
readable definition files. Further, definition files are translated
into executable commands by IaC and executed on the IaaS

mailto:roman-valentyn.tkachuk@bth.se
mailto:dragos.ilie@bth.se
mailto:kurt.tutschuku@bth.se


Fig. 1. Security test’s process flow.

cloud. When execution is finished, the results are displayed on
the User’s GUI.

As part of the Test Arena Blekinge project that was carried
out in Karlskrona, Sweden, we have investigated architecture
and technologies suitable for automating a testbed for security.
Here we present the results of our study. The reminder
of the paper is structured as follows. Section II discusses
requirements for the architecture of the security testbed and
the framework we put forth to meet those requirements.
Section III introduces the implemented testbed, technologies
that have been used and challenges that authors met during
the implementation. Section IV outlines some the lessons
we learned on the capabilities and limitation of virtualized
testbeds for security testing. Finally, Section V summarizes the
developed framework, capabilities of the implemented testbed,
and provides an outlook to future research.

II. TESTBED ARCHITECTURE

The testbed has to meet a set of requirements in order for
the security tests to be conducted in a safe and automated
manner, and provide the possibility to gather and organise the
information about test results. First, the testbed has to provide
a possibility to fully control the test network infrastructure,
providing isolation from the Internet and from other physical
or virtual networks that co-exist on the same IaaS Cloud.
Second, all devices and services emulated inside the virtual
network must be accessible through an interface which enables
control of the objects under test. Third, the testbed must offer
an interface for collecting log information from all test objects
so that it is possible to evaluate the state of the network and
services at a specific moment or after the test completes.

The focus of this work is to define a framework that
addresses these requirements. Fig. 2 depicts the test framework
in the context of the testbed architecture. The architecture
consists of three distinct entities, Framework, IaC Orchestrator
and IaaS Cloud, which are described below.

A. Framework

The Framework is the entity that is exposed to User
and contains the interface to perform all needed actions to
conduct security tests. The main aim of the Framework is
to hide the complexity of the IaaS Cloud through a human
comprehensive and interactive interface. To interact with the
testbed, the User sends requests to Web API Server. The Web
API Server exposes a unified API, through which the User
can configure the test infrastructure and security scenario.
The set of supported API calls comprises virtual network

IaaS Cloud

Framework

IaC 
Orchestrator

Database

Web API 
Server Task Handler

User

Notification 
Delivery 
System Hardware Resources

R4R3R2R1

Vi
rtu

al
 

N
et

w
or

ks

Security Tests

T1 T2 T3 T4

Fig. 2. Testbed Architecture.

creation, network devices configuration, security test scenario
automation, and data collection. In order for the Web API
Server to be able to associate User’s security tests to his/her
identity, the User has to provide a set of credentials on the
initial request to Web API Server. These credentials are saved
in the Database, along with security test settings and debug
information.

Network infrastructure instantiating and device provisioning
are tasks that may take a considerable amount of time to
execute. The Task Handler is the architectural component
that handles the execution of long duration tasks. After the
User configures all settings and starts a test, the Web API
Server transfers the settings to the Task Handler, which carries
out all further actions. The Framework components must be
able asynchronously notify each other about various events
that occur during the test execution. The Notification Delivery
System handles the delivery of all notifications and enables
live on-demand status updates on the User side.

While the security test is being executed, Task Handler
executes commands on IaC Orchestrator according to the
settings provided by the User.

B. IaC Orchestrator

The IaC Orchestrator (further Orchestrator) is an entity that
contains logic for interacting directly with the IaaS Cloud.
We have chosen to implement this functionality outside the
Task Handler to decouple cloud functionality from framework
functionality. This allows us in the future to modify the IaC
orchestrator independently of the other components when we
want to support different forms of IaaS. The Orchestrator
performs all security test provisioning and automation actions.
Its operation is controlled through machine-readable definition
files, which are translated by its engine into actions that are
performed on the IaaS Cloud.

C. IaaS Cloud

The IaaS Cloud (further Cloud) is the entity where the
actual execution of the security test takes place. Thus it is
important that all malicious actions are concealed within the
virtual network that is dedicated to the test. User has to be
authorized to use the amount of cloud resources needed to
conduct a security test of a certain scale. In turn, the Cloud
has to provide a possibility for Orchestrator to create and
configure virtual networks, along with the ability to separate



OpenStack IaaS

Framework

Ansible

MySQL 
Server

uWSGI Web Server

Celery 
Worker

User

Notification Delivery System Hardware Resources

R4R3R2R1

Vi
rtu

al
 

N
et

w
or

ks

Security Tests

T1 T2 T3 T4

RabbitMQSocket.IO

Flask Web 
Application

Fig. 3. Implemented Testbed.

security tests on both hardware and network level. Hardware-
level separation is important when running multiple tests
simultaneously to avoid having one security test corrupt the
test environment and thus, cause other tests to fail (when they
should not). Similarly, network-level separation isolates traffic
generated by concurrent tests, to avoid that traffic from one
test (e. g. , DoS attack) influences the outcome of other tests
(e. g. , tests that evaluated the robustness of specific services
or applications).

