
MEASUREMENT AND ANALYSIS OF GNUTELLA SIGNALING TRAFFIC 1

Measurement and Analysis of Gnutella Signaling
Traffic

Dragos Ilie, David Erman, Adrian Popescu, Arne A. Nilsson

Dept. of Telecommunication Systems
School of Engineering

Blekinge Institute of Technology
371 79 Karlskrona, Sweden

{dragos.ilie, david.erman, adrian.popescu, arne.nilsson}@bth.se

Abstract— The paper reports on in-depth measurements and
analysis of Gnutella signaling traffic collected at the Blekinge
Institute of Technology (BIT), Karlskrona, Sweden. The mea-
surements are based on a week-long packet trace collected with
help of the well-known tcpdump application. Furthermore, a
novel approach has been used to measure and analyze Gnutella
signaling traffic. Associated with this, a dedicated tcptrace
module has been developed and used to decode the packet trace,
down to individual Gnutella messages. The measurement infras-
tructure consists of a Gnutella node running in ultrapeer mode
and protocol decoding software. Detailed traffic characteristics
have been collected and analyzed, such as session durations and
interarrival times, and Gnutella message sizes and duration.
Preliminary results show a high degree of variability of the
Gnutella signaling traffic, which is mostly created by the QUERY
messages. Furthermore, the Gnutella session interarrival times
are observed to resemble the exponential distribution.

Index Terms— P2P, Gnutella, traffic measurements, traffic
characteristics, flow reassembly

I. INTRODUCTION

The popularity of peer-to-peer (P2P) networking has lead to
a dramatic increase of the volume and the complexity of traffic
generated by P2P applications. Some of the most important
reasons behind the popularity of P2P networking are related to
the increased robustness through information redundancy (dis-
semination), ability to easily share own resources on demand,
fine-grained access control policies, anonymity and encryption.
Since the number of P2P nodes is still growing rapidly it is
important to study the characteristics of P2P traffic, to assess
the impact on network and to design control mechanisms to
ensure that networking resources are fairly shared between
P2P services and traditional services.

Well-known protocols like TCP and HTTP contain mech-
anisms for robust prevention and recovery to compensate for
adverse networking conditions (e.g., TCP congestion control)
and for optimal usage of network resources (e.g., HTTP
persistent connections, range-request and expect/continue).
They were designed and implemented at a time when Internet
connections and computers were scarce and error-prone, and
available to only a small number of people. Consequently,
new protocols were developed with the aim to minimize the
CPU power, to optimize link utilization and to improve the
QoS. Today, the situation is very different. Large capacity,

low error rate data links are being installed into residential
areas and computer access is almost ubiquitous. The possibility
to develop networking applications is available to everybody
thanks to extensive software libraries. With the advent of
Napster in the fall of 1999 [6], [15], the P2P revolution was
started and, since then, the world has witnessed the rise and
fall of many types of P2P protocols.

In contrast to the traditional networking services, P2P
services provide data transfer without much consideration to
fair and optimal use of network resources or side-effects
on other network services [1]. They take instead a narrow
view in the sense that they focus on where to find resources
demanded by users and on how to maximize the throughput
of individual data flows by selecting high-speed peers. On top
of that, every node in a pure P2P network is typically involved
into overlay routing, where decisions are taken based on
specific constraints (e.g., connectivity, resource availability and
expected data throughput) as to along which path to forward
P2P data. The result is that the overlay routing is taking
over some functionality generally handled by the network
layer. Consequently, some of the assumptions considered at the
transport layer about the services offered by the network layer
may no longer be true in the case of P2P networking. To make
things worse, the routing topology is in continuous change
due to peers joining or leaving the overlay (the so-called ”ad-
hoc effect”). Peers depend on notifications from neighboring
nodes in order to maintain up-to-date routing tables. Thus,
the design choices for the overlay signaling and control as
well as interactions with IP routing and transport protocols
are important for the end-to-end performance. Furthermore,
detailed traffic measurements are imperious to understand the
Gnutella traffic patterns with the goal to find the optimal
design for overlay signaling and control.

The paper reports on measurement and analysis of Gnutella
signaling traffic collected at the Blekinge Institute of Tech-
nology (BIT), Karlskrona, Sweden. We have chosen Gnutella
because of the openness of the protocol specification and the
relative large user base. Gnutella uses a special packet format
for peer signaling and resource discovery and a subset of
HTTP for file transfers. The measurement infrastructure con-
sists of a Gnutella node running in ultrapeer mode and protocol
decoding software developed at the BIT. In Gnutella networks,

MEASUREMENT AND ANALYSIS OF GNUTELLA SIGNALING TRAFFIC 2

ultrapeers are nodes with better networking capabilities and
higher CPU power that act as proxies on behalf of less capable
nodes, the so-called leaf nodes. The beneficial side-effect of
running an ultrapeer is the access to a large number of Gnutella
peers.

Packet traces have been collected with the help of the well-
known tcpdump application [12] and a significant volume of
non-Gnutella traffic has been filtered out prior to decoding and
analysis. A dedicated tcptrace module [16] has been devel-
oped to decode the Gnutella signaling traffic. Collected data
include, among others, session duration, session interarrival
times, Gnutella message sizes and duration. The objectives
are to capture the type and sizes of protocol objects, to test
for the presence of heavy-tailed properties, to find structural
similarities or differences among characteristics of sessions as
well as to search for possible invariant characteristics across
object flows.

The motivation is to build stochastic models for key el-
ements of the protocol that can be further used to build
integrated performance testbed for conducting experiments on
P2P traffic control and engineering.

The rest of the paper is organized as follows. In Section II
the Gnutella protocol is described in detail. Section III de-
scribes the architecture of the measurement infrastructure for
P2P developed at BIT. In Section IV we present the metrics
measured, followed by the measurement results in Section V.
Section VI concludes the paper.

