
Towards a Secure Proxy-based Architecture for
Collaborative AI Engineering

Roman-Valentyn Tkachuk
Blekinge Institute of Technology

Karlskrona, Sweden
roman-valentyn.tkachuk@bth.se

Dragos Ilie, Ph.D.
Blekinge Institute of Technology

Karlskrona, Sweden
dragos.ilie@bth.se

Kurt Tutschku, Ph.D.
Blekinge Institute of Technology

Karlskrona, Sweden
kurt.tutschku@bth.se

Abstract—In this paper, we investigate how to design a security
architecture of a Platform-as-a-Service (PaaS) solution, denoted
as Secure Virtual Premise (SVP), for collaborative and dis-
tributed AI engineering using AI artifacts and Machine Learning
(ML) pipelines. Artifacts are re-usable software objects which are
a) tradeable in marketplaces, b) implemented by containers, c)
offer AI functions as microservices, and, d) can form service
chains, denoted as AI pipelines. Collaborative engineering is
facilitated by the trading and (re-)using artifacts and, thus,
accelerating the AI application design.

The security architecture of the SVP is built around the
security needs of collaborative AI engineering and uses a proxy
concept for microservices. The proxy shields the AI artifact and
pipelines from outside adversaries as well as from misbehaving
users, thus building trust among the collaborating parties. We
identify the security needs of collaborative AI engineering, derive
the security challenges, outline the SVP’s architecture, and
describe its security capabilities and its implementation, which is
currently in use with several AI developer communities. Further-
more, we evaluate the SVP’s Technology Readiness Level (TRL)
with regard to collaborative AI engineering and data security.

Index Terms—Security Architecture; Trusted and Collabora-
tive AI engineering; Proxy-based Architecture;

I. INTRODUCTION

Access to machine learning (ML) algorithms implemented
in freely available and easy-to-use software development kits
has lowered the bar for incorporating artificial intelligence (AI)
into general purpose applications. However, this simplicity is
deceiving. Building robust and efficient AI features requires a
deep understanding on how AI algorithms and data, i. e. , AI
artifacts, interact. Moreover, ML requires large training data
sets which typically exist in large enterprises that can afford
to develop ML concepts. Small companies, however, might
collect data or define models but must rely on collaborations
with distributed stakeholders for developing AI solutions.
Hence, trusted collaborations in AI engineering are needed
for empowering ML beyond large companies [1].

The authors of [1], [2] developed a collaborative form
of AI engineering within a H2020 project. This approach
uses agile methods, e. g. , continuous integration, to accelerate
collaborative AI development. Furthermore, the project has
implemented an AI marketplace (MP), which is an open
platform for trading AI artifacts. However, it requires a Secure
Virtual Premise (SVP) which is a variate of a PaaS for
distributed, secure and trusted AI engineering using artifacts
and which is presented here. The SVP connects distributed

computation and storage resources (both physical and virtual)
into a large virtual resource space for AI training and enforces
a perimeter around this space. Hence, this SVP can be called
a federation of distributed resources.

The MP supports the controlled exchange of AI artifacts,
i. e. , of algorithms and data, among third parties. An appli-
cation developer can obtain licensed access (e. g. , by paying
fees) to these artifacts and use them locally, i. e. , in the local
parts of the SVP. As a result, the developers can focus on
application design while having access to AI artifacts and AI
data, thus accelerating the system development.

In this context, the concerns arise that malicious users may
try to bypass the constraints imposed by the license, or even
share artifacts with unlicensed users. This would threaten not
only the intellectual property rights (IPRs) of artifact owners,
but also may create significant data privacy issues.

The main contributions of this paper are the identification of
the security challenges and requirements for collaborative AI
engineering using the SVP, the definition of threat models, and
the specification of a proxy-based PaaS security architecture
that is based on a threat-analysis. The proxies are implemented
close to AI artifacts, run on-demand (i. e. , dynamically when
artifacts are instantiated), and shield the artifacts and pipelines
from adversaries. To our knowledge, the SVP is the first PaaS
that meets the needs of distributed and collaborative AI engi-
neering and which enables users to have certain administration
rights within distributed computational resources of SVP.

The paper uses the following methodology for defining the
SVP’s security architecture. First, it specifies the assets to be
protected and identifies potential attack paths. Then, it uses
a STRIDE approach [3] to define a threat profile against the
assets. Finally, it translates the profile into requirements and
specifies the architecture for the SVP.

The paper is structured as follows. Sec. II outlines the con-
sidered approach for collaborative AI engineering. Section III
discusses the threats and security requirements of this concept.
Sec. IV introduces the SVP’s secure design and discusses
how it meets the requirements of the threat profile. Sec. V
describes implementation and operation of the SVP. Sec. VI
describes evaluation of the current SVP implementation. Sec.
VII describes related work on securing digital marketplaces,
AI engineering, and proxy-based security concepts. Finally,
Sec. VIII sums up the security capabilities of the SVP and
provides an outlook to future research.