III. IMPLEMENTATION

Our current implementation of the framework has enough
functionality to conduct both automated and manual security
tests. Also, it features a Web-based GUI, which allows the
operator to pre-configure security tests, follow the network in-
frastructure setup process, and collect all necessary data during
the test and after its finish. Fig. 3 shows the technologies used
for implementing the testbed architecture.

For IaaS Cloud we have chosen OpenStack IaaS [4]. It is
a well-proven, powerful IaaS solution that fulfills all require-
ments outlined in Section II. It has the capability to construct
multilevel virtual networks and to isolate security experiments
on both hardware and network level. Also, it is distributed
with an open-source license, which is a major factor when
considering the costs of implementation. Our OpenStack IaaS
runs on the university campus and comprises 24 VCPUs, 70
GB of RAM and 5 TB of Storage.

For IaC Orchestrator, we have chosen Ansible IaC [7], a
cloud-agnostic solution that is well suited for provisioning
OpenStack IaaS. The choice is based on our previous study
that we described in [6], where we compared different in-
dustrial IaC tools. The reason for this choice is that An-
sible supports both declarative and imperative programming
approaches. Also, its YAML-based language for machine-
readable definition files is easy to start with. Finally, Ansible’s
server-only architecture decreases the amount of software and
configuration that is needed to be deployed and maintained.

A. Framework Implementation

The user interacts with the Framework through a Flask Web
Application served by a uWSGI Web Server. Flask Web Appli-
cation is a server-side lightweight RESTfull Web Application
that is well integrated with all technologies that were used to
build the framework. For user and security test data storage,

Fig. 4. Testbed’s graphical user interface.

MySQL Server has been used. One of the challenges that
we faced was in building the data access layer (DAL) for
Flask Web Application to support a large amount of database
operations. MySQL Server’s capability to store some of the
functionality inside of the database engine in a form of stored
procedures eased the task of DAL creation and made Flask
Web Application less monolithic.

The Task Handler was implemented with a Celery Worker.
Celery is a Python-based task executor framework, which can
be used as a separate service running on-site or remotely from
the Flask Web Application. The advantage of Celery Worker
is that it can use all Python libraries, thus enabling us to reuse
the DAL from the Flask Web Application.

The Notification Delivery System consists of two technolo-
gies that work as part of a whole. Rabbit Message Queue
(RabbitMQ) is a service that runs continuously and accepts
the messages from Celery Worker. At the moment the mes-
sage is received and registered in the queue, the Socket.IO
event communicator transfers the message to the Flask Web
Application, which delivers it to the User through the uWSGI
Web Server.

The GUI of the implemented framework is shown in Fig. 4.
In the left pane Network Devices Setup, one can see the
information about each device included in the test. There are
only a few types of devices available in the current testbed
library. However, their descriptions can be used as templates
to create new devices from scratch, or by cloning existing
images and adding additional software on top. The right pane
Network Overview, shows graphically the network topology
used for the test.

B. Supported Security Tests

Currently, we have implemented two security experiments
in our testbed. The first one is about scanning IPv6 networks to
discover active hosts. The scanning can be useful, for example,
for penetration testing exercises. However, the tremendous
size of IPv6 networks poses a serious challenge for classic
scanning algorithms that iterate sequentially over the entire
address space. We have developed a set of IPv6 scanning
heuristics [8] to overcome this challenge by trading accuracy
for execution time. We are using the testbed to deploy virtual
IPv6 networks and evaluate the performance of the heuristics.



This test is fully automated and when the test completes it
returns the set IPv6 addresses that were found in the subnet.

Second test is about using Metasploit [9] to exploit network
devices and services that are part of the test. The Metasploit
framework is an exploitation and vulnerability validation tool
that is widely used for penetration testing. When the network
devices are started in the testbed, the user can define the
security experiment scenario through remote VNC desktop to
every network device.

IV. LESSONS LEARNED

The implementation of the testbed permitted insights be-
yond the technical understanding how the different hard-
and software components interact. The implementation and
the execution of security tests taught additionally how such
virtualized testbeds can be used in general for automatic
testing of security and, thus, enhancing the methodology of
using virtual testbeds. Next, the findings and learned lessons
will be described.

Lesson 1 – Consideration of Stakeholders: The implemen-
tation, operation and use of a testbeds has to be based on an
analysis of its stakeholders and roles, such as testbed operator,
testing company, or device developer. The availability of a
GUI makes the testbed accessible for less security-experienced
users, e. g. , device developers. However, the simplifications
by the GUI may limit scope of the investigations. This
characteristic might lead to a trade-off between the generality
of the testbed and the time to achieve test results. In addition,
the operation of the underlying virtualization systems, here
OpenStack, is still difficult and a role of a testbed service
provider is advised.