II. THE GNUTELLA PROTOCOL

Gnutella is a decentralized P2P system [3], [13]. Partici-
pants can share any type of resources, although the currently
available specification covers only file resources. The protocol
is easily extensible, which has lead to the adoption of a variety
of proprietary and non-proprietary extensions (e.g., ultrapeers
[19] and the Query Routing Protocol [18]).

The activities of Gnutella peers can be divided in two main
categories: signaling and exchange of user resources (further
referred to as resource or data exchange).

The signaling activities are concerned with discovering the
network topology (with the help of PING and PONG messages)
and locating resources of interest (with the help of QUERY and
QUERY HIT messages). For example, a new Gnutella node
will start with a list of potential peers to which will try to
connect. For each successful connection, the connected peers
will exchange the IP addresses of other peers they know about.
Another example of signaling is when a peer searches for
resources. The resource query is broadcasted to all directly
connected peers. Each of these peers further forwards the
query to all directly connected peers, except for the one where
the message came from. The range of flooding is controlled
by a Time-To-Live (TTL) parameter in the query header. Each
peer that has the sought resources sends a reply message along
the exact same path as the incoming query message. The reply
message contains a description of all resources that match the
query along with the socket address (i.e., IP address and port
address) to use for downloading.

Resource exchange occurs when a peer has localized a
resource of interest (e.g., a spreadsheet file or the ISO image

for the latest Linux distribution). The peer attempts then to
download the file by establishing a direct HTTP connection to
the socket indicated in the query response message. The re-
source is finally downloaded by using the HTTP GET method.
Both HTTP 1.0 [2] and HTTP 1.1 [8] must be supported by
peers for data exchange and the later protocol is the preferred
choice.

If the peer holding the resource is behind a firewall that
blocks incoming connections, the peer that wants to download
the resource can send a Gnutella PUSH message over the
signaling channel. Upon receiving the PUSH message the
firewalled host will attempt to open a TCP connection to the
host requesting the PUSH. If successful, the firewalled host
notifies its peer that it can initiate the HTTP download over
the new connection. In the case both hosts are behind firewalls
that block incoming connections, then data exchange is not
possible.

A. Overlay topology hierarchy

Initially, Gnutella networks (referred to as Gnets in the rest
of the paper) were non-hierarchical. However, it has been
observed that the abundance of signaling was a major threat to
the scalability of these networks [19]. Limewire (a company
promoting an enhanced Gnutella servent1) suggested therefore
the introduction of a two-level peer hierarchy: ultrapeers and
leaf nodes. Ultrapeers are faster nodes in the sense that they
are connected to high-capacity links and have a large amount
of CPU power. Leaf nodes maintain a single connection
to their ultrapeer. The typical ultrapeer maintains 10-100
connections, one for each leaf node, and 1-10 connections to
other ultrapeers, again one connection for each ultrapeer node.
The ultrapeers do signaling on behalf of the leaf nodes thus
shielding leaf nodes from virtually all ping and query traffic
[19]. A ultrapeer does not necessarily have leaf nodes, it can
work standalone.

Some servents may not be capable to become leaf nodes or
ultrapeers for various reasons (e.g., they lack the functionality).
In this case, they are labeled legacy nodes. In order to improve
the overall scalability of the Gnets and to preserve bandwidth,
ultrapeers and leaf nodes may refuse to connect to legacy
nodes.

B. Peer discovery

Peer discovery is done mainly through the use of GWeb-
Cache servers and PING – PONG messages.

A Gnutella node that wants to become a peer in an overlay
must first have information about the listening socket for at
least one peer that is already member in the overlay. This will
be referred to as the bootstrap problem. The typical way to
solve the bootstrap problem was to visit a web site that has
recent lists of known peers on a web page. The next step was
to select one of the peers listed on the page, cut-and-paste its
address (i.e., the listening socket) from the web browser into
the Gnutella servent and try to open a connection to it. This

1Servent denotes a software entity that acts either as a client or as a server.
The name is a combination of the two terms: SERVer cliENT.

MEASUREMENT AND ANALYSIS OF GNUTELLA SIGNALING TRAFFIC 3

process would continue until at least one successful connection
was made. At this point the PING – PONG traffic would, hope-
fully, reveal more peers to which the servent could connect.
The addresses of newly found peers were cached locally and
reused when the servent application was restarted. Since peers
in general have a short life span (i.e., they enter and leave the
network very often) the peer lists kept by each node often
got outdated. GWebCache servers try to solve this problem.
Each GWebCache server is essentially an HTTP server with
a main web page that contains a list of listening sockets for
known peers. The web page is typically rendered by a CGI
script or Java servlet, which is also capable of updating the
list contents. Ultrapeers update the list continuously ensuring
that new peers can always find an overlay to join. Another
list describing all available GWebCache servers is maintained
at the main GWebCache web site. This list contains only
GWebCache servers that have elected to register themselves.
Unofficial GWebCache servers exist as well, providing some
sort of anonymity to peers using them.

The new way to bootstrap a Gnutella node is to have
it connect to the GWebCache web site, obtain the list of
GWebCache servers, try to connect to a number of them, and
finally build up a list of active servents. Alternatively, the node
can connect to an unofficial GWebCache server or connect
directly to a node in the Gnet.

C. Connection establishment

Assuming a Gnutella servent has obtained the listening
socket of a peer, it can attempt to open a signaling channel by
establishing a full-duplex TCP connection to the specific peer.
In the following, the servent that has done the TCP active
open will be referred to as the client, and its peer will be
referred to as the server. Once the TCP connection is in place
a handshaking procedure is done between the client and the
server2:

1) The client sends the string GNUTELLA
CONNECT/0.6<CR><LF> where <CR> is the
ASCII code for carriage return and <LF> is the ASCII
code for line feed.