Fig. 1: AI Training Pipeline, after [2]

II. COLLABORATIVE AI ENGINEERING

The considered systematic engineering of data-driven AI
solutions [2] is facilitated by the use of AI artifacts and
ML pipelines, called AI pipelines. These pipelines are used
to structure and eventually automate ML workflows. They
consist of several modular steps to generate an AI application
or to benchmark its accuracy. The solution of [2] assumes
that each pipeline step can be provided by an AI Tool or AI
artifact, which is implemented in a Docker container [4] and
is similar to a microservice [5]. Fig. 1 shows the structure
of an AI training pipeline comprising three AI tools: Data
(Extraction) Tool, Training Tool, and Deployment Tool. The
data is exchanged between artifacts through file objects, e. g. ,
volumes. Fig. 1 shows AI tools in containers, which are
represented by rectangles, and data objects as cylinders.

Another key element of the AI engineering in [1] is the Mar-
ketplace (MP) for AI artifacts. The MP enables stakeholders to
meet, offer, find and exchange artifacts. Here, the users agree
on terms and conditions for collaborations and artifact usage,
i. e. , on human- and machine-readable licenses.

While the MP is open, the Secure Virtual Premise (SVP)
needs to be a closed and protected space where the AI
computing tasks take place [2]. The SVP binds and federates
eventually distributed compute and storage resources (due to
the potential geographic distribution of stakeholders). A SVP
is defined for a specific AI application design task and multiple
SVPs for different applications may exist. Furthermore, a SVP
provider may operate a SVP in a commercial way.

Only eligible users should access a specific SVP. Resources
and users on the inside (i. e. , on premise) are typically
trustworthy and compliant, and everything on the outside is
untrusted and potentially malicious.

III. SECURITY CHALLENGES AND REQUIREMENTS

From a security perspective, the AI artifacts are the assets at
risk and the SVP is the security scheme that protects them. A
successful attack on this scheme will grant adversary access to
the asset, such that the asset can be exfiltrated or configured to
engage in potentially malicious behavior. To have a complete
security definition, a threat model is also needed to outline the
capabilities of the adversaries. This is done next.

A. Inside and Outside Adversaries

We choose a binary model consisting of adversaries either
on the inside or on the outside of the SVP. Inside adversaries
are legitimate SVP users, formerly trustworthy, but now turned
rogue (e. g. , avoiding license fees). Outside adversaries have

no legitimate access to the SVP and thus have less ”power”
to attack the security guarantee.

Protection against outside adversaries is typically enforced
by access control (AC) mechanisms located at the boundary
of the SVP. Thus, the security level is directly related to their
robustness. Inside adversaries that have successfully passed the
AC scheme can access the SVP resources, e. g. , AI artifact,
that they are authorized for. Hence, they have the opportunity
to tamper with resources, e. g. , attackers could instrument
the execution environment (EE) to reverse engineer (RE) and
bypass the license checking.

In general, handling inside adversaries is quite difficult.
The authors of [6], [7] approached the problem by classifying
adversaries into regular users and malicious users. The main
difference between them is that regular users are not able to
tamper with the software. By excluding malicious users from
the threat model authors were able to design a scheme based
on public-key cryptography to ensure compliance from both
outside and inside adversaries.

B. Tampering with the System Software

Software tampering (ST) is an umbrella term describing
activities that aim at introducing unwanted modifications to
binaries or to processes running on a host. ST provides pos-
sibilities for multiple attacks, including RE. Software-based
defenses against ST rely primarily on code obfuscation [8].
Hardware-based defenses [9] are more robust to software
attacks, but are dependent on hardware from a specific CPU
manufacturer and usually incompatible with each other.

The threat posed by ST through RE to the SVP exists
because skilled inside adversaries (i. e. , legitimate users turned
rogue) have direct access (physical or remote) to the host run-
ning the artifact. By removing direct access, the RE possibili-
ties are severely curtailed. This requires a slight modification
to the threat model defined in [6], [7]. In the modified model,
the users and hosts are no longer trustworthy and no longer
inside the SVP. They can still access resources from the SVP,
but only through well-defined interfaces as shown by the blue
rectangles inside the User host box in Fig. 2. An interface
is a stub proxying requests towards AI objects in the SVP
and receiving responses from the SVP, much similar to the
stub concept used by remote procedure calls (RPC). Thus, the
user host interacts through interfaces and the actual artifact is
executing remotely on hosts belonging to the SVP, which acts
as an infrastructure towards the users.

We assume that SVP providers are not malicious nor do
they collude with adversaries. We think this is a reasonable
assumption because otherwise the SVP providers would put
their own business model at risk and lose their reputation.