Lesson 2 – Challenges in the Inclusion of Cyberphysical
Systems-under-Test (CP-SUTs): Virtual testbeds have out-
marked advantages in being able to scale experiments to a very
large number of nodes. However, the scalability with regard
to CP-SUTs might be not given or limited since not sufficient
physical implementations of CP-SUTs are available or since
the accuracy of the digital virtualized counterparts (sometimes
denoted as ”digital twins”) is too low.

Lesson 3 – Automation Supports Fast and Different Types
of Scalability: The use of automation and orchestration tech-
niques support new, various ways of scalability in virtual
security testbed. Obviously, the first category of scalability is
the increased in number SUTs. Additionally, the automation
permits the algorithmic generation of a large number test
scenarios and, thus, permitting a fast execution of a spectrum
of test scenarios. However, there might be a considerable
trade-off between the required efforts for accurate automatic
configuration generation and the manual generation of threat
and test scenarios.

V. CONCLUSIONS AND FUTURE WORK

In this work, we defined the components of a security
testbed framework, outlined an architecture for such testbed,
detailed an specific implementation and discussed the ca-
pabilities, limitations and lessons learned from the testbed
implementation for security testing.

The suggested framework is targeted to ease the tasks
of virtual network creation and automation of security tests
through comprehensive interface which hides the complexity
of IaaS clouds. While defining the framework, three main
requirements have been considered: a) full control over the
virtual network infrastructure and separation of security tests
on hardware and network levels, b) full control over the
network devices instantiated in virtual network, c) data col-
lection capability from all network devices. By fulfilling these
requirements, the testbed has enough functionality to emulate
corporate networks and devices installed in them, and is
capable to provide enough information about the security and
robustness of the tested service.

Also, we describe the implementation of the testbed which
is deployed on site of Blekinge Institute of Technology. It
contains enough functionality to be able to conduct both
automated and manual security tests as well as fulfills all
requirements defined for the testbed.

The current architecture of the testbed, although is designed
to be cloud-agnostic, can use only one IaaS provider at a time.
For future research we would like to investigate the possibility
of federated testbed, connecting multiple IaaS clouds at a time,
and having a possibility to run cross-cloud security tests.

ACKNOWLEDGEMENTS

The authors would like to thank the funding project that
is supporting the work presented in this paper: The work
was partly sponsored by the Swedish Agency for Economic
and Regional Growth (Tillväxtverket) under the umbrella of
European Structural and Investment Funds (ESI) covered by
grant agreement No 20201213 (Test Arena Blekinge). The
project is run in collaboration with Blue Science Park in
Karlskrona, Sweden.

The authors would also like to thank Mårten Holmberg
from Blue Science Park for his support in defining the test
infrastructure.

REFERENCES

[1] INCIBE. (2017, Jan.) Analysing security without risk: Testbeds.
Accessed: 2020-03-20. [Online]. Available: https://www.incibe-cert.es/
en/blog/analysing-security-without-risk-testbeds

[2] S. Siboni, V. Sachidananda, Y. Meidan, M. Bohadana, Y. Mathov,
S. Bhairav, A. Shabtai, and Y. Elovici, “Security testbed for internet-
of-things devices,” IEEE Transactions on Reliability, vol. 68, no. 1, pp.
23–44, Mar. 2019.

[3] R. L. Grossman, Y. Gu, M. Sabala, C. Bennett, J. Seidman, and J. Mam-
bretti, “The open cloud testbed: A wide area testbed for cloud computing
utilizing high performance network services,” CoRR, Jul. 2009.

[4] OpenStack. (2020) What is openstack? Accessed: 2020-03-20. [Online].
Available: https://www.openstack.org/software/

[5] K. Morris, Infrastructure As Code: Managing Servers in the Cloud, 1st ed.
O’Reilly Media, Inc., 2016.

[6] R.-V. Tkachuk, D. Ilie, and K. Tutschku, “Orchestrating future service
chains in the next generation of clouds,” in Proc. SNCNW, Luleå, Sweden,
Jun. 2019.

[7] Red Hat. (2020) Ansible. Use Case: Orchestration. Accessed: 2020-03-20.
[Online]. Available: https://www.ansible.com/use-cases/orchestration

[8] E. Bergenholtz, D. Ilie, A. Moss, and E. Casalicchio, “Finding a needle
in a haystack – a comparative study of IPv6 scanning methods,” in
Proceedings of IEEE ISNCC, Istanbul, Turkey, Jun. 2019.

[9] Rapid7. (2020) Metasploit: Documentation. Accessed: 2020-03-20.
[Online]. Available: https://metasploit.help.rapid7.com/docs

https://www.incibe-cert.es/en/blog/analysing-security-without-risk-testbeds
https://www.incibe-cert.es/en/blog/analysing-security-without-risk-testbeds
https://www.openstack.org/software/
https://www.ansible.com/use-cases/orchestration
https://metasploit.help.rapid7.com/docs

	Introduction 
	Testbed Architecture 
	Framework
	IaC Orchestrator
	IaaS Cloud

	Implementation 
	Framework Implementation
	Supported Security Tests

	Lessons Learned 
	Conclusions and Future Work 