2) The client sends all capability headers in a format similar
to HTTP and ends with <CR><LF> on an empty line,
e.g.,
User-Agent: BearShare/1.0<CR><LF>
X-Ultrapeer: True<CR><LF>
Pong-Caching: 0.1<CR><LF>
<CR><LF>

3) The server responds with the string GNUTELLA/0.6
<status-code><status-string><CR><LF>.
The <status-code> follows the HTTP
specification with code 200 meaning success. The
<status-string> is a short human readable
description of the status code (e.g., when the code is
200 the string will typically be set to OK).

2The handshaking procedure uses elements that are similar to HTTP. It is
important to point out that this format was selected out of convenience. The
signaling traffic is not pure HTTP.

4) The server sends all capability headers as described in
step 2.

5) The client parses the server response to compute
the smallest set of common capabilities available.
If the client still wishes to connect, it will
send GNUTELLA/0.6 <status-code>

<status-string><CR><LF> to the server with
the <status-code> set to 200. If the capabilities
do not match, the client will set the <status-code>

to an error code and close the TCP connection.
If the handshake is successful, the client and the server start

exchanging binary Gnutella messages over the existing TCP
connection. The existing TCP connection lasts until one of
the peers decides to terminate the session. At that point the
peer ending the connection has the opportunity to send an
optional Gnutella BYE message. Then the peer closes the TCP
connection.

If the capability set used by the peers includes stream
compression then all data on the TCP connection, with the
exception of the initial handshake, will be compressed [14].
The type of compression algorithm can be selected in the
capability header, but the de-facto standard seems to be deflate,
which is implemented in zlib [10].

Each Gnutella message starts with a generic header that
contains the following fields:

• Message ID/GUID (Globally Unique ID) to uniquely
identify messages on Gnet. The GUID is a combination
of the peer’s MAC address and a timestamp.

• Payload type code that identifies the type of Gnutella
message (e.g., PONG messages have payload type 0x01).

• TTL (Time-To-Live) to limit the signaling radius and
the adverse impact on the network. Messages with TTL
greater than 15 should be dropped according to the
protocol specification.

• Hop count to inform receiving peers how far the message
has traveled (in number of peer hops).

• Payload length to describe the total length of the message
following the header. The next generic message header is
located exactly this number of bytes from the end of this
specific header. Since there is no specific framing that
separates messages apart the servent must use the size
field to discover message boundaries.

• The generic Gnutella header is followed by the actual
message that may have own headers.

D. Peer exchange

Every successfully connected pair of peers starts sending
periodic PING messages one to the other. The receiver of the
PING message decrements the TTL in the message header
and increments the Hops field. If the TTL is not zero, then
the message is forwarded to all directly connected peers (with
the exception of the one from where the message came). PING
messages do not carry any information (not even the sender
listening socket), which means that the payload length in the
Gnutella header is zero.
PONG messages are sent only in response to PING mes-

sages. More than one PONG message can be sent in response to

MEASUREMENT AND ANALYSIS OF GNUTELLA SIGNALING TRAFFIC 4

a PING. The PONG messages are returned on the reverse path
used by the corresponding PING message. Each PONG mes-
sage contains detailed information about one active Gnutella
peer along with the GUID from the PING message that
triggered it. The PONG receiver can then attempt to connect
to the peer that was described in the message.

Ultrapeers use a similar procedure, however they do not
forward PING and PONGs to/from the leaf nodes attached to
them.

E. Query signaling

Gnutella peers can locate resources through the use of
QUERY messages sent to directly connected peers over the
TCP connection established during the handshake. A QUERY
message specifies in plain text the name of a resource and the
minimum speed (i.e., link capacity) expected from the servents
that respond to this message. There may also be additional
message extensions immediately following standard QUERY
message data (e.g., proprietary extensions), these are however
not considered in our study. Peers receiving a QUERY message
forward it to all directly connected ultrapeers unless the TTL
field indicates otherwise.

If a peer that has received the QUERY message is able
to serve the resource, it responds with a QUERY HIT mes-
sage. The GUID for the QUERY HIT message must be
the same as the one in the QUERY message that has trig-
gered the response. The QUERY HIT message lists each
resource name that matches the resource query. For ex-
ample, the string linux could identify a resource called
linux redhat 7.0.iso as well as a resource called
linux installation guide.txt.gz. Thus, this fic-
tive query can be answered with a QUERY HIT message
containing two results along with the size in bytes of each
resource. In addition, the QUERY HIT messages contain infor-
mation about the listening socket to be used by the message
receiver when it wants to download the resource. The protocol
specification limits the total size of a QUERY HIT message.
Consequently, several QUERY HIT messages can be issued by
the same servent in response to a QUERY message.

When the QUERY HIT receiver decides to download the
resource described in the message it will first try to establish
a direct HTTP connection to the listening socket obtained. If
the QUERY HIT sender (i.e., the resource owner) is behind a
firewall, then the downloader will send a PUSH message to
it using the reverse path of the QUERY HIT message. Using
the PUSH message the resource owner can establish a TCP
connection to the downloader. The downloader can then use
the HTTP GET method to retrieve the resource over the new
connection.

F. Ultrapeers and QRP

The mission of ultrapeers is to reduce the burden put on
the network by peer signaling. They achieve this goal by
eliminating the PING messages among leaf nodes and by em-
ploying query routing. There are various schemes for ultrapeer
query routing but the recommended one is the Query Routing

Protocol (QRP) [18]. Ultrapeers signal among themselves by
using PING and PONG messages.