C. Threat Model

Fig. 2 shows the functional SVP architecture without se-
curity mechanisms. An AI user communicates with the SVP
and the AI components through two different Application
Programming Interfaces (APIs). These are shown as blue rect-
angles inside the left box denoted User host. The user end of



Infrastructure

Controller host Compute host

Controller 
API

Orchestrator Execution Environment

User host

Compute 
API

Compute 
Interface

Controller 
Interface

AI Pipeline 
Orchestrator

Data Tool

AI Tools

Training Tool

Manager Tool

Deployment Tool

Evaluation Tool

Fig. 2: SVP architecture without security mechanisms.

the APIs is connected to the server end on the Controller host
(CtrlH) and Compute host (CpH). The Controller Interface
enables the user to instruct the orchestrator to provision the EE
inside the CpHs. The Compute Interface is used to download
AI artifacts from a MP repository (not shown in the figure) to
the EE on the CpH, to assemble the AI pipeline, and to manage
the pipeline and its components during their life cycle. The AI
artifacts inside the EE are the main assets at risk.

The concern is that these assets can be exfiltrated, con-
figured to disobey the license terms, or modified to operate
maliciously. An attacker operating the User host can follow
two paths to reach the main asset.

The first attack path begins at the Compute interface and
ends at the Compute API (CpAPI) component on the CpH.
The Compute Interface can execute CpAPI calls that may
result in potentially harmful actions towards elements inside
of the EE. These types of API calls must be allowed only for
privileged users. Thus, a potential threat is that attackers can
escalate their privileges by spoofing the identity of a privileged
user. Although the API does not provide means to exfiltrate
AI artifacts, the attacker may be able to launch API calls that
modify ownership and access rights to the pipeline and its
components and to exfiltrate pipeline results. Even when the
attackers can only impersonate non-privileged users, they can
engage in damaging activities such as stopping, removing or
reconfiguring pipelines in order to tamper with the output of
the pipeline (e. g. , degrading output quality) or to overload the
infrastructure through Denial-of-Service (DoS) attacks.

The second attack path starts at the Controller interface and
continues, first through the Controller API (CtrlAPI), and then
through the Orchestrator on the CtrlH. An attacker who is able
to infiltrate the system over this path obtains backdoor access
to the EE and to the CpAPI. The Orchestrator can execute
operations that interfere with AI artifacts and pipelines. Only
privileged users must be able to execute these operations.
However, the Orchestrator is not directly exposed to the User
host and it can only be reached through the CtrlAPI. Thus, an
attacker must mount a successful privilege escalation attack
against the CtrlAPI in order to control the EE through the
Orchestrator. For example, an attacker from a User host would
need to spoof the identity of users with privileged access. If
successful, the adversary will obtain full access to the CpH
OS and to its EE. Implicitly, the attacker will have access to

the AI components inside and will be able to interfere with
CpAPI calls. Tampering with CtrlAPI calls presents similar
risks as described in the previous paragraph.

Even if attackers do not control the User host, they may able
to interfere with the data flows between the User host, CtrlHs
and CpHs. Unless the network traffic is protected, attacks on
confidentiality, integrity, and authenticity become possible. For
example, attackers would be able to extract credentials that
enable them to impersonate legitimate users. DoS attacks from
outside the SVP towards the hosts in Fig. 2 are also a potential
threat. However, the SVP mechanisms described here do not
aim to address this type of threat, as DoS attack mitigation
typically requires the involvement of network operators [10].

TABLE I: Identified threats

Threat Element Description

T01 CpAPI Illegitimate user accesses CpAPI.

T02 CpAPI Spoofing the identity of privileged users
to execute undesirable or dangerous CpAPI
calls towards the EE.

T03 User-CpAPI
traffic

Interception and possibly tampering of data
exchanged between User host and CpAPI.
May enable T-01 and T-02.

T04 CtrlAPI Illegitimate user accesses CtrlAPI.

T05 CtrlAPI Spoofing the identity of privileged users to
the CtrlAPI. Enables access to EEs via the
Orchestrator, and exfiltration or damage to
AI objects.

T06 User-CtrlAPI
traffic

Interception and likely tampering of data
exchanged between User host and CtrlAPI.
May enable T-01 and T-02.

T07 CtrlAPI Malicious privileged user secretly exfiltrates
artifacts, and/or conducts operations with the
intent of creating harm to the pipeline infras-
tructure.

T08 CpAPI Malicious privileged user secretly conducts
operations with the intent of creating harm
to the pipeline and its output.

TABLE II: Threat profile

Threat S T R I D E

T01 X X X

T02 X X X X

T03 X X X

T04 X X X

T05 X X X X

T06 X X X

T07 X X X

T08 X X X

Using the above identified threats, c. f. , Table I, we use
the STRIDE approach [3] to produce the SVP’s threat profile,
c. f. , Table II. Each of the letters in STRIDE denotes a specific
threat category against a desirable security property: spoofing
vs. authentication, tampering vs. integrity, repudiation vs. non-
repudiation, information disclosure vs. confidentiality, DoS vs.
availability, and elevation of privilege vs. authorization. As a
result, we identified the requirements shown in Table III.



TABLE III: Security requirements.

Req. Description

R01 User’s identity and authentication must be based on X.509 digital
certificates. Mitigates spoofing (T01, T02, T04, T05).

R02 User host to CtrlH / CpH communication must use HTTPS (SSL/
TLS) with certificate-based mutual authentication. Mitigates tam-
pering (T03, T06) and information disclosure (T03, T06).

R03 CpAPI must use role-based access control (RBAC) to control
which users can execute privileged API calls. Mitigates informa-
tion disclosure (T01, T02), DoS (T02) and elevation of privilege
(T01, T02).

R04 CtrlAPI must use RBAC to control which users can execute
privileged API calls. Mitigates information disclosure (T04, T05),
DoS (T05) and elevation of privilege (T04, T05).

R05 CpH must use secure logging that cannot be tampered with from
the CpAPI to log all actions. Mitigates repudiation (T07). Secure
logging does not mitigate tampering and DoS (T07) but provides
information about unwanted activities, which allows the system
administrator to take action against the malicious users.

R06 CtrlH must use secure logging that cannot be tampered with from
the CtrlAPI to log all API calls. Mitigates repudiation (T08).
Secure logging does not mitigate tampering and DoS (T08) but
provides information about unwanted activities, which allows the
system administrator to take action against the malicious users.

Compute host

Execution EnvironmentUser host Proxy / Bonseyes Layer

U
se

r-b
ou

nd
In

te
rfa

ce

AI
 P

ip
el

in
e 

O
rc

he
st

ra
to

r AI Tool

AI
 To

ol
 

In
te

rfa
ce

Command 
Verification, 
Filtering and 

Relaying

Separation

AI
 To

ol
-b

ou
nd

 
In

te
rfa

ce

U
se

r C
LI

Licensing Module

Fig. 3: Security and Separation by BL Reverse Proxy.

IV. PROPOSED SECURITY ARCHITECTURE

Next, we will present the SVP components used to address
and implement the security requirements derived in Sec. III.

A. A Proxy Concept for Artifact Security

Proxies provide security by applying the security concepts
of separation and verification [11]. They implement services
such as authentication, encryption of data communication,
network isolation, or access control. [12] proposes proxies
for addressing security, trust and privacy for collaboration
in multicloud environments. However, they were not located
close to the offered services. Lately, so-called sidecar proxies
[13], [14] have been suggested. They are attached to parent
services and provide them with supporting features.

The SVP architecture employs a reverse proxy which is
denoted as Proxy / Bonseyes Layer (BL). This proxy shields
the artifact from misuse, is implemented next to the artifact
like a sidecar proxy, and is started on-demand when the artifact
is instantiated, c. f. , Fig. 3. The Proxy / BL is executed on the
CpH and it interfaces to the User host by the User-bound
interface. A user can connect to an artifact (here AI tool)
only through this interface. Furthermore, the BL interfaces
to the AI tool via the AI Tool-bound interface. The Proxy
/ BL relays only verified and filtered commands between

these interfaces. These interfaces manage the control of the
artifact and the pipeline. The AI Tool-bound interface has the
additional advantage that the proxy can be adapted to arbitrary
containerized tools, i. e. , the available AI assets don’t need to
be adapted. A trust boundary between the user and AI artifact
is implemented close to the artifact by permitting connections
only to the Proxy / BL while having the Proxy / BL verify
the eligibility of received commands. We believe that it is
a compelling feature of this proxy concept that it provides
clear separation without requiring any explicit support from
the artifact. This reduces the efforts of developer since they
can focus on AI functions only and don’t need to build security
mechanisms into the artifact.

Fig. 3 depicts the AI Pipeline Orchestrator. It coordinates
activities among the artifacts by exposing an interface to the
AI tools. Also, it performs the syntax translation from a user
command to the function calls of the AI tool. Unlike the Proxy
/ BL, the orchestrator usually does not perform any security
checks, unless it has been delegated to do so.

B. Elements of the SVP Architecture

The requirements listed in Table III indicate the need to
support the concept of a digital identity. Hence, the SVP archi-
tecture follows the NIST guidelines for digital identities [15]
and relies here on three specific entities: Credential Service
Provider (CSP), Verifier, and Relaying Party (RP). The CSP
enables users (applicants) to enroll in digital identity services.
If successful, the applicant becomes a subscriber, who will
eventually attempt to claim access to a secured service. The
Verifier will interact with the user to ascertain the claimant
is a valid subscriber (i. e. , authentication is performed). The
Verifier may also contact the CSP to obtain additional claimant
attributes that are required by the RBAC in use. The result of
the authentication is passed on to the RP, which can complete
the RBAC and determine if the type of access required by the
claimant is allowed (i. e. , authorization is performed).