The Query Routing Protocol (QRP) was introduced in order
to mitigate the adverse effects of the broadcasts used for
Gnutella queries and it is based on a modified version of
Bloom filters [11]. The idea is to decompose a query text
string into individual keywords and have a hash function that
is applied to each keyword in the query. Given a keyword, the
hash function returns an index to an element in a finite discrete
vector. Each entry in the vector is the minimum distance ex-
pressed in number of peer hops to the peer holding a resource
that matches the keyword in the query. Queries are forwarded
only to hosts that have resources that match all keywords. By
this, the bandwith used by queries is substantially reduced.
Peers run the hash algorithm over the resources they share
and exchange the routing tables (i.e., hop vectors) at regular
intervals.

Individual peers (legacy or ultrapeer nodes) may run QRP
and exchange routing tables among themselves [9]. However,
the typical scenario is that legacy nodes do not use QRP,
leaf nodes send route table updates to ultrapeers only, and
ultrapeers propagate these tables only to directly connected
ultrapeers.

G. Miscellaneous signaling
There are several miscellaneous messages flowing over

Gnets such as PUSH and BYE messages or other messages
based on proprietary Gnutella extensions.
PUSH messages are used by peers that want to download

resources from peers located behind a firewall, which prevents
incoming TCP connections. The downloader sends a PUSH
message over the existing TCP connections, which was setup
during the handshake phase. The PUSH message contains the
listening socket of the downloader. The host behind the firewall
can then attempt to establish a TCP connection to the listening
socket described in the message. If the TCP connection is es-
tablished successfully, the firewalled host sends the following
string over the signaling connection:

GIV <File Index>:<Servent Identifier> \
/<File Name><CR><LF>

The backslash (\) character at the end of the line indicates
an artificial line break for the sake of page formatting (i.e.,
in reality GIV is sent as one line). The <File Index>

and <Servent Identifier> are the values found in
the PUSH message received previously and <File Name>

is the name of the resource requested. Upon receiving this
message, the non-firewalled host issues a HTTP GET request
over the newly established TCP connection:

GET /get/<File Index>/<File Name> \
HTTP/1.1<CR><LF>
User-Agent: Gnutella<CR><LF>
Connection: Keep-Alive
Range: bytes=0-<CR><LF>
<CR><LF>

The BYE message is an optional message used by servents
to inform the directly connected peers that the signaling

MEASUREMENT AND ANALYSIS OF GNUTELLA SIGNALING TRAFFIC 5

connection will be closed. The message contains an error code
along with an error string. The message is sent only to hosts
that have indicated during handshake that they support this
message type.

H. Data transfer

Data exchange is done over a direct HTTP connection
between a pair of peers. Both HTTP 1.0 and HTTP 1.1 are
supported and the later is recommended. Most notably, the
persistent connection and range request features are preferen-
tial. The persistent connection allows a pair of peers to transfer
several files over the same HTTP connection.

The range request allows a peer to continue an unfinished
transfer from where it left off. Furthermore, it allows servents
to utilize swarming, which is the technique to retrieve differ-
ent parts of the file from different peers. This allows more
efficient use of the bandwidth. Swarming is not part of the
Gnutella protocol, regular Gnutella servents (i.e., servents that
do not explicitly support swarming) can nevertheless engage
in swarming without being aware of it. From their point of
view, a peer is requesting a range of bytes for a particular
resource. The intelligence resides with the peer downloading
the data.

Fig. 1 shows a simple Gnet scenario, involving three legacy
peers. It is assumed that Peer A has obtained the listening
socket of Peer B from a GWebCache server. Using the socket
descriptor, Peer A attempts to connect to Peer B. In this
example, Peer B already has a signaling connection to Peer C.

Gnutella message over

Separate HTTP connection

established TCP connection

TCP connection

PONG

PING

PING

PONG

PONGQUERY

QUERY

QUERY HIT

QUERY HIT

PONG

PONG

PING

PING

HTTP response

HTTP GET

Peer A Peer CPeer B
GNUTELLA CONNECT/0.6

GNUTELLA/0.6 200 OK

GNUTELLA/0.6 200 OK

Fig. 1. Example of Gnutella session

The first three messages between Peer A and Peer B
illustrate the establishment of the signaling channel between
the two peers. The two peers may exchange capabilities during
this phase as well.

The next phase encompasses the exchange of network topol-
ogy information with the help of PING and PONG messages.
The messages are sent over the TCP connection established
previously (i.e., during the peer handshake). It is observed
that PING messages are forwarded by Peer B from Peer A
to Peer C and in the opposite direction as well as that PONG
messages follow the reverse path taken by the corresponding
PING message.

At a later time the Peer A sends a QUERY message, which
is forwarded by Peer B to Peer C. In this example, only Peer
C is able to serve the resource, which is illustrated by the
QUERY HIT message. The QUERY and QUERY HIT messages
use the existing TCP connection, just like the PING and PONG
messages. Again, it is observed that the QUERY HIT message
follows the reverse path taken by the corresponding QUERY
message.

Finally, Peer A opens a direct HTTP connection to Peer C
and downloads the resource by using the HTTP GET method.
The resource contents are returned in the HTTP response
message.

The exchange of PING - PONG and QUERY - QUERY HIT
messages continues until one of the peers tears down the
TCP connection. A Gnutella BYE message may be sent as
notification that the signaling channel will be closed.

III. MEASUREMENT INFRASTRUCTURE

The P2P measurement infrastructure developed at BIT [7]
consists of a ultrapeer node and protocol decoding software.
Further, the protocol decoding software is based on two well-
known applications: tcpdump [12] and tcptrace [16].
Although the infrastructure is currently geared towards P2P
protocols, it can be easily extended to measure other protocols
running over TCP [7] as well. Furthermore, we plan also to
develop similar modules to measure UDP-based applications.