The applicant who wishes to utilize the services of the
SVP must undergo first a process called identity proofing,
where the user’s real-world identity is connected to a digital
identity. The CSP contains a sub-function called Registration
Authority (RA), which is the equivalent of a front desk where
the physical applicant proves their real-world identity (e. g. ,
by showing a passport). Upon successful identification, the
RA invokes another sub-function of the CSP, the Certification
Authority (CA), to create a X.509 digital user certificate.
The certificate is installed in the applicant’s web browser
(on User host in Fig. 4) and becomes the applicant’s digital
identify. Furthermore, it enables the Verifier and RP to conduct
certificate-based authentication and authorization of users.
This addresses requirement R01, c. f. , Table III.

For simplicity, we have kept the CA and RA inside the
CSP, although in some scenarios they can be separate entities
managed by different organizations. In Fig. 4, they are shown
as the box denoted ”Credential Service Provider” inside the
CtrlH. Currently, the architecture contains two RPs: the Con-
troller RP located within the Controller API and the Proxy RP



Infrastructure

ControllerController host Compute host

Credential 
Service Provider

Controller 
API

Orchestrator Execution Environment

User host

Proxy / 
Bonseyes Layer

Proxy / 
Bonseyes Layer

Proxy / BL 
API

Proxy / BL 
Interface

Controller 
Interface

User 
certificate

Proxy / BL 
certificate

AI Pipeline 
Orchestrator

Data Tool

AI Tools

Training Tool

Manager Tool

Deployment Tool

Evaluation Tool

Controller 
certificate

Fig. 4: Generic architecture of SVP.

TABLE IV: Location of digital identity elements

Entity Location

Applicant/Subscriber/Claimant User host

CSP (with RA and CA) CtrlH

Controller RP (incl. Verifier) CtrlAPI on CtrlH

Proxy RP (incl. Verifier) Proxy / BL API on CpH

located within the Proxy / BL API. Again, for simplicity, the
functionality of the Verifier is merged in each of the RPs.

The CA is also used to produce digital server certificates
for the elements listed in Table IV. These are installed in web
servers running at the location shown in the same table and
serve a dual-purpose. First, they enable authentication of the
elements towards the User host. Secondly, they are fundamen-
tal in enabling encrypted communication over HTTPS. This
addresses requirement R02.

The Controller RP interacts with the CSP to implement a
simple RBAC scheme that differentiates between regular and
privileged users. The CSP provides the subscriber attributes
required by the Controller RP to enforce the scheme. This
addresses requirement R04. All requests and replies that
are processed by the CtrlAPI (with associated RP) are logged
at the CtrlH. Logging features cannot be controlled from the
CtrlAPI and thus logs can’t be tampered with this way. This
addresses requirement R06.

The Proxy / BL works as an interceptor between the User
host and the EE on the CpH. Through the Proxy / BL, the User
host can interact with the AI pipeline and various AI tools.
Incoming Proxy API calls from the User host are processed by
the Proxy / BL into low-level sets of API calls, each targeting
specific components within the EE. This is required because
although the Proxy BL exposes a uniform API towards the
User host, the APIs of the components within the EE may
vary substantially. Similar to the Controller RP, the RBAC
scheme for the Proxy RP must also be able to differentiate
between regular an privileged users. However, it must be able
to support attributes that describe the type of low-level API
calls that are allowed towards a component. In addition, all
API calls (both high- and low-level) are recorded similarly as
explained for the Controller RP. This addresses requirements
R03 and R05.

V. SVP IMPLEMENTATION

The structure of the SVP implementation is shown in
Fig. 5. It uses currently available technologies to implement
the security mechanisms and requirements, cf. Table III.

A. Controller Host (CtrlH)

At the CtrlH, the CSP is implemented with the OpenSSL
as a bash script which manages certificates in an automated
manner. Controller certificate is created initially and User and
Proxy / BL certificates are created on demand.

The CtrlAPI is implemented as a Python-Flask web appli-
cation which runs under uWSGI web server. uWSGI server is
started with an X.509 CtrlH certificate generated by the CSP.

As part of the system design, the architecture of the
Orchestrator can follow one of the following patterns: a)
Client-Server, b) Server-Only, as was described in [16]. In a
Server-Only architecture, the Orchestrator software is installed
only on the CtrlH, whereas in a Client-Server architecture
there is also agent software installed on CpHs. We chose
the Client-Server architecture because this allows the agent to
individually check the integrity of downloaded AI artifacts. Or-
chestrator consists of two components – Security Manager on
Server-side and Bonseyes Module (BM) on Client-side. They
are implemented as Python-Flask web applications running
under the uWSGI web server, with a high degree of integration
between them. Namely, each BM belongs to a specific Security
Manager and their communication is encrypted using HTTPS.

B. Compute Host (CpH)

The provisioning of the CpH is performed by the the BM,
which requests the Proxy / BL certificate from the Security
Manager and downloads and starts all Proxy / BL and EE
related components from a repository (not shown in Fig. 5).

The Proxy / BL is implemented in the form of a Docker
container. It intercepts the communication between the User
host and the EE and allows only a strictly defined set of
Proxy / BL Web API calls to be executed. The Proxy / BL
Web API is implemented as a Python-Flask web application
which runs under the uWSGI web server. The server is started
with X.509 Proxy / BL certificate generated by CSP. In order
to communicate with the proxy’s Web API, a user executes
commands over User Command Line Interface (User CLI).
The User CLI sends both privileged and regular commands,
which are filtered by the proxy, based on the user’s role.

The EE resides inside of the CpH and contains all the
needed data and tools to conduct AI pipeline execution. The
Import Volume is used to store information within the EE,
which can later be used during AI pipeline execution. It is
implemented as a folder in the CpH’s file system which is
attached as a volume to Proxy / BL docker container. AI
artifact users can upload data into Import Volume, but cannot
execute or download it - this data is designed to be used
only by Bonseyes Command Line Interface (Bonseyes CLI).
The Bonseyes CLI is the implementation of the AI Pipeline
Orchestrator shown in Fig. 4. Its purpose is to control the
respective AI Tools and provide them mediated access to



Infrastructure

ControllerController host Compute host

Credential 
Service Provider

Controller 
Web API

Orchestrator

Security 
Manager

User host

Bonseyes 
Module

Proxy / 
Bonseyes Layer

Proxy / 
Bonseyes Layer

Proxy / BL 
Web API

User CLI

Web GUIUser 
certificate

User 
license

Proxy / BL 
certificate

Execution Environment

Data Tool

Docker Images

Bonseyes CLI Training Tool

Manager Tool

Deployment Tool

Evaluation Tool

Export 
Volume

Import 
Volume

Licensing Module

File System

Controller 
certificate

Fig. 5: Implemented architecture of the SVP.

data residing inside Import Volume. The Bonseyes CLI is
implemented as a Python module that can be invoked by
executing User CLI commands and is attached to Proxy / BL
docker container as a volume. AI Tools are implemented in
Docker containers which are started by the Bonseyes CLI and
receive input from it. After the AI Tool finished execution,
the Bonseyes CLI gathers the output and places it in Export
Volume, which is used to transfer information out from the
EE, thus from the SVP. The Export Volume is implemented
in the same manner as an the Import Volume.

The Licensing Module is another essential security mecha-
nism that resides within the EE. It is implemented with Python
and ensures compliant usage of the artifact according to the
User License. The user needs to upload the User license to
the SVP and its validity is checked by Bonseyes CLI before
the execution of any command from the user.

VI. SVP EVALUATION

An system-wide evaluation of the SVP’s security level
is difficult since it combines a variety of complex security
mechanisms. This makes it prohibitive to rely on symbol-
ical verification (i. e. , formal model) [17] or computational
approaches (e. g. , reduction techniques) [18] to assess the
security of the system. Hence, we decided to apply here a
more differentiated approach which builds on practical use-
cases to verify its usability and security.

The SVP implementation was tested by several real-world
AI engineering cases. These use cases permit judging the
SVP’s maturity and thus evaluating its Technology Readiness
Level (TRL) [19]. The use cases were carried out by stake-
holders and users of the collaborative AI engineering process
of [1], [2] and in their labs and computing infrastructures. The
stakeholders comprised two companies which were interested
in AI application design, an SME (small- and medium-sized
company) and a large automotive OEM manufacturer, as well
as two international universities developing AI algorithms. The
use-cases comprised the tasks of ”AI training” and ”AI model
benchmarking” using AI pipelines, c. f. , Fig. 1. The various
actors in the use cases were assigned one of the following
roles: legitimate SVP provider, legitimate SVP user, rogue SVP
user, and outside adversary.

Throughout these use cases, a legitimate SVP user and SVP
provider were always able to execute the AI pipelines and to

exchange the artifacts (Remark: this confirms the AI engi-
neering capabilities of the SVP). However, a rogue SVP user
and an outside adversary were experiencing the enforcement
of security mechanisms. In detail, an outside adversary was
given the task to penetrate into the EE and interfere with the
process of pipeline execution. When an adversary attempted
a connection, it was blocked by the X.509 digital certificate
authentication. Moreover, since only network port 443 was
open, there was no other point of interaction offered by the
system. In parallel, the embedded logging system recorded
every unsuccessful connection attempt for further analysis.