The measurement procedure can be best described as a
5-stage process, as illustrated in Fig. 2. The stages are:
data collection, TCP reassembly, application message flow
reassembly, log data reduction and postprocessing/analysis.
Only the first stage deals with live data. The other four stages
process data off-line.

with tcpdump
Data collection TCP Reassembly Application msg

flow reassembly
Log data
reduction

Postprocessing
and analysis

Fig. 2. Measurement procedure

A. Data collection

The data collection stage used at BIT consists of a Gnutella
node running in ultrapeer mode. The benefit of running an
ultrapeer node for the purpose of measurements is that the
node will see more traffic. The reason is two-fold: first, the
node acts as an application layer router between leaf nodes
and other ultrapeers, leaf and legacy nodes and, secondly, most

MEASUREMENT AND ANALYSIS OF GNUTELLA SIGNALING TRAFFIC 6

nodes prefer to connect to ultrapeers since ultrapeers provide
better connectivity than leaf and legacy nodes.

Fig. 3. Measurement setup

The BIT ultrapeer node runs the Gentoo Linux 1.4
operating system, with kernel version 2.6.5 and the
gtk-gnutella-0.93.3 servent software. The node is
equipped with an Intel Celeron 2.4GHz processor, 1GB RAM,
120GB hard drive, and 10/100 FastEthernet network interface.
As shown in Fig. 3, the network interface is connected to
a 100Mbit switch in the lab at our department, which is
further connected through a router to the SUNET backbone.
In addition, the node has tcpdump 3.8.3 installed on it.
When the node is running measurements, tcpdump is started
before the Gnutella servent in order to avoid missing any
connections. Tcpdump can also be run on a different node in
the network, provided that the ultrapeer switch port is mirrored
to the port where the tcpdump host is recording or if the
switch is replaced with a hub and both the tcpdump host
and the ultrapeer are connected to it.

During the data collection stage, tcpdump collects Ether-
net frames from the switch port where the ultrapeer node is
connected. Since most P2P applications can use dynamic ports,
all traffic reaching the switch port must be collected. However,
to increase the performance during data collection and data
processing, one can turn off most or all server software on
the ultrapeer node. It is possible, in addition, to apply a filter
to tcpdump that drops packets used by traditional services,
which are running on well-known ports (e.g., HTTP, FTP,
SSH).

The volume of collected data can be quite large, e.g., the
resulting trace file could grow well beyond 4 GBytes in less
than one day, which is larger than most standard filesystems
can handle without modification. This is directly related to the
number of peers the servent is allowed to connect to. In our
case we had on average 150 peers (100 leaf nodes and 50
ultrapeers) and collected approximately 75 GBytes pcap data
in seven days. The solution was to have tcpdump spread the
recorded data across several files, each 600 MBytes large. The

file size was set to 600 MBytes to have each data file small
enough to fit on a recordable CD.

B. TCP Reassembly

Assuming that the measured P2P application runs over TCP,
the next step is to reassemble the TCP frames to a flow of
ordered bytes. The TCP reassembly module builds on the TCP
engine available in tcptrace [7].

The module reads the tcpdump traces in the order they
were created. Each trace is scanned for TCP connections.
When found, they are stored in a list with connection records.
Further, when a new TCP segment is found in the trace file,
the module scans the connection list comparing the socket
pair of the segment with each entry in the list. If no entry
matches the socket pair of the new segment, then a new
connection is considered to be found and a record is created
for it, which finally is added to the connection list. Otherwise,
the connection record matching the socket pair is retrieved and
sent together with the new segment to the TCP reassembly
engine.

The TCP reassembly engine is similar to the one used by the
FreeBSD TCP/IP stack as described in [17]. For each active
connection, the reassembly engine keeps a doubly linked list,
which is referred to as the reassembly list. When given a
connection record and a new segment, it retrieves the correct
reassembly list and then it inserts the new segment in the
correct place in the list. The reassembly engine is capable
of handling out-of-order segments as well as forward and
backward overlapping between segments.

C. Application data flow reassembly

Whenever new data is available, the application data re-
assembly module is notified. Upon notification, it will ask
the TCP reassembly module for a new segment from the
reassembly list corresponding to the socket pair received
with the notification. When it receives the new segment, it
interprets the contents according to the specification for the
protocol it decodes. Since application messages may span
several segments and since a segment may contain data from
two consecutive messages, each segment is appended to the
end of a data buffer before further processing, thus creating
a contiguous data flow containing at least one application
message.

In the case of a new Gnutella connection, the application
reassembly module first waits for the handshake phase to
begin. If the handshake fails the connection is marked invalid
and it is eventually discarded by the memory manager.

If the handshake is successful, the application reassembly
module scans the capability lists sent by the nodes involved
in the TCP connection. If the nodes have agreed to compress
the data, the connection is marked as compressed. Further
segments received from the TCP reassembly module for this
connection are first sent to the decompressor, before being
appended to the data buffer.

The decompressor uses zlib’s [10] inflate() function to
decompress the data available in the new segment. Upon

MEASUREMENT AND ANALYSIS OF GNUTELLA SIGNALING TRAFFIC 7

successful decompression the decompressed data is appended
to the data buffer.

Immediately after the handshake phase, the application
reassembly module attempts to find the Gnutella message
header of the first message. Using the payload length field,
it is able to discover the beginning of the following message.
This is the only way to discover message boundaries and it is
essential in order to be able to follow the flow. Based on the
message type field in the message header, the corresponding
decoding function is called, which outputs a message record
to the log file. The message records follow a specific format
required by the postprocessing stage.

D. Data reduction and postprocessing

Since the logs can grow quite large, they can be processed
through an optional stage of data reduction. Data reduction is
achieved by using the on-the-fly gzip compression offered
by zlib [10]. Additional data reduction can be achieved if
the user is willing to sacrifice some detail by aggregating data
over time.