Another use case introduced a rogue SVP user on the
inside of SVP’s perimeter, having two malicious goals: 1)
obtain the AI data and tools which are stored in the execution
environment, and 2) execute an AI benchmarking tool with
an expired license. By design, the Proxy / BL enforces for
regular users a store-only mode for the data inside of the
Import Volume. This prevents data exfiltration from the Import
Volume. Only privileged users or programs can obtain direct
access to data inside the Import Volume. In completing the first
goal, the rogue user must authenticate himself using his digital
certificate. Using the identity from the certificate, the RBAC
mechanism determined that regular user privileges apply, and
thus blocked read access to the assets.

In order to complete the second goal, the rogue user
modified the license, which is encoded in plain-text JSON
format, to extend the license expiration date. The modified
license was uploaded as part of the pipeline construction
process to the SVP along with the original license signature.
This signature was computed over the sha256 hash of the
license content, using a private key known only to the MP.
During license verification, the SVP first verified the license
signature using MP’s public key. Since the license content was
changed, the signature verification failed. Thus, the execution
of the benchmarking tool was blocked.

The use cases confirmed that the AI and security require-
ments were appropriately addressed and that the security
capabilities of the SVP provide sufficient trust for enabling
the collaborative AI engineering process of [1], [2]. Moreover,
users of this AI engineering process concluded in [20] that the
SVP implementation provided by us achieves at least TRL
4 (”Technology validated in lab”) and eventually also TRL
5 (TRL 4 + ”... relevant environment (industrially relevant
environment in the case of key enabling technologies)”). While
the TRL shows the maturity of the approach, we suggest to
carry out a more threat-focused verification in the future, e. g. ,
a full-fledged penetration test of a live SVP.

VII. RELATED WORK

Protecting collaborative and distributed software engineer-
ing environments involves a large number of technologies.
Next, we outline important related works this and outline the
context for the research presented here.

Securing Docker containers has recently gained significant
attention [21], [22]. Our approach complements the Docker-



specific efforts by not relying on a specific containerization
technique and adding another layer of protection.

Software marketplaces for Virtual Network Functions
(VNFs) and AI are going back as early as 2014 [23] but
rarely support edge clouds or multi-stakeholder collaborations.
Trusted and secure collaborative software marketplace sub-
strates and platforms using Blockchains have been suggested
lately [24], [25]. Ericsson’s Nubo platform [24], however,
doesn’t support licenses and hasn’t yet an option for distributed
computation. The OceanProtocol [25] is the closest known
larger-scale concept to the MP [1] and the SVP concepts.
However, it also doesn’t enforce licenses and requires the
Docker containers to be adapted by a Blochchain layer.

Related work on the network scope and dynamics of proxies
were discussed in Section IV-A in order to highlight the
features of our mechanism. Recent proxy solutions for micro
services and service chains are discussed in [26], [27]. Hereby,
[26] is close to the proposed Proxy / BL concept. However,
it is tailored to offline devices and the proposed architecture
is based on the usage of secure cryptoprocessors, such as
the trusted platform module (TPM). Thus, their proposal is
not applicable on platforms lacking this type of devices.
Distributed business processes employing proxies are detailed
in [27]. However, their proposed proxy-based controller is
designed for protecting document flows only. Other uses, such
as chained services as AI pipelines are, not considered.

VIII. SUMMARY AND OUTLOOK

In this work we designed a PaaS solution for securing
containerized AI artifacts and enabling trust in collaborative
AI engineering. The design is based on a rigours threat
and security analysis process: threat modeling → security
requirements definition → security services development. The
idea of securing AI artifacts and pipelines is implemented by
the use of the Proxy / Bonseyes Layer (BL), which implements
the security concepts of separation and verification. The BL
is placed on-demand, close to each artifact, enforces licenses
and prevents direct access from users. The evaluation of the
SVP has demonstrated that it has matured security and can
be applied in real-world collaborative AI engineering using
software marketplaces and AI pipeline concepts.

We think that our solution allows the SVP to be stretched
into devices on edge clouds. In this scenario, edge devices acts
as CpHs that are managed from the SVP CtrlH. However, in
order for the SVP to remain trustworthy, the edge operator
must enjoy the same level of trust as the SVP provider.

As future work, we suggest investigating how to integrate
and extend the MP and SVP concepts for the deployment of
VNFs or Service Function Chains (SFC) [28] trustfully on
edge devices of collaborating parties or service providers.

ACKNOWLEDGMENT

The authors would like to thank Lorenzo Keller, Samuel
Fricker and Yuliyan Maksimov for support. Furthermore, this
work has received partial funding from the European Unions
Horizon 2020 research and innovation program under grant

agreement No 732204 (Bonseyes). This work is supported by
the Swiss State Secretariat for Education Research and Inno-
vation (SERI) under contract number 16.0159. The opinions
expressed and arguments employed herein do not necessarily
reflect the official views of these funding bodies.

REFERENCES

[1] T. Llewellyn et al., “BONSEYES: platform for open development of
systems of artificial intelligence,” in Proc. ACM Int. Conf. on Computing
Frontiers, Siena, Italy, May 2017.

[2] M. De Prado et al., “Bonseyes AI Pipeline—Bringing AI to You: End-
to-End Integration of Data, Algorithms, and Deployment Tools,” ACM
Trans. Internet Things, vol. 1, no. 4, Aug. 2020.

[3] A. Shostack, Threat Modeling: Designing for Security. Wiley, 2014.
[4] D. Merkel, “Docker: lightweight linux containers for consistent devel-

opment and deployment,” Linux journal, vol. 2014, no. 239, Mar. 2014.
[5] J. Thönes, “Microservices,” IEEE Software, vol. 32, no. 1, 2015.
[6] V. A. Mehri, D. Ilie, and K. Tutschku, “Privacy and DRM requirements

for collaborative development of AI applications,” in Proc. ARES,
Hamburg, Germany, Aug. 2018.

[7] ——, “Designing a secure IoT system architecture from a virtual
premise for a collaborative AI lab,” in Proc. DISS, San Diego, USA,
Feb. 2019.

[8] C. Collberg et al., “A taxonomy of obfuscating transformations,” Dept.
of Comp. Science, Uni. Auckland, NZ, Tech. Rep., Jul. 1997.

[9] B. Parno et al., “Bootstrapping trust in commodity computers,” in Proc.
IEEE SSP, Oakland, CA, USA, Jul. 2010.

[10] T. Peng, C. Leckie, and K. Ramamohanarao, “Survey of network-based
defense mechanisms countering the DoS and DDoS problems,” ACM
Computing Surveys, vol. 39, no. 1, Apr. 2007.

[11] M. Schumacher et al., Security Patterns: Integrating security and
systems engineering. Wiley, 2013.

[12] M. Singhal et al., “Collaboration in multicloud computing environments:
Framework and security issues,” Computer, vol. 46, no. 2, 2013.

[13] Istio Authors, “Security,” 2019. [Online]. Available: https://istio.io/docs/
concepts/security/

[14] Microsoft, “Sidecar pattern,” 2020. [Online]. Available: https://docs.
microsoft.com/en-us/azure/architecture/patterns/sidecar

[15] P. A. Grassi and J. L. Fenton, Digital Identity Guidelines, Jun. 2017,
NIST Special Publication 800-63-3.

[16] R.-V. Tkachuk et al., “Orchestrating future service chains in the next
generation of clouds,” in Proc. SNCNW, Luleå, Sweden, Jun. 2019.

[17] B. Blanchet, “Modeling and verifying security protocols with the applied
pi calculus and proverif,” Found. Trends Priv. Secur., vol. 1, no. 1–2,
Oct. 2016.

[18] J. Katz and Y. Lindell, Introduction to Modern Cryptography, 2nd ed.
CRC Press, 2015.

[19] M. Héder, “From NASA to EU: the evolution of the TRL scale in public
sector innovation.” Innovation Journal, vol. 22, no. 2, 2017.

[20] S. Fricker (Edt.), “Validation and Open Developer Community Report -
Del. D2.5,” H2020 Bonseyes – AI Marketplace, Tech. Rep., Jan. 2020.

[21] X. Gao et al., “Containerleaks: Emerging security threats of information
leakages in container clouds,” in 2017 47th IEEE/IFIP Int. Conf. on
Dependable Systems and Networks (DSN). IEEE, 2017.

[22] Docker Inc., “Content trust in docker.” [Online]. Available: https:
//docs.docker.com/engine/security/trust/content trust/

[23] G. Xilouris et al., “T-nova: A marketplace for virtualized network
functions,” in Proc. of EuCNC 2014. IEEE, 2014.

[24] J. Kempf et al., “The Nubo virtual services marketplace,” arXiv preprint
arXiv:1909.04934, 2019.

[25] Ocean Protocol Foundation, “Ocean protocol: A decentralized substrate
for ai data and services,” Mar. 2019. [Online]. Available: https:
//oceanprotocol.com/

[26] D. Migdal et al., “Offline trusted device and proxy architecture based
on a new TLS switching technique,” in 2017 International Workshop on
Secure Internet of Things, 2017.

[27] N. Maroua et al., “A new formal proxy-based approach for secure
distributed business process on the cloud,” in IEEE AINA, 2018.

[28] C. Zhang et al., “L4-l7 service function chaining solution architecture,”
Open Networking Foundation, ONF TS-027, 2015.