The postprocessing module interprets the (optionally com-
pressed) log data and it is able to demultiplex it based on
different types of constraints: message type, IP address, port
number, etc. The data output format of this stage is suitable
for input to numerical computation software such as MATLAB
and standard UNIX text processing software such as sed, awk
and perl.

IV. TRAFFIC METRICS

The measurement infrastructure developed at BIT offers
the possibility to extract traffic metrics for every layer in the
TCP/IP stack [7]. In the following, we report on application
layer metrics only, with emphasis on metrics used to char-
acterize the Gnutella signaling traffic. These metrics can be
partitioned into two main classes, namely session metrics and
message metrics.

A. Session metrics

A Gnutella session is defined to be the collection of events
resulting from the interaction between two Gnutella peers
that communicate with each other. A session begins with
a handshake message and it is terminated by either a BYE
message or by tearing down the corresponding TCP connection
(Fig. 1).

A number of metrics have been used for the characterization
of Gnutella signaling traffic [7]. The most important session
metrics are as follows:

Session interarrival time: this is the time duration between
the initial handshake messages of two consecutive sessions.
We differentiate between incoming sessions and outgoing
sessions. Outgoing sessions are sessions where the initial
handshake message is sent by the ultrapeer at BIT and the
rest of sessions are incoming sessions.

Session duration: this is the time duration for a session
from the moment when a handshake is attempted until the
time of the last Gnutella message on the specific connection.

Number of messages in a session: this is the number
of messages exchanged during a session between the peers
involved in the specific session.

Number of bytes in a session: this is the number of bytes
transferred in messages exchanged during a session between
the peers involved in the specific session. This metric does not
include the bytes corresponding to the link layer, IP and TCP
headers.

B. Message metrics

A Gnutella message consists of the generic Gnutella header
and message data. The message data may contain additional
headers and third-party extensions.

The most important message metrics are as follows:
Message type: this refers to the type of Gnutella message

as extracted from the type field in the Gnutella header.
Message size: this refers to the size of the message as

obtained from the length field in the Gnutella header.
Message duration: this refers to the time needed to

receive all TCP segments belonging to the specific message.
A message that spans one TCP segment or a fraction of a TCP
segment is considered to have zero duration.

Message rate: this metric refers to the number of messages
per second for the specific message type.

Message byte rate: this metric refers to the number of
message bytes (including the Gnutella header) per second for
the specific message type.

V. RESULTS

The reported Gnutella signaling traffic is based on a week-
long packet trace collected at BIT. The recorded traffic volume
sums up to more than 282 million IP datagrams, which were
used to carry 763 million Gnutella messages in more than
773 thousand Gnutella sessions. Out of these, only about
16 thousand sessions successfully completed the handshake
phase, as it is observed in Table II.

TABLE I
SERVER HANDSHAKE CODE

Response code Code meaning Count
200 OK 27357
401 Unauthorized 1
403 Gnet connection not compressed 203131
404 Already connected 3198
406 Protocol not acceptable 3091
503 Full 535479
550 Hostile IP address banned 1085

TABLE II
FINAL HANDSHAKE CODE

Response code Code meaning Count
200 OK 16039
401 Unauthorized 1
403 Gnet connection not compressed 3320
503 I am a shielded leaf node 5873
577 Service not available 101

MEASUREMENT AND ANALYSIS OF GNUTELLA SIGNALING TRAFFIC 8

Table I reports a summary of the number of various re-
sponse codes that were sent during the server-side part of the
handshake (Fig. 1). Similarly, Table II shows the number of
various response codes that were sent during the final phase
of the handshake.

TABLE III
MESSAGE TYPE DISTRIBUTION

Message type Number of messages Percentage of total
CLIHSK 777040 0.101
SERHSK 773342 0.101
FINHSK 25333 0.003
PING 5797304 0.760
PONG 34353576 4.503
QUERY 677458351 88.800
QUERY HIT 42557130 5.578
QRP 25478 0.003
VEND 63817 0.008
STD VEND 0 0.000
PUSH 1055452 0.138
BYE 11328 0.001
UNKNOWN 4050 0.001
Total 762902201 100.000

Table III shows a summary of the number of messages of
different types found in the data set. It is observed that QUERY
messages are responsible for most (88.8%) of the traffic
volume, followed by QUERY HIT (about 5.6%) and PONG
messages (4.5%). CLIHSK, SERHSK and FINHSK represent
messages sent during the Gnutella connection establishment
procedure. CLIHSK is the initial client handshake, followed
by the server handshake SERHSK and finally by the final
part of the handshake FINHSK. The UNKNOWN message field
accounts for Gnutella messages that use an unknown message
type value. We finally observe the absence of any standard
vendor STD VEND messages. We hypothesize that this is
because of a combination of lack of standardization procedure
and vendor disinterest.

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000

15:00 16:00 17:00 18:00 19:00

M
es

sa
ge

s
pe

r s
ec

on
d

Time

Fig. 4. Overall message rate of the BIT Gnutella node

 0

 200000

 400000

15:00 16:00 17:00 18:00 19:00

B
yt

es
 p

er
 s

ec
on

d

Time

Fig. 5. Overall byte rate of the BIT Gnutella node

Fig. 4 and Fig. 5 show the overall message rate and
overall byte rate respectively, which were measured at the BIT
Gnutella node immediately after it was started. These metrics
refer to the incoming traffic plus the outgoing traffic. These are
results that confirm the transition from leaf node to ultrapeer
of the BIT Gnutella node. One of the criteria used to decide if

a node is eligible to become ultrapeer is long up-times, in the
order of several hours [13], [19]. Both figures show that the
overall traffic volume, expressed in number of messages per
second and number of bytes per second respectively, increases
suddenly after the node was running for four hours. This is
a sign that the node was recognized by other peers as an
ultrapeer.

Fig. 6 and Fig. 7 show the number of incoming and outgoing
messages per second measured at the BIT Gnutella node. It
is observed that the outgoing message rate is larger, on the
average, than the incoming message rate. Table IV summarizes
the main statistics associated with these metrics.

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

12:00 00:00 12:00 00:00 12:00 00:00 12:00 00:00 12:00 00:00 12:00 00:00 12:00 00:00 12:00 00:00

May 24 May 25 May 26 May 27 May 28 May 29 May 30 May 31 Jun 01

M
es

sa
ge

s
pe

r s
ec

on
d

Time

Fig. 6. Incoming message rate at the BIT Gnutella node

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

12:00 00:00 12:00 00:00 12:00 00:00 12:00 00:00 12:00 00:00 12:00 00:00 12:00 00:00 12:00 00:00

May 24 May 25 May 26 May 27 May 28 May 29 May 30 May 31 Jun 01
M

es
sa

ge
s

pe
r s

ec
on

d

Time

Fig. 7. Outgoing message rate at the BIT Gnutella node

TABLE IV
MESSAGE RATE STATISTICS

Dir Samples Max Min Mean Variance Stddev
IN 597026 86369 1 215 34980 187

OUT 597026 8182 1 1063 346057 588

Fig. 8 and Fig. 9 give an alternative view of the traffic
volume expressed as incoming byte rate and outgoing byte
rate. The number of bytes covers the Gnutella header and the
Gnutella payload, but not the link-layer and TCP/IP headers.
It is mentioned that Fig. 8 truncates some of the spikes,
which will otherwise dwarf the majority of the traffic volume.
Preliminary investigations indicate that these spikes occur due
to the combined effect of long TCP reassembly queues in the
TCP/IP stack and exceptionally good compression ratios with
zlib [4], [5], [10].

 0
 100000
 200000
 300000
 400000
 500000
 600000
 700000
 800000

12:00 00:00 12:00 00:00 12:00 00:00 12:00 00:00 12:00 00:00 12:00 00:00 12:00 00:00 12:00 00:00

May 24 May 25 May 26 May 27 May 28 May 29 May 30 May 31 Jun 01

B
yt

es
 p

er
 s

ec
on

d

Time

Fig. 8. Incoming byte rate measured at the BIT Gnutella node

Table V summarizes the associated statistics for the incom-
ing and outgoing byte rates. It is observed the high variance
in the number of bytes per second for both incoming and out-
going traffic. The consequence is that we expect the Gnutella
signaling traffic to have a high degree of heavy-tailedness.

MEASUREMENT AND ANALYSIS OF GNUTELLA SIGNALING TRAFFIC 9

 0
 100000
 200000
 300000
 400000
 500000
 600000
 700000
 800000

12:00 00:00 12:00 00:00 12:00 00:00 12:00 00:00 12:00 00:00 12:00 00:00 12:00 00:00 12:00 00:00

May 24 May 25 May 26 May 27 May 28 May 29 May 30 May 31 Jun 01

B
yt

es
 p

er
 s

ec
on

d

Time

Fig. 9. Outgoing byte rate measured at the BIT Gnutella node

Further studies on traffic self-similarity will however be done
in the future.

TABLE V
MESSAGE BYTE RATE STATISTICS

Dir Samples Max Min Mean Variance Stddev
IN 597026 49863052 23 31280 10134416588 100669

OUT 597026 738185 21 93884 2985683010 54641

Fig. 10 through Fig.13 show examples of other metrics
(PING and PONG message rates) captured with the measure-
ment infrastructure. It is observed that the volume of incoming
PING traffic is much larger than the volume of the outgoing
PING traffic, whereas an opposite relation is observed for the
PONG traffic.

 0
 20
 40
 60
 80

 100

12:00 00:00 12:00 00:00 12:00 00:00 12:00 00:00 12:00 00:00 12:00 00:00 12:00 00:00 12:00 00:00

May 24 May 25 May 26 May 27 May 28 May 29 May 30 May 31 Jun 01

M
es

sa
ge

s
pe

r s
ec

on
d

Time

Fig. 10. Incoming PING message rate

 0
 20
 40
 60
 80

 100

12:00 00:00 12:00 00:00 12:00 00:00 12:00 00:00 12:00 00:00 12:00 00:00 12:00 00:00 12:00 00:00

May 24 May 25 May 26 May 27 May 28 May 29 May 30 May 31 Jun 01

M
es

sa
ge

s
pe

r s
ec

on
d

Time

Fig. 11. Outgoing PING message rate

 0

 50

 100

 150

 200

12:00 00:00 12:00 00:00 12:00 00:00 12:00 00:00 12:00 00:00 12:00 00:00 12:00 00:00 12:00 00:00

May 24 May 25 May 26 May 27 May 28 May 29 May 30 May 31 Jun 01

M
es

sa
ge

s
pe

r s
ec

on
d

Time

Fig. 12. Incoming PONG message rate

 0

 50

 100

 150

 200

12:00 00:00 12:00 00:00 12:00 00:00 12:00 00:00 12:00 00:00 12:00 00:00 12:00 00:00 12:00 00:00

May 24 May 25 May 26 May 27 May 28 May 29 May 30 May 31 Jun 01

M
es

sa
ge

s
pe

r s
ec

on
d

Time

Fig. 13. Outgoing PONG message rate

Fig. 14 and Fig. 15 show a huge disproportion in the number
of incoming QUERY messages as compared to the number of
outgoing QUERY messages. Table VI summarizes the essential
statistics. Further investigation needs to be done in order to

explain this large skew in the proportion between incoming
and outgoing QUERY messages, and this is subject for future
work.

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000

12:00 00:00 12:00 00:00 12:00 00:00 12:00 00:00 12:00 00:00 12:00 00:00 12:00 00:00 12:00 00:00

May 24 May 25 May 26 May 27 May 28 May 29 May 30 May 31 Jun 01

M
es

sa
ge

s
pe

r s
ec

on
d

Time

Fig. 14. Incoming QUERY message rate

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000

12:00 00:00 12:00 00:00 12:00 00:00 12:00 00:00 12:00 00:00 12:00 00:00 12:00 00:00 12:00 00:00

May 24 May 25 May 26 May 27 May 28 May 29 May 30 May 31 Jun 01

M
es

sa
ge

s
pe

r s
ec

on
d

Time

Fig. 15. Outgoing QUERY message rate

TABLE VI
QUERY MESSAGE RATE STATISTICS

Dir Samples Max Min Mean Variance Stddev
IN 597019 52022 1 160 12123 110

OUT 596906 8021 1 975 331937 576

Finally, Fig. 16 shows an example of histogram that we
have observed for the session interarrival times. It is observed
that the shape of the histogram resembles the exponential
distribution.

10^-6

10^-5

10^-4

10^-3

10^-2

10^-1

10^0

 0 50 100 150 200 250

E
m

pi
ric

al
 p

ro
ba

bi
lit

y

Session interarrival time (sec)

Fig. 16. Empirical distribution for the session interarrival time

VI. CONCLUSIONS

A measurement study of Gnutella signaling traffic has
been reported for traffic collected at the Blekinge Institute of
Technology (BIT), Karlskrona, Sweden. A novel approach has
been used for traffic measurements that is based on combining
TCP stream identification and extraction with application data
flow reassembly. Its main advantage lies in the information
detail it provides, which is down to individual fields in the
Gnutella message headers. The measurement infrastructure
consists of a Gnutella node running in ultrapeer mode, with
the benefit of access to a large number of Gnutella peers.
Preliminary results show a high degree of variability of the
Gnutella signaling traffic, which is mostly created by QUERY
messages. Furthermore, the Gnutella session interarrival times
are observed to resemble the exponential distribution.

MEASUREMENT AND ANALYSIS OF GNUTELLA SIGNALING TRAFFIC 10

The data obtained from the measurements could be used to
characterize a Gnutella ultrapeer under high load. Our plans
for future work include workload characterization of ultrapeers
and leaf nodes under low to medium load. The different
types of workload characterization will enable us to simulate
different strategies used to improve the overlay performance.

In addition to that, future work will be about further analysis
of the obtained results, to find out structural similarities
or differences among characteristics of Gnutella ultrapeers
and leaf nodes as well as to search for possible invariant
characteristics across object flows.

REFERENCES

[1] Eytan Adar and Bernardo A. Huberman. Free riding on gnutella. First
Monday, 5(10), October 2000. http://firstmonday.org/issues/issue5 10/
adar/index.html.

[2] T. Berners-Lee, R. Fielding, and H. Frystyk. Hypertext Transfer Protocol
– HTTP/1.0, May 1996. RFC 1945.

[3] Clip2. The Annotated Gnutella Protocol Specification v0.4.
The Gnutella Developer Forum (GDF), 1.8th edition, July 2003.
http://groups.yahoo.com/group/the gdf/files/Development/.

[4] P. Deutsch. DEFLATE Compressed Data Format Specification version
1.3, May 1996. RFC 1951.

[5] P. Deutsch and J-L. Gailly. ZLIB Compressed Data Format Specification
version 3.3, May 1996. RFC 1950.

[6] Wikipedia Encyclopedia. Napster. http://en.wikipedia.org/wiki/Napster.
[7] D. Erman, D. Ilie, and A. Popescu. Peer-to-peer traffic measurements.

Technical report, Blekinge Institute of Technology, Karlskrona, Sweden,
2004.

[8] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and
T. Berners-Lee. Hypertext Transfer Protocol – HTTP/1.1, June 1999.
RFC 2616.

[9] A. Fisk. Gnutella Ultrapeer Query Routing. Lime Wire LLC, 0.1 edi-
tion, May 2003. http://groups.yahoo.com/group/the gdf/files/Proposals/
Working Proposals/search/Ultrapeer QRP/.

[10] Jean-loup Gailly and Mark Adler. zlib. http://www.gzip.org/zlib.
[11] Burton H. Bloom. Space/time trade-offs in hash coding with allowable

errors. Communication of the ACM, Volume 13(Number 7):p. 422–426,
July 1970. ISSN:0001-0782.

[12] Van Jacobsen, Leres C., and McCanne S. Tcpdump.
http://www.tcpdump.org.

[13] Tor Klingberg and Raphael Manfredi. Gnutella 0.6. The
Gnutella Developer Forum (GDF), 200206-draft edition, June 2002.
http://groups.yahoo.com/group/the gdf/files/Development/.

[14] Raphael Manfredi. Gnutella Traffic Compression.
The Gnutella Developer Forum (GDF), January 2003.
http://groups.yahoo.com/group/the gdf/files/Development/.

[15] Napster. Napster. http://www.napster.com.
[16] Shawn Ostermann. Tcptrace. http://www.tcptrace.org.
[17] Gary R. Wright and W. Richard Stevens. TCP/IP Illustrated: The

Implementation, volume 2. Addison-Wesley, 1995. ISBN: 0-201-63354-
X.

[18] Christopher Rohrs. Query Routing for the Gnutella
Network. Lime Wire LLC, 1.0 edition, May 2002.
http://groups.yahoo.com/group/the gdf/files/Development/.

[19] Anurag Singla and Christopher Rohrs. Ultrapeers: Another Step Towards
Gnutella Scalability. Lime Wire LLC, 1.0 edition, November 2002.
http://groups.yahoo.com/group/the gdf/files/Development/.

